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Abstract In this article, we explore and analyze the different variants of Julia set patterns for the complex exponential
function W (z) = αez

n

+ βz2 + log γt and complex sine function T (z) = sin(zn) + βz2 + log γt, where n ≥ 2, α, β ∈
C, γ ∈ C\0, and t ∈ R, t ≥ 1 by employing a viscosity approximation-type iterative method with s-convexity. We utilize a
viscosity approximation-type iterative method with s-convexity to derive an escape criterion for visualizing Julia sets. This is
achieved by generalizing the existing algorithms, which led to visualization of beautiful fractals as Julia sets. Additionally, we
present graphical illustrations of Julia sets to demonstrate their dependence on the iteration parameters. Our study concludes
with an analysis of variations in the images and the influence of parameters on the color and appearance of the fractal
patterns. Finally, we observe intriguing behaviors of Julia sets with fixed input parameters and varying values of n.
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1. Introduction

The fascinating field of fractal mathematics has attracted the interest of scientists, mathematicians, and artists,
offering profound insights into the intricate balance of complexity and order within the natural world. Among
the vast array of mathematical shapes and patterns, Julia sets have emerged as a focal point of study,
displaying mesmerizing visual representations and intriguing mathematical relationships. Named after the French
mathematician Gaston Julia, these sets lie at the core of the broader field of complex dynamics, constructed through
iterations of complex functions that concentrate on specific values within the complex plane. The work of another
prominent mathematician, P. Fatou [7], has extended the study of Julia sets by introducing the Fatou set as their
complement within the domain, see e.g., [1, 4, 5, 6, 13, 14, 15, 16, 17].

One of the most fascinating aspects of Julia sets is their complex nature. The term “fractal” derived from the
Latin language, meaning “split” or “break”, accurately describes these self-similar patterns in complex graphics.
Fractals, with their infinitely complex and similar patterns, find numerous real-life applications and are prevalent in
nature, effectively describing phenomena such as leaf patterns, tree branches, lightning, clouds, rivers, and crystals.
The importance of fractals extends to various fields, playing a vital role in surveying or investigating various natural
or living structures, including microbial culture. Additionally, fractal theory is widely employed in cryptography,
image compression, encryption, radar systems, computational architectural design, and engineering models, which
underscores its wide and influential applications in [13].
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In the existing literature, numerous studies have explored the application of explicit and implicit iteration
schemes in constructing fractal sets. In [2], Ashish et al. utilized Noor iteration to construct Julia sets. Subsequently,
Cho et al. [3] expanded upon the results of Ashish et al. by employing s-convex combination. Kumari et al.
demonstrated the fractal patterns obtained through the iterative method introduced by Abbas and Nazir in [9].
Recent studies include the utilization of Picard-Mann iteration with s-convexity [18] and Picard-Mann iteration
[21] for constructing Julia sets.

Moreover, a generalization of the Halpern iteration, a viscosity-type iteration, was introduced in [8] for
constructing Julia sets and biomorphs. Within the implicit group of iteration schemes applied in constructing Julia
sets, examples include the Jungk-Noor iteration [22], the DK-iterative scheme and S-iteration with h-convexity
[23, 24], the Jungk-CR iteration and Jungk-CR iteration with s-convexity [10, 20], the Jungk-P iteration with
s-convexity [9], and the Jungk–S iteration with s-convexity [11]. Notably, iteration schemes extend beyond
Mandelbrot and Julia sets, finding applications in the generation of various fractal types such as biomorphs
[6, 8, 10], inversion fractals [4], and root-finding fractals [4, 6].

In the majority of studies focusing on the Julia set, researchers commonly employ the nth degree polynomial
in the form of zn + c. However, in a distinctive approach, Tanveer et al. [19, 21] introduced a modification to the
constant term in this function and a new fixed point iteration. Instead of c, they proposed using log(ct), where
t ∈ R and t ≥ 1. Moreover, they chose to utilize the Mann and Picard-Mann iterations and furnished a proof for
the escape criterion applied in the escape-time algorithm that generated the Mandelbrot sets images in their study.

Motivated by the incorporation of the logarithmic function for the constant term c, our paper adopts a similar
approach by replacing the constant c with log(ct), where t ∈ R and t ≥ 1. Furthermore, instead of the Mann and
Picard-Mann iterations, we employ the viscosity approximation-type iterative method with s-convexity, rigorously
establishing escape criteria for the considered iterations. Our study encompasses the presentation and analysis
of graphical examples. Inspired by Tanveer et al. [21], the present work investigates Julia sets of complex
exponential function W (z) = αez

n

+ βz2 + log γt and complex sine function T (z) = sin(zn) + βz2 + log γt,
where n ≥ 2, α, β ∈ C, γ ∈ C\0, and t ∈ R, t ≥ 1, utilizing a viscosity approximation-type iterative method with
s-convexity to develop the escape criterion.

The remainder of the paper is structured as follows: In Section 2, we provide fundamental definitions and results
essential for accomplishing the objectives of this paper. Section 3 is dedicated to the investigation of escape criteria
for the viscosity approximation-type iterative method with s-convexity, focusing on both the complex exponential
function W (z) = αez

n

+ βz2 + log γt and complex sine function T (z) = sin(zn) + βz2 + log γt. In Section 4, we
present some graphical examples of Julia sets obtained using the proposed approach. These examples demonstrate
the correlation between the size, color, and appearance of the fractal patterns of the generated Julia sets and the
values of the parameters. Finally, in Section 5, we conclude our work.

