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Abstract
The research utilizes the Lotka-Volterra prey-predator model to study Plant-Herbivore dynamics, focusing on the relationship
between traditional livestock farming and vegetation conditions. Advanced methods are developed to improve the precision
and efficiency of parameter estimation in these models. Neural networks are incorporated to enhance forecasting abilities, and
an extension of the Plant-Herbivore models includes Botswana’s climate and livestock variables. Efficient parameter space
exploration is achieved using the Runge-Kutta method along with Multistart and the local solver fmincon in MATLAB. This
method improves parameter estimation accuracy. To address the impact of homogeneity assumptions in the data, estimate
aggregation through weighting and time conversion is applied. Furthermore, the study investigates the use of nonlinear
least squares to further refine the process, allowing for the identification of parameters that best fit observed livestock
data, even with non-linearity. By using optimized parameter estimation techniques along with normalized nonlinear least
squares, the cumulative error was reduced from an initial 1563.4521 to a final value of 0.0038, well within the specified
thresholds (1.0, 0.1, and 0.01). Comparisons between Autoregressive Integrated Moving Average (ARIMA) and Neural
Network Auto-Regressive (NNAR) models showed that NNAR models outperformed ARIMA models, with lower variance
estimates (0.000004 - 0.000562) compared to ARIMA (0.103 - 0.155). NNAR models displayed Mean Error (ME) values
ranging from -0.0012 to 0.0140, indicating a close match between forecasts and actual values with minor deviations. As
a result, NNAR forecasting was used for predicting soil moisture, death, and harvest rates, which were integrated into the
extended Plant-Herbivore model. This integration enabled the estimation of livestock production trajectories for 2021-2022,
along with corresponding interpretations. The study also assessed the uncertainty propagation from NNAR forecasts onto
the Plant-Herbivore dynamic model, revealing an increase in uncertainty with longer lead times.
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1. Introduction

1.1. Background

Herbivore-plant interactions offer insights into fundamental life processes observable in ecological patterns. Since
their initial coexistence, plant and animal species have co-evolved. They have formed mutually advantageous
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relationships at various levels, especially regarding feeding behavior [1]. Such relationships are based on multiple
factors, ranging from mutual benefits to observed parasite interactions and the control of plant growth by wild
ruminants. Due to the importance of Plant-Herbivore interactions, mathematical ecology has long concentrated
on the dynamic interactions between these two groups of organisms [2]. Any event that disrupts herbivore
activity equilibrium, such as environmental changes, species extinction, or bio-invasions, can lead to significant
changes affecting more than just the impacted species [3]. Key policy areas like land management, environmental
preservation, and animal husbandry rely on understanding the interactions between herbivores and plants.
This understanding has led to the creation of dynamical system models of populations, which have garnered
significant attention due to the remarkable diversity of dynamic behaviors exhibited by plant and herbivore species
[4, 5, 6, 7, 8]. In traditional models, predator-prey systems are similar to plant-herbivore systems. Plant-herbivore
dynamics do not usually follow a specific pattern. Instead, the demographic characteristics of plant and herbivore
populations, along with the timing, type, and degree of density dependence they exhibit, significantly influence
evolution [5]. According to [9], temperature is one of several crucial factors affecting herbivore performance,
making it essential to study and document these changes as in [10], to establish applicable solutions and
countermeasures. Strong ecological evidence suggests that plant population dynamics impact Plant-Herbivore
interactions more significantly than herbivore populations [6].

However, as major components of the biosphere within the climate system, plants and herbivores interact with
other components of the climate systems (e.g. atmosphere, hydrosphere, land surface). As a result, several studies
have been conducted to include these interactions. For example, to explore the impact of climatic conditions
in predator-prey models, several researchers have used periodic mathematical models. Scholars such as [11]
investigated the periodic coefficients of the two-species Lotka-Volterra dispersal system, [12] generalized the
logistic equation to include time-dependent periodic coefficients, [13] modified general systems of prey-predator
dynamics by also assuming the coefficients are periodic functions of time, [14] investigated the existence of
periodic solutions for some planar systems with application to Lotka-Volterra equations while [15] studied
permanence, extinction, and periodic solution of periodic predator-prey system under the assumption of a Holling
Type II functional response.