2. Preliminaries

Definition 2.1 (Julia set [7])
Let p : C → C. The filled Julia set of p is denote by Jp and is defined as

Jp = {z ∈ C : {|pk(z)|}∞k=0 is bounded}.

where pk denotes the k times composition of the function p. Noticeably, it is a set of complex numbers for which
the orbits do not converge to a point at infinity. The Julia set of p is the boundary of Jp, that is, Jp = ∂Jp.

Definition 2.2 (s-convex combination [15])
Let z1, z2, z3, · · · , zn ∈ C and s ∈ (0, 1]. The s-convex combination is described as

λs
1z1 + λs

2z2 + λs
3z3 + · · ·+ λs

nzn.

where λk ≥ 0 and
n∑

k=1

λk = 1, for k ∈ {1, 2, 3, · · · , n}.
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2 JULIA SETS OF TRANSCENDENTAL FUNCTIONS

For s = 1, the s-convex combination diminishes to the standard convex combination.

Let us consider the following complex mappings W,T, p : C → C as:

W (z) = αez
n

+ βz2 + log γt

T (z) = sin(zn) + βz2 + log γt.

where n ≥ 2, α, β ∈ C, γ ∈ C\{0} and t ∈ R, t ≥ 1. Moreover, let p(z) = az + b be a complex contraction
mapping with a, b ∈ C and |a| < 1.

In the manuscript, let η = log(γt)
γ . Consequently, we can express log(γt) = ηγ.

Let p,W, T : C → C be complex-valued mappings such that p is a contraction mapping. In the complex plane,
consider the sequence {zk}∞k=0 of iterates for any starting point z0 ∈ C, with parameters µ, ν ∈ (0, 1), and k ≥ 0,
is referred to as the viscosity approximation-type iterative method with s-convexity, and it is expressed as:{

zk+1 = µsp(zk) + (1− µ)syk,

yk = νszk + (1− ν)sW (zk),
(2.1)

and {
zk+1 = µsp(zk) + (1− µ)syk,

yk = νszk + (1− ν)sT (zk).
(2.2)

Remark 2.1
The viscosity approximation-type iterative method with s-convexity reduces to:

• The viscosity approximation-type iterative method [21] when s = 1.
• The Halpern iteration [8] when p(z) = b and s = 1.
• The viscosity approximation method [12] when ν = 0 and s = 1.

To generate fractals and escape limitations are the basic key to run the algorithms. Since it is well known that
| sin(zn)| ≤ 1 for some z ∈ C, and the Maclaurin expansion for the sine function is

| sin(zn)| =
∣∣∣∣ ∞∑
k=0

(−1)kzn(2k+1)

(2k + 1)!

∣∣∣∣ = |zn|
∣∣∣∣ ∞∑
k=0

(−1)kz2kn

(2k + 1)!

∣∣∣∣ ≥ |ω||zn|, (2.3)

where 0 < |ω| ≤ 1 except the values of z ∈ C for which |ω| = 0 and satisfying the bound∣∣∣∣ ∞∑
k=0

(−1)kz2kn

(2k + 1)!

∣∣∣∣ ≥ |ω|, (see the details [1]).

3. Escape criteria for the considered complex functions

In this section, we introduce the escape time algorithms via the viscosity approximation-type iterative method
with s-convexity combination for novel complex function of the type W (z) = αez

n

+ βz2 + log γt and T (z) =
sin(zn) + βz2 + log γt, where n ≥ 2, α, β ∈ C, γ ∈ C\{0} and t ∈ R, t ≥ 1. As a result, we establish a novel
threshold escape radii and leverage them to visualize some non-classical variants of classical fractals, as illustrated
in the subsequent outcomes.

3.1. Escape criterion for W(z) = αez
n

+ βz2 + log γt

In this subsection, we prove the escape criteria for transcendental function W (z) = αez
n

+ βz2 + log γt, where
n ≥ 2, α, β ∈ C, γ ∈ C\{0} and t ∈ R, t ≥ 1. via viscosity approximation-type iterative method with s-convexity.
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Theorem 3.1

Assume that z0 ∈ C, |z0| ≥ max{|γ|, |b|} >

(
(2 + sµ)

(1− sµ)(1− sν)
(
|γ|n−2 − |β|

) + |η|(
|γ|n−2 − |β|

)) and |zn0 | ≤

|α|(Re(zn0 )), where µ, ν, |ω| ∈ (0, 1) and |γ|n−2 − |β| ≠ 0. If the sequence {zk}∞k=0 is a viscosity approximation-
type iterative method with s-convexity defined as{

zk+1 = µsp(zk) + (1− µ)syk,

yk = νszk + (1− ν)sW (zk),
(3.1)

where p(z) = az + b is contraction mapping a, b ∈ C with |a| < 1, and k ≥ 0. Then |zk| → ∞, as k → ∞.

Proof
For k = 0, consider from (3.1)

|y0| = |νsz0 + (1− ν)sW (z0)|
= |νsz0 + (1− ν)s(αez

n
0 + βz20 + log γt)|

= |νsz0 + (1− ν)s(αez
n
0 + βz20 + ηγ)|

≥ (1− ν)s|(αez
n
0 + βz20)| − (1− ν)s|ηγ| − νs|z0|.

Utilizing binomial expansion of (1− ν)s up to linear terms of ν, and ν, s ∈ (0, 1], so νs ≥ sν, we get

|y0| ≥ (1− sν)|(αez
n
0 + βz20)| − (1− sν)|ηγ| − sν|z0|

≥ (1− sν)|αez
n
0 | − (1− sν)|β||z20 | − (1− sν)|η||γ| − sν|z0|, |z0| ≥ |γ|

≥ (1− sν)|α||eRe(zn
0 )| − (1− sν)|β||z20 | − (1− sν)|η||z0| − sν|z0|, sν < 1

≥ (1− sν)|α|Re(zn0 )− (1− sν)|β||z20 | − (1− sν)|η||z0| − |z0|, |zn0 | ≤ |α|Re(zn0 )

≥ (1− sν)|zn0 | − (1− sν)|β||z20 | − (1− sν)|η||z0| − |z0|
≥ (1− sν)|z20 |

(
|zn−2

0 | − |β|
)
− (1− sν)|η||z0| − |z0|, |z0| ≥ |γ|

≥ |z0|
(
(1− sν)|z0|

(
|γ|n−2 − |β|

)
− (1− sν)|η| − 1

)
. (3.2)

From (3.1), consider

|z1| = |µsp(z0) + (1− µ)sy0|
= |µs(az0 + b) + (1− µ)sy0|
≥ (1− µ)s|y0| − µs|(az0 + b)|
≥ (1− µ)s|y0| − µs|az0| − µs|b|.

Utilizing binomial expansion of (1− ν)s up to linear terms of ν, and ν, s ∈ (0, 1], so νs ≥ sν, we get

|z1| ≥ (1− sµ)|y0| − sµ|a||z0| − sµ|b|

Using (3.2), and our assumption |z0| ≥ max{|γ|, |b|} yields that −|b| ≥ −|z0|, we have

|z1| ≥ (1− sµ)|z0|
(
(1− sν)|z0|

(
|γ|n−2 − |β|

)
− (1− sν)|η| − 1

)
− sµ|a||z0| − sµ|z0|

≥ (1− sµ)|z0|
(
(1− sν)|z0|

(
|γ|n−2 − |β|

)
− (1− sν)|η| − 1

)
− 2sµ|z0|, |a| < 1

≥ |z0|
(
(1− sµ)(1− sν)|z0|

(
|γ|n−2 − |β|

)
− (1− sµ)(1− sν)|η| − sµ− 1

)
,

Since, |z0| ≥ max{|c|, |b|} >

(
|η|(

|γ|n−2 − |β|
) + (2 + sµ)

(1− sµ)(1− sν)
(
|γ|n−2 − |β|

)), which implies (1− sµ)(1−

sν)|z0|
(
|γ|n−2 − |β|

)
− (1− sµ)(1− sν)|η| − sµ− 1 > 1.
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4 JULIA SETS OF TRANSCENDENTAL FUNCTIONS

Hence |z1| > |z0|, which implies that there exists a real number Ω > 0 so that |z1| > (1 + Ω)|z0|. On continuing
the above procedure, we obtain |zk| > (1 + Ω)k|z0|. Hence, |zk| → ∞, as n → ∞.

In the proof of Theorem 3.1, we have used only the fact that |z0| >

(
|η|(

|γ|n−2 − |β|
) +

(2 + sµ)

(1− sµ)(1− sν)
(
|γ|n−2 − |β|

)) and |z0| ≥ max{|γ|, |b|}. So, we can refine it and obtain the following

corollary.

Corollary 3.1

Let |z0| > max

{
|γ|, |b|,

(
|η|(

|γ|n−2 − |β|
) + (2 + sµ)

(1− sµ)(1− sν)
(
|γ|n−2 − |β|

))} with |γ|n−2 − |β| ≠ 0 and

|zn0 | ≤ |α|Re(zn0 )), where n ≥ 2, α, β ∈ C, γ ∈ C\{0}, t ∈ R, t ≥ 1, and µ, ν ∈ (0, 1), and s ∈ (0, 1] with |a| < 1.
Then |zk| → ∞, as n → ∞.

3.2. Escape criterion for T(z) = sin(zn) + βz2 + log γt

In this subsection, we prove the escape criteria for transcendental function T (z) = sin(zn) + βz2 + log γt, where
n ≥ 2, β ∈ C, γ ∈ C\{0} and t ∈ R, t ≥ 1. via viscosity approximation-type iterative method with s-convexity.

Theorem 3.2

Assume that z0 ∈ C, |z0| ≥ max{|γ|, |b|} >

(
(2 + sµ)

(1− sµ)(1− sν)|ω|
(
|γ|n−2 − |β|

) + |η|
|ω|
(
|γ|n−2 − |β|

)), where

µ, ν, |ω| ∈ (0, 1) and |γ|n−2 − |β| ̸= 0. If the sequence {zk} is a viscosity approximation-type iterative method
with s-convexity defined as {

zk+1 = µsp(zk) + (1− µ)syk,

yk = νszk + (1− ν)sT (zk),
(3.3)

where p(z) = az + b is contraction mapping a, b ∈ C with |a| < 1, and k ≥ 0. Then |zk| → ∞, as k → ∞.

Proof
For k = 0, consider from (3.3)

|y0| = |νsz0 + (1− ν)sT (z0)|
= |νsz0 + (1− ν)s(sin(zn0 ) + βz20 + log γt)|
= |νsz0 + (1− ν)s(sin(zn0 ) + βz20 + ηγ)|
≥ |(1− ν)s sin(zn0 )| − |(1− ν)sβz20 | − |(1− ν)sηγ| − |νsz0|.