On the other hand, studies such as [16] which introduced specific density-dependent herbivore mortality rate
function, assumed parameters as constant which is not representative of reality. [17] also did not consider periodic
and time-dependent functions of the plant growth rate and feeding rates in their works. Recent work by [18] that
used Soil Moisture Active Passive (SMAP) satellite data to simulate the spatial distribution of plants and the
potential livestock production level in Botswana did not address several key areas. One aspect not considered in
their work was the use of observations of state variables to calibrate the model parameters, instead, the parameters
were either assumed, estimated or adopted from relevant literature. Lastly, none of these works have been able to
forecast the yield from framing activities due to difficulties in predicting parameters. These shortcomings are thus
the gaps identified and discussed as the justification of this paper.

Probabilistic and trajectory model forecasting are two methods employed to predict future events or outcomes
using historical data and mathematical models. In trajectory forecasting of Plant-Herbivore dynamics, the system’s
initial conditions are defined, and ODEs are utilized to determine the system’s evolution over time [19]. This
approach is frequently used in recent mathematical modelling literature for climate data forecasting [20, 21, 22].
However, trajectory forecasting for the Plant-Herbivore dynamic model, as indicated in [18], is challenged by the
periodic functional forms that include soil moisture data. Consequently, traditional trajectory forecasting has proven
inadequate, making probabilistic forecasting techniques a viable alternative. Probabilistic forecasting accounts for
the inherent uncertainty and variability in the data, offering a range of potential future scenarios along with their
associated probabilities. Researchers heavily rely on time series data-based forecasts of these climatic variables,
as highlighted by [2]. Their results are ultimately applied to agro-environmental control systems, which are then
optimized. [23] asserts that the development of smart agricultural approaches to transform agricultural systems,
ensuring ecological intensification and food security under a changing climate, is the primary motivator for using
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modelling and forecasting techniques in ecology. One method under probabilistic forecasting is the Neural Network
Autoregressive (NNAR) modelling, which is gaining popularity as a machine-learning technique. Several studies
have shown the effectiveness of NNAR models in forecasting various time series data. For example, [24] proposed a
NNAR model for financial time series forecasting, achieving superior performance compared to traditional methods
such as ARIMA. Similarly, [25] used a NNAR model to forecast short-term electricity load, outperforming other
forecasting techniques in terms of accuracy and flexibility.

1.2. Justification

The absence of real data for parameter estimation, as identified in previous studies such as [18, 4, 26], greatly
hampers progress in modeling Plant-Herbivore interactions. Although simulation techniques have been used,
their effectiveness is compromised by the lack of empirical data. This limitation poses a serious challenge when
applying these models to real-world scenarios and decision-making processes. Consequently, there is an urgent
need for research efforts dedicated to the acquisition and utilization of authentic field data, which would enable
more accurate parameter estimation and subsequently enhance the predictive power of ecological models.

Another important research gap in the field of parameter estimation is the need to effectively bridge the variations
in base data, often represented by the Plant-Herbivore model, and the observed data. This issue arises due to the
inherent differences in the temporal sampling of collected data and model data. Resolving this gap is crucial for
accurate parameter estimation and improving the reliability of modelling and analysis in various domains.

Furthermore, tackling the estimation of parameters for dynamic model systems that exhibit non-convex parameter
relationships is a formidable challenge that demands innovative approaches. Traditional optimization techniques
often struggle to identify global optima or may overlook multiple optimal solutions. Addressing this gap can
contribute to the development of specialized optimization methods tailored to the intricacies of Plant-Herbivore
systems.

Lastly, addressing the lack of forecasting capabilities for Plant-Herbivore models is an essential endeavor,
especially considering the integration of climatic factors within these systems. The complexities arising from
the interplay of ecological dynamics and model parameters necessitate novel forecasting techniques. Developing
predictive models that capture the seasonality and patterns for soil moisture , death and harvest rates data within
the Plant-Herbivore model can significantly aid in understanding the long-term implications of plant-herbivore
interactions, informing conservation efforts and management strategies.