Utilizing binomial expansion of (1− ν)s up to linear terms of ν, ν ∈ (0, 1) and s ∈ (0, 1], so νs ≥ sν, we get

|y0| ≥ (1− sν)| sin(zn0 )| − (1− sν)|βz20 | − (1− sν)|ηγ| − sν|z0|
≥ (1− sν)|ω||zn0 | − (1− sν)|β||z20 | − (1− sν)|η||z0| − sν|z0|, |z0| ≥ |γ|
≥ (1− sν)|ω||zn0 | − (1− sν)|β||z20 | − (1− sν)|η||z0| − |z0|, sν < 1

≥ |z0|
(
(1− sν)|z0||ω|(|zn−2

0 | − |β|)− (1− sν)|η| − 1
)
, |z0| ≥ |γ|

≥ |z0|
(
(1− sν)|z0||ω|(|γ|n−2 − |β|)− (1− sν)|η| − 1

)
. (3.4)
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From (3.3), consider

|z1| = |µsp(z0) + (1− µ)sy0|
= |µs(az0 + b) + (1− µ)sy0|
≥ (1− µ)s|y0| − µs|(az0 + b)|
≥ (1− µ)s|y0| − µs|az0| − µs|b|

Utilizing binomial expansion of (1− ν)s up to linear terms of ν, ν ∈ (0, 1) and s ∈ (0, 1], so νs ≥ sν, we get

|z1| ≥ (1− sµ)|y0| − sµ|a||z0| − sµ|b|.

Using (3.4), and our assumption |z0| ≥ max{|γ|, |b|} yields that −|b| ≥ −|z0|, we have

|z1| ≥ (1− sµ)|z0|
(
(1− sν)|ω||z0|

(
|γ|n−2 − |β|

)
− (1− sν)|η| − 1

)
− sµ|a||z0| − sµ|z0|

≥ (1− sµ)|z0|
(
(1− sν)|ω||z0|

(
|γ|n−2 − |β|

)
− (1− sν)|η| − 1

)
− 2sµ|z0|, |a| < 1

≥ |z0|
(
(1− sµ)(1− sν)|ω||z0|

(
|γ|n−2 − |β|

)
− (1− sµ)(1− sν)|η| − sµ− 1

)
,

Since, |z0| ≥ max{|γ|, |b|} >

(
|η|

|ω|
(
|γ|n−2 − |β|

) + (2 + sµ)

(1− sµ)(1− sν)|ω|
(
|γ|n−2 − |β|

)), which implies (1−

sµ)(1− sν)|ω||z0|
(
|γ|n−2 − |β|

)
− (1− sµ)(1− sν)|η| − sµ− 1 > 1.

Hence |z1| > |z0|, which implies that there exists a real number Ω > 0 so that |z1| > (1 + Ω)|z0|. On continuing
the above procedure, we obtain |zk| > (1 + Ω)k|z0|. Hence, |zk| → ∞, as n → ∞.

In the proof of Theorem 3.2, we have used only the fact that |z0| >

(
|η|

|ω|
(
|γ|n−2 − |β|

) +
(2 + sµ)

(1− sµ)(1− sν)|ω|
(
|γ|n−2 − |β|

)) and |z0| ≥ max{|γ|, |b|}. So, we can refine it and obtain the following

corollary.

Corollary 3.2

Let |z0| > max

{
|γ|, |b|,

(
|η|

|ω|
(
|γ|n−2 − |β|

) + (2 + sµ)

(1− sµ)(1− sν)|ω|
(
|γ|n−2 − |β|

))} with |γ|n−2 − |β| ̸= 0 ,

where n ≥ 2, , β ∈ C, γ ∈ C\{0}, t ∈ R, t ≥ 1, and µ, ν ∈ (0, 1) and s, |ω| ∈ (0, 1] with |a| < 1. Then |zk| → ∞,
as n → ∞.

4. Application of Fractals

In this section, we tailor two algorithms: one for the Julia set of W (z) = αez
n

+ βz2 + log γt and the other for
T (z) = sin(zn) + βz2 + log γt employing the viscosity approximation-type iterative method with s-convexity,
where n ≥ 2, β ∈ C, γ ∈ C\0, and t ∈ R, t ≥ 1. We illustrate graphs of Julia sets at various input parameters,
generating Julia sets through the viscosity approximation-type iterative method with s-convexity using Algorithm
1 and 2, and comparing the resultant images. Finally, we visualize Julia sets for various input parameters and
different values of n. Throughout the paper, a maximum number of iterations k = 100 is consistently applied.
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6 JULIA SETS OF TRANSCENDENTAL FUNCTIONS

Algorithm 1 Geometry of Viscosity Julia set for W (z) = αez
n

+ βz2 + log γt,

Input: W (z) = αez
n

+ βz2 + log γt, where n ≥ 2, α, β ∈ C, γ ∈ C\{0} and t ∈ R, t ≥ 1;
K-maximal number of iterations; A-area; µ, ν ∈ (0, 1); p(z) = az + b, where a, b ∈ C
with |a| < 1; colourmap [0..C-1]-color with C colors.
Output: Julia set for area A
for z0 ∈ A do

η = log γt

γ

R1 = max

{
|γ|, |b|,

(
|η|(

|γ|n−2 − |β|
) + (2 + sµ)

(1− sµ)(1− sν)
(
|γ|n−2 − |β|

))}
R2 = (|α|Re(zn0 ))

1
n

k=0
while k ≤ K do

zk+1 = µsp(zk) + (1− µ)syk,
yk = νszk + (1− ν)sW (zk)

if R1 < |zk+1| ≤ R2 then break
end if
k=k+1

j = [(C − 1) k
K ]

colour z0 with colourmap [j]

Figure 1. Color map used in sketching the fractals.

Example 4.1
In this example, we present two cases. In the first case, we take an integer value of t, i.e., t = 3, 6, 9 and in the
second one a non-integer value, i.e., t = 0.5, 2.5, 6.5. Note that the last column in all the tables displays the image
execution time (in short, IET) in seconds. Julia sets for W (z) = αez

n

+ βz2 + logγt via viscosity approximation-
type iterative method with s-convexity are generated here with the following inputs:

Table 1 : Fixed value of γ as purely real and varying t.

n t α β γ a b µ ν s IET (in sec)
(i) 2 3 0.2 0.6 9 0.8 0.3 0.8 0.7 0.85 4.88s
(ii) 2 6 0.2 0.6 9 0.8 0.3 0.8 0.7 0.85 4.92s
(iii) 2 9 0.2 0.6 9 0.8 0.3 0.8 0.7 0.85 5.09s
(iv) 2 0.5 0.2 0.6 9 0.8 0.3 0.8 0.7 0.85 4.76s
(v) 2 2.5 0.2 0.6 9 0.8 0.3 0.8 0.7 0.85 4.82s
(vi) 2 6.5 0.2 0.6 9 0.8 0.3 0.8 0.7 0.85 4.97s

In Figure 2, we fixed the value of γ to 9 (purely real) and varying the value of t, in the first case, we take an integer
value of t, i.e., t = 3, 6, 9 (Figure 2 (i)-(iii)), and in the second one a non-integer value, i.e., t = 0.5, 2.5, 6.5 (Figure
2 (iv)-(vi)). From the images, we see that the Julia set becomes larger with the increase of the value of t. Thus,
the value of t has a great impact on the shape, size and color to the fractals, and the generated Julia sets looks like
flowers and Rangoli or may be compared to glass painting. We can see some spiral structures but the spiral pattern
arms and the size of lashes of bunches slightly increase with the increase the value of t.
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(i) t = 3 (ii) t = 6 (iii) t = 9

(iv) t = 0.5 (v) t = 2.5 (vi) t = 6.5

Figure 2. Julia sets for n = 2 with γ = 9 and varying t.

Table 2 : Fixed value of γ as purely complex and varying t.

n t α β γ a b µ ν s IET (in sec)
(i) 2 3 0.2 0.6 6i 0.8 0.3 0.8 0.7 0.85 4.84s
(ii) 2 6 0.2 0.6 6i 0.8 0.3 0.8 0.7 0.85 5.57s
(iii) 2 9 0.2 0.6 6i 0.8 0.3 0.8 0.7 0.85 5.77s
(iv) 2 0.5 0.2 0.6 6i 0.8 0.3 0.8 0.7 0.85 3.74s
(v) 2 2.5 0.2 0.6 6i 0.8 0.3 0.8 0.7 0.85 4.80s
(vi) 2 6.5 0.2 0.6 6i 0.8 0.3 0.8 0.7 0.85 5.63s

In Figure 3, we fixed the value of γ to 6i (purely imaginary) and varying the value of t. From the images, we see
that the Julia set becomes larger with the increase of the value of t. Thus, the value of t has a significant impact
on the shape, size and color to the fractals, and the generated Julia sets looks like flowers and Rangoli or may be
compared to glass painting. We can see some spiral structures but the spiral pattern arms and the size of lashes of
bunches slightly increase with the increase the value of t.

(i) t = 3 (ii) t = 6 (iii) t = 9
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(iv) t = 0.5 (v) t = 2.5 (vi) t = 6.5

Figure 3. Julia sets for n = 2 with γ = 6i and varying t.

Table 3 : Fixed value of γ as complex and varying t.

n t α β γ a b µ ν s IET (in sec)
(i) 2 3 0.2 0.6 3 + 2i 0.8 0.3 0.8 0.7 0.85 4.74s
(ii) 2 6 0.2 0.6 3 + 2i 0.8 0.3 0.8 0.7 0.85 4.77s
(iii) 2 9 0.2 0.6 3 + 2i 0.8 0.3 0.8 0.7 0.85 5.17s
(iv) 2 0.5 0.2 0.6 3 + 2i 0.8 0.3 0.8 0.7 0.85 4.03s
(v) 2 2.5 0.2 0.6 3 + 2i 0.8 0.3 0.8 0.7 0.85 4.47s
(vi) 2 6.5 0.2 0.6 3 + 2i 0.8 0.3 0.8 0.7 0.85 4.84s

(i) t = 3 (ii) t = 6 (iii) t = 9

(iv) t = 0.5 (v) t = 2.5 (vi) t = 6.5

Figure 4. Julia sets for n = 2 with γ = 3 + 2i and varying t.
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In Figure 4, we fixed the value of γ to 3 + 2i and varying the value of t. From the images, the value of t has a
significant impact on the shape, size and color to the fractals, and the generated Julia sets looks like spiral galaxy,
leaf of Rex Begonia and Rangoli or may be compared to glass painting. However, when we look closely, then
we notice that, we can see some beautiful spiral structures and the spiral pattern arms slightly different with the
increase the value of t. At first sight, the spiral arm in the lower in Figure 4(i, v), and the spiral arm in the upper
in Figure 4(ii, vi), or the two spiral arms upper as well as lower in Figure 4(iii, iv) are slightly different from the
other arms.