1.3. Contribution of Study

This study aims to address these research gaps by presenting a novel approach to optimized parameter estimation,
focusing on the non-convexity in the optimization problem caused by the parameter relationships in the Plant-
Herbivore dynamic model. We plan to utilize the mathematical model outlined by [4] and further developed by [26],
to explore the behavior of the plant-herbivore system under specific conditions. This paper also seeks to incorporate
machine learning techniques, such as Neural Network forecasting models, to generate reliable predictions of soil
moisture, mortality, and harvest rates used within the dynamic model. By employing advanced global optimization
algorithms, the proposed methodology strives to estimate system parameters with greater accuracy, capturing the
dynamic interactions between plant and livestock components in Botswana. Additionally, by integrating neural
networks with auto-regressive modeling, the combined NNAR models will improve forecasting accuracy by taking
into account both historical data and the system’s inherent dynamics. The contributions of this study are outlined
below.

• Introduce more realistic parameter estimates using observed data for both state variables and some model
parameters;

• Bridge the temporal mismatch between observed livestock data and model estimates for estimation of
parameters;
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• Leveraging optimized parameter estimation techniques to better estimate model parameters;
• Exploit neural network forecasting to forecast soil moisture, death and take-off rates; and
• Forecast livestock production using the Plant-Herbivore dynamic model.

The significance of this research lies in its potential to aid decision-making processes in plant-livestock systems,
enabling stakeholders to make informed choices regarding expected harvest, resource allocation, production
planning, and risk management. The proposed approach will provide more accurate and reliable forecasts, enabling
farmers, policymakers, and agricultural practitioners to optimize their strategies, mitigate risks, and maximize
productivity.

1.4. Organization of the Paper

This paper has been organized into four sections. Section 2 describes the methodology with specific focus on the
proposed mathematical model for the study, then the objective function and temporal conversions which facilitate
the parameter estimation for the model. Section 2 discusses optimization and forecasting techniques that are used
in Section 3. In Section 3 the results of the parameter estimation and forecasting are discussed. Remarks and
recommendations are given in Section 4.

2. Methodology

2.1. Proposed Model

An extension to the mathematical model given in [4] and further developed in [16] is considered. The proposed
model is given as

dP

dt
= r(t)P

[
1− P

K

]
−
( a

b+ P

)
PH

dH

dt
= H

[
c
( a

b+ P

)
P −D(H)− µ(H)

]
, (1)

where P (0), H(0) > 0 and r(t) is the plant growth rate at time t, which is defined by:

r (t) = r(θ(t),m) = m+ [1−m]Ur (θ(t))βr (θ(t)) ,

here θ(t) is the soil moisture at time t and m is the minimum plant growth rate, Ur (θ(t)) and βr (θ(t)) are given by

Ur (θ(t)) = exp
[
− (θ(t)− θc)

2
/2πσ (θ)

2
]
,

and

βr (θ(t)) =


1, θ(t) ≥ θc

θ(t)−θω
θc−θω

, θω < θ < θc
0, θ(t) ≤ θω,

respectively. θc is the critical soil moisture, θw is the wilting point soil moisture and σ (θ)
2 is the variance of the

soil moisture data.
The model depicts the interplay between a prey population (plant) and a predator population (livestock), whereby
the prey population’s growth rate is constrained by its carrying capacity (K) and predation by the livestock
population. The availability of prey and the rate of harvesting constrain the rate of growth of the predator
population. The model outlines a number of parameters, including the intrinsic growth rate of the prey population
(r(t)), the constant livestock population’s predation feeding rate (a), the carrying capacity (K), the harvesting
rate (µ(H)), the rate at which prey biomass is converted into predator biomass (c), and the livestock population’s
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mortality rate due to natural causes (D(H)).