Table 4 : Fixed all the parameters values complex and varying t.

n t α β γ a b µ ν s IET (in sec)
(i) 2 3 −1.725 − 1.725i −0.025 + 0.025i −1.725 − 1.725i 0.018 + 0.4i 0.5 + 0.09i 0.17 0.18 0.9 6.12s
(ii) 2 6 −1.725 − 1.725i −0.025 + 0.025i −1.725 − 1.725i 0.018 + 0.4i 0.5 + 0.09i 0.17 0.18 0.9 6.87s
(iii) 2 9 −1.725 − 1.725i −0.025 + 0.025i −1.725 − 1.725i 0.018 + 0.4i 0.5 + 0.09i 0.17 0.18 0.9 7.87s
(iv) 2 0.5 −1.725 − 1.725i −0.025 + 0.025i −1.725 − 1.725i 0.018 + 0.4i 0.5 + 0.09i 0.17 0.18 0.9 4.94s
(v) 2 2.5 −1.725 − 1.725i −0.025 + 0.025i −1.725 − 1.725i 0.018 + 0.4i 0.5 + 0.09i 0.17 0.18 0.9 5.37s
(vi) 2 6.5 −1.725 − 1.725i −0.025 + 0.025i −1.725 − 1.725i 0.018 + 0.4i 0.5 + 0.09i 0.17 0.18 0.9 7.47s

(i) t = 3 (ii) t = 6 (iii) t = 9

(iv) t = 0.5 (v) t = 2.5 (vi) t = 6.5

Figure 5. Julia sets for n = 2 with all the parameters values complex and varying t.

In Figure 5, we fixed all the parameters values are complex and varying the value of t. From the images, the value
of t has a significant change on the shape, size and color to the fractals, and the generated Julia sets looks like leaf
of Rex Begonia, spiral galaxy and Rangoli or may be compared to glass painting. Julia sets are slightly different
with the increase the value of t. We notice that, the generated Julia set in Figure 5(iv) is different from the others.
The image execution time consistently increases as the value of t rises, as shown in the last column of Table 5.
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Table 5 : Fixed value of t and varying the parameters µ and ν.

n t α β γ a b µ ν s IET (in sec)
(i) 2 5 0.2 0.6 3 0.8 0.3 0.1 0.1 0.85 4.81s
(ii) 2 5 0.2 0.6 3 0.8 0.3 0.3 0.3 0.85 4.84s
(iii) 2 5 0.2 0.6 3 0.8 0.3 0.7 0.7 0.85 5.06s
(iv) 2 5 0.2 0.6 3 0.8 0.3 0.9 0.9 0.85 4.61s
(v) 2 5 0.2 0.6 3 0.8 0.3 0.1 0.8 0.85 4.72s
(vi) 2 5 0.2 0.6 3 0.8 0.3 0.8 0.1 0.85 4.79s

(i) µ = 0.1 and ν = 0.1 (ii) µ = 0.3 and ν = 0.3 (iii) µ = 0.7 and ν = 0.7

(iv) µ = 0.9 and ν = 0.9 (v) µ = 0.1 and ν = 0.8 (vi) µ = 0.8 and ν = 0.1

Figure 6. Julia sets for n = 2 with t = 5, and varying µ and ν.

In Figure 6, we fixed all the parameters values and changed the values of µ and ν. From the images, the values of
µ and ν have the significant changes on the shape, size and color to the fractals, and the generated Julia sets looks
like leaf of Rex Begonia, spiral galaxy or may be compared to glass painting. We notice that, the generated Julia
set in Figure 6(i, ii) are sightly same, the sets in Figure 6(v, vi) are sightly same, the set in Figure 6(iii) and Figure
6(iv) are different from the others for different vales of µ and ν. The image execution time is strictly increase with
the increase the value of t which is given in the last column in Table 6.

Table 6 : Effect of change in the value of s.

n t α β γ a b µ ν s IET (in sec)
(i) 2 5 0.23 1.8 3 0.8 0.3 0.85 0.75 0.1 4.31s
(ii) 2 5 0.23 1.8 3 0.8 0.3 0.85 0.75 0.3 4.56s
(iii) 2 5 0.23 1.8 3 0.8 0.3 0.85 0.75 0.5 4.71s
(iv) 2 5 0.23 1.8 3 0.8 0.3 0.85 0.75 0.7 4.84s
(v) 2 5 0.23 1.8 3 0.8 0.3 0.85 0.75 0.9 4.97s
(vi) 2 5 0.23 1.8 3 0.8 0.3 0.85 0.75 1 5.11s
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(i) s = 0.1 (ii) s = 0.3 (iii) s = 0.5

(iv) s = 0.7 (v) s = 0.9 (vi) s = 1

Figure 7. Julia sets for n = 2 with t = 5 and varying s.

In Figure 7, we fixed all the parameters values and varying the value of s. From the images, the value of s has a
significant change on the shape, size and color to the fractals, and the generated Julia sets looks like spiral galaxy,
leaf of Rex Begonia and Rangoli or may be compared to glass painting. Julia sets are slightly different with the
increase the value of s. However, when we look closely, then we notice that, we can see some beautiful spiral
structures and the spiral pattern arms slightly different in Figure 7(iv, v), t or the two spiral arms upper as well as
lower in Figure 7(vi), the sets in Figure 7(i, ii) and Figure 7(ii) are different from the other. The image execution
time consistently increases as the value of t rises, as shown in the last column of Table 7.

Table 7 : Effect of the value of n.

n t α β γ a b µ ν s IET (in sec)
(i) 3 5 3 0.91 9 0.8 0.35 0.8 0.9 0.85 6.86s
(ii) 5 5 3 0.91 9 0.8 0.35 0.8 0.9 0.85 7.23s
(iii) 7 5 3 0.91 9 0.8 0.35 0.8 0.9 0.85 7.97s
(iv) 11 5 3 0.91 9 0.8 0.35 0.8 0.9 0.85 8.87s
(v) 23 5 3 0.91 9 0.8 0.35 0.8 0.9 0.85 11.78s
(vi) 2001 5 3 0.91 9 0.8 0.35 0.8 0.9 0.85 14.53s

In Figure 8, we fixed all the parameters values and varying the value of n. From the images, the value of n has a
significant change on the shape, size and color to the fractals. The generated Julia sets have different patterns with
the increase the value of n. The image execution time consistently increases as the value of n rises, as shown in the
last column of Table 8.
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(i) n = 3 (ii) n = 5 (iii) n = 7

(iv) n = 11 (v) n = 23 (vi) n = 2001

Figure 8. Julia sets for n = 2 with t = 5 and varying n.

Algorithm 2 Geometry of Viscosity Julia set for T (z) = sin(zn) + βz2 + log γt

Input: T (z) = sin(zn) + βz2 + log γt, where n ≥ 2, β ∈ C, γ ∈ C\{0} and t ∈ R, t ≥ 1;
K-maximal number of iterations; A-area; |ω|, s ∈ (0, 1]; p(z) = az + b, where a, b ∈ C

and |a| < 1; colourmap [0..C-1]-color with C colors.
Output: Julia set for area A

for z0 ∈ A do
η = log γt

γ

R = max

{
|γ|, |b|,

(
|η|

|ω|
(
|c|n−2 − |β|

) + (2 + sµ)

(1− sµ)(1− sν)|ω|
(
|c|n−2 − |β|

))}
with |γ|n−2 − |β| ̸= 0

k=0
while k ≤ K do

zk+1 = µsp(zk) + (1− µ)syk,
yk = νszk + (1− ν)sW (zk)
if |zk+1| > R then
break
end if
k=k+1

j = [(C − 1) k
K ]

colour z0 with colourmap [j]

Example 4.2
In this example, we present two cases. In the first case, we take an integer value of t, i.e., t = 3, 6, 9 and in
the second one a non-integer value, i.e., t = 0.5, 2.5, 6.5. Note that the last column in all the tables displays
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the image execution time (in short, IET) in seconds. Julia sets for T (z) = sin(zn) + βz2 + log γt via viscosity
approximation-type iterative method with s-convexity are generated here with the following inputs:

Table 8 : Fixed value of γ as purely real and varying t.

n t β γ a b µ ν s IET (in sec)
(i) 3 3 0.3 3 0.8 0.3 0.8 0.7 0.85 4.76s
(ii) 3 6 0.3 3 0.8 0.3 0.8 0.7 0.85 4.81s
(iii) 3 9 0.3 3 0.8 0.3 0.8 0.7 0.85 4.71s
(iv) 3 0.5 0.3 3 0.8 0.3 0.8 0.7 0.85 4.07s
(v) 3 2.5 0.3 3 0.8 0.3 0.8 0.7 0.85 4.49s
(vi) 3 11.5 0.3 3 0.8 0.3 0.8 0.7 0.85 5.11s

(i) t = 3 (ii) t = 6 (iii) t = 9

(iv) t = 0.5 (v) t = 2.5 (vi) t = 11.5

Figure 9. Julia sets for n = 2 with γ = 9, |ω| = 0.35, and varying t.

Table 9 : Fixed the value γ as purely imaginary and varying t.

n t β γ a b µ ν s IET (in sec)
(i) 3 3 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.49s
(ii) 3 6 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.61s
(iii) 3 9 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.71s
(iv) 3 0.5 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.27s
(v) 3 2.5 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.43s
(vi) 3 11.5 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.88s
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(i) t = 3 (ii) t = 6 (iii) t = 9

(iv) t = 0.5 (v) t = 2.5 (vi) t = 6.5

Figure 10. Julia sets for n = 2 with γ = 6i, |ω| = 0.65, and varying t.

All Julia sets for n = 3 have six bunches of lashes. From six bunches of lashes, three are symmetrical to x-axis and
other three are symmetrical to y-axis. The main body shape changed slightly while the parameters are changing.
In Figure 9-10, we fixed all the parameters values and varying the value of γ and t, and all the figures look similar
to each other but have difference in Julia points and the angle between every two bunches is π

3 . From the images,
the different value of the parameters have a significant change on the shape, size and color to the fractals and more
beauty is added to the symmetrical pattern. The image execution time consistently increases as the value of t rises,
as shown in the last column of Table 9.

Table 10 : Fixed value of γ as complex and varying t.

n t β γ a b µ ν s IET (in sec)
(i) 3 3 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.87s
(ii) 3 6 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 5.03s
(iii) 3 9 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 5.41s
(iv) 3 0.5 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.37s
(v) 3 2.5 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 4.63s
(vi) 3 11.5 0.3 1.5i 0.8 0.3 0.8 0.7 0.85 5.88s

(i) t = 3 (ii) t = 6 (iii) t = 9
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(iv) t = 0.5 (v) t = 2.5 (vi) t = 6.5

Figure 11. Julia sets for n = 2 with γ = 3 + 2i, |ω| = 0.15, and varying t.