The intrinsic plant growth rate (r(t)) has three embedded functions within it, these function are Ur(θ) , βr(θ) and
m (which is assumed to be constant) as stated above. Ur(θ) and βr(θ) are functions of the soil moisture (θ), that
can be obtained from satellite. In this study the SMAP level 3 soil moisture data with spatial resolution of 36×36
km2 was used. The data taken from the SMAP level 3 is recorded as daily observations for 11 sampled spatial
points running from April 2015 to December 2021. (Table 1)

Label Spatial Point DistrictLatitude Longitude
A -25.451523 24.617443 Borolong - Boteti sub-district
B -21.996038 28.438864 Central Bobonong - Central District
C -21.017070 24.497584 Central Boteti - Central District
D -23.129488 26.883858 Central Mahalapye - Central District
E -22.503600 26.995233 Central Serowe/Palapye - Central District
F -24.338668 26.395879 Kgatleng - Kgatleng District
G -23.633065 25.075264 Kweneng East - Kweneng District
H -23.547486 23.355904 Kweneng West - Kweneng District
I -24.828178 25.570083 Ngwaketse West - Ngwaketse District
J -24.974965 25.205865 Ngwaketsi - Ngwaketse District
K -24.970862 25.796937 South East - Southern District

Table 1. Location of SMAP Soil Moisture.

The density dependent herbivore death rate, is given as a function stated in [4] and it is bounded as follows
d1 ≤ D(F (P )) ≤ d2, where d1, d2 are the minimum and maximum death rates respectfully. We propose the
modification of this parameter to be a variable rather than a function as the death rate data for livestock (cattle,
goats and sheep) exists for dates from as 2017 to 2019 which is taken from [27]. This change would reduce
the number of parameters to be estimated by dropping both d1 and d2 thus reducing the complexity of the
Plant-Herbivore model stated in [4]. When formulating the death rate for herbivores, it is important to note that
there are groups of animals that make up herbivores. Thus, the death rate should account for the death rate of each
of these groups, which is defined as follows.

Let S(t), C(t), G(t), Hor(t), D(t) be the sheep, cattle, goat, horse and donkey population densities from our data
for a particular year such that H(t) = [S(t) + C(t) +G(t) +Hor(t) +D(t)].

D(t) = [α1d(t)cattle + α2d(t)goats + α3d(t)sheep + α4d(t)horse + α5d(t)donkey],

where α1 = C(t)
H(t) , α2 = G(t)

H(t) , α3 = S(t)
H(t) , α4 = Hor(t)

H(t) and α5 = D(t)
H(t) are the weights assigned to each animal type

such that
∑5

r=1 αr = 1. The individual death rates for each of these groups are represented by d(t)cattle, d(t)goats
and d(t)sheep.
The harvest rate is given as a function of two parameters µ and µ0 in [4]. Applying the same weighting method
used above to this parameter and using the take-off values found in the data set, we can change the harvest rate into
a variable as follows:

µ(t) = [α1µ
∗(t)cattle + α2µ

∗(t)goats + α3µ
∗(t)sheep + α4µ

∗(t)horse + α5µ
∗(t)donkey],

with each individual take-off rates for each of these groups represented by µ∗(t)cattle, µ∗(t)goats,
µ∗(t)sheep, µ

∗(t)horse and µ∗(t)donkey. The weights αr are the same as the ones used for the death rates.

Livestock was assumed to reproduce naturally without human intervention [4], and was accounted for by the term(
H

h+H

)
, where h is the allee constant. In our case, we assume farmer intervention is present in the forms of artificial
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insemination and bull swapping, therefore h is taken to be 0. Setting the allee effect to 0 results in
(

H
h+H

)
= 1.

Thus further reducing the complexity by eliminating a parameter. Thus the parameters to be estimated are m, a, c
and b with K being assumed to be the same as in [4].

2.2. Objective Function

The objective function is the nonlinear least squares equation given by

e =

n∑
t=1

[
(P (t)obs − P (t)est)

2

P (t)2obs
+

(H(t)obs −H(t)est)
2

H(t)2obs

]
, (2)

where n is the total number of observed data points, P (t)obs and P (t)est are the observed and estimated plant
boimass, respectively. Similarly H(t)obs and H(t)est are the observed livestock totals from [27] and estimated
population totals respectively. The nonlinear least squares equation under (2) has been normalized by dividing
each contributing group by the square of its observed value.

According to the Food and Agriculture Organization (FAO), an agency of the United Nations [28], the average live
weight of mature cattle in Botswana is around 400-450 kg, with some breeds such as the Tswana and Ngamiland
being larger and heavier. For goats the average live weight of mature goat in Botswana is around 25-30 kg,
although this can vary depending on the breed and gender of the goat. Whereas the average live weight of mature
sheep, donkey and horse in Botswana is 35-40, 200-400 and 700-1000 kg respectfully. It should be noted that these
weights are averages, and actual weights can vary depending on factors such as age, gender, breed, and feeding
practices. Additionally, there may be regional or local variations in weight due to differences in environmental
conditions and management practices.

In order to convert the different yearly animal counts into yearly livestock data with the units in (kg), we simply
multiply each animal groups yearly count by their corresponding lower bound average weight. The sum of these
values then gives the observed yearly livestock weights which are referred to as H(t)obs.

2.3. Time Conversions

The solutions of our modified Plant-Herbivore model are 388 weekly plant biomass and livestock densities for a
36×36 square km spatial segment in each of the 11 spatial points. This presents a problem when comparing this
data to the observed livestock densities which are yearly and are country wide values. As such, it is necessary to
convert the solutions from weekly regional estimates to yearly country wide estimates. This task has been achieved
using the following procedures.

Each of the 11 spatial points has an area segment of 36×36 square km, therefore to get a livestock density estimate
for the entire region we calculate the multiplying coefficient (ai) of each region as the stated below:

ai =
Ai

ni
, for i = 1, 2, ..., 11,

where Ai is the land mass of the district containing the ith spatial point and ni the number of spatial points that fall
within the same district as the ith spatial point . Therefore the estimated ith region’s tth weekly livestock weight in
kg is given by

Hi(t)esti = aiHi(t),

where Hi(t) is the ith region’s weekly model livestock density estimate for the tth week measured in (kg/m2). The
above equation can be formulated to obtain yearly weighted livestock estimates for the country.

For the general case this includes 2016, 2017 and 2018:
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H̄(k)esti =
1

52

11∑
i=1

k×52∑
t=(k−1)52+1

aiHi(t).

Since the satellite data runs from March 2015, we have adjusted for the year to be averaged by 35 weeks that make
up 2015. Therefore for k = 1 we have :

H̄(1)esti =
1

35

11∑
i=1

35∑
t=1

aiHi(t).

Another factor to consider is the relative contribution factor of each region to the overall country livestock
population density. This factor can be calculated using information from the 2019 annual livestock census, in
which animal counts for each region was given for the year 2019. Thus the formulation of the contribution factor is

wi =
H(i)observed

H2019
, for i = 1, 2, ..., 11, (3)

where H(i)observed is the observed livestock density of the ith region in 2019 and H2019 is the total country wide
livestock density for 2019. For the 2019 (k=4) case:

H̄(5)esti =
1

52

11∑
i=1

260∑
t=209

aiwiHi(t).

2.4. Optimization Algorithm

We have chosen the function minimization with constraints also known as fmincon as the local solver for our
optimization problem. It is a popular optimization algorithm in MATLAB that performs constrained optimization
using nonlinear programming and is widely used for solving a variety of optimization problems. It is based on the
interior-point method, which is an iterative optimization method that works by solving a sequence of linearized
sub-problems. It can handle both linear and nonlinear constraints, as well as nonlinear objective functions which
makes it ideal for handling our nonlinear least squares objective function.

fmincon is subject to the restriction of only identifying a local minimum solution to the optimization function,
therefore Multistart optimization technique is used to find the global minimum for the nonlinear least squares
function that has multiple local minima. The algorithm then returns the solution with the lowest objective function
value among all the runs. By running the optimization algorithm from different starting points, the chances of
finding the global minimum are increased. To insure that the random sample is spread out evenly across the domain
of the objective function then we can set a loop of re-sampling for multiple Multistart