Table 11 : Fixed all the parameters values complex and varying t.

n t β γ a b µ ν s IET (in sec)
(i) 3 3 −0.025 + 0.025i 0.75− 0.75i 0.018 + 0.04i 0.005 + 0.01i 0.8 0.7 0.85 4.79s
(ii) 3 6 −0.025 + 0.025i 0.75− 0.75i 0.018 + 0.04i 0.005 + 0.01i 0.8 0.7 0.85 5.19s
(iii) 3 9 −0.025 + 0.025i 0.75− 0.75i 0.018 + 0.04i 0.005 + 0.01i 0.8 0.7 0.85 5.59s
(iv) 3 0.5 −0.025 + 0.025i 0.75− 0.75i 0.018 + 0.04i 0.005 + 0.01i 0.8 0.7 0.85 4.19s
(v) 3 2.5 −0.025 + 0.025i 0.75− 0.75i 0.018 + 0.04i 0.005 + 0.01i 0.8 0.7 0.85 4.69s
(vi) 3 11.5 −0.025 + 0.025i 0.75− 0.75i 0.018 + 0.04i 0.005 + 0.01i 0.8 0.7 0.85 6.13s

(i) t = 3 (ii) t = 6 (iii) t = 9

(iv) t = 0.5 (v) t = 2.5 (vi) t = 11.5

Figure 12. Julia sets for n = 2 with all the parameters values complex and varying t.
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Table 12 : Effect of change in the values of t, µ and ν.

n t β γ a b µ ν s IET (in sec)
(i) 3 3 0.3 3 0.8 0.3 0.1 0.1 0.85 4.97s
(ii) 3 6 0.3 3 0.8 0.3 0.3 0.3 0.85 5.21s
(iii) 3 9 0.3 3 0.8 0.3 0.7 0.7 0.85 5.61s
(iv) 3 0.5 0.3 3 0.8 0.3 0.9 0.9 0.85 4.77s
(v) 3 2.5 0.3 3 0.8 0.3 0.1 0.9 0.85 4.83s
(vi) 3 11.5 0.3 3 0.8 0.3 0.9 0.1 0.85 5.88s

(i) µ = 0.1 and ν = 0.1 (ii) µ = 0.3 and ν = 0.3 (iii) µ = 0.7 and ν = 0.7

(iv) µ = 0.9 and ν = 0.9 (v) µ = 0.1 and ν = 0.8 (vi) µ = 0.8 and ν = 0.1

Figure 13. Julia sets for n = 2 with t = 5, |ω| = 0.55, and varying the parameters µ and ν.

Table 13 : Effect of change in the values of t and s.

n t β γ a b µ ν s IET (in sec)
(i) 3 3 0.3 3 0.8 0.3 0.1 0.1 0.1 4.79s
(ii) 3 6 0.3 3 0.8 0.3 0.3 0.3 0.3 4.86s
(iii) 3 9 0.3 3 0.8 0.3 0.7 0.7 0.5 4.91s
(iv) 3 0.5 0.3 3 0.8 0.3 0.9 0.9 0.7 4.67s
(v) 3 2.5 0.3 3 0.8 0.3 0.1 0.9 0.9 4.76s
(vi) 3 11.5 0.3 3 0.8 0.3 0.9 0.1 1 4.97s
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(i) s = 0.1 (ii) s = 0.3 (iii) s = 0.5

(iv) s = 0.7 (v) s = 0.9 (vi) s = 1

Figure 14. Julia sets for n = 3, and varying the parameters t and s.

Table 14: Effect of the value of n.

n t β γ a b µ ν s IET (in sec)
(i) 2 5 0.3 3 0.8 0.3 0.1 0.1 0.1 6.39s
(ii) 5 5 0.3 3 0.8 0.3 0.3 0.3 0.3 6.69s
(iii) 7 5 0.3 3 0.8 0.3 0.7 0.7 0.5 7.48s
(iv) 11 5 0.3 3 0.8 0.3 0.9 0.9 0.7 7.69s
(v) 23 5 0.3 3 0.8 0.3 0.1 0.9 0.9 7.93s
(vi) 2001 5 0.3 3 0.8 0.3 0.9 0.1 1 12.31s

(i) n = 2 (ii) n = 5 (iii) n = 7

The size of lashes gradually decreases from the center of the bunch and the angle between every two bunches is
Kπ
n , where K represented the positions of attractors from the initial attractor and same argument for Julia set with

an extra characteristic that image of Julia sets contains n type of Julia set at center for every n.
All Julia sets for n = 3 have six bunches of lashes. Among these, three are symmetrical to the x-axis and the

other three are symmetrical to the y-axis. The main body shape changes slightly as the parameters vary. The size
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(iv) n = 11 (v) n = 23 (vi) n = 2001

Figure 15. Julia sets for n = 3 with t = 5, |ω| = 0.85, and varying n.

of the lashes gradually decreases from the center of the bunch, and the angle between every two bunches is π
3 . In

Figures 9-15, all the figures look similar to each other but differ in their Julia points. Different parameter values
enhance the symmetrical pattern’s beauty. It is observed that

• the parameters t, γ, µ, ν and s play a very important role in giving shape, size and color to the fractals.
• the convergence criteria derived for the fractals play a crucial role in enhancing their resolution and pixel

richness.
• all the fractals developed in this paper are very novel, aesthetic, and pleasing as the function T (z) and W (z)

incorporate a special type of sine function combined with a logarithmic component.

5. Conclusion

We derived an escape criterion for generating fractals using the proposed iterative method for the complex
exponential functions W (z) = αez

n

+ βz2 + log γt and T (z) = sin(zn) + βz2 + log γt, where n ≥ 2, β ∈ C, γ ∈
C\0, and t ∈ R, t ≥ 1. The visualization of Julia sets is facilitated by implementing these results in Algorithms 1
and 2. Using MATLAB software, we generated compelling non-classical variants of the Julia fractals, which were
subsequently discussed and evaluated for various parameter values. We observed that these parameters significantly
impact not only the shape but also the symmetry of the generated sets. We believe that the results of this research
will be valuable for those interested in creating aesthetically pleasing graphics and designer printing patterns.
Additionally, the textile sector can benefit from these findings for designing and printing purposes.
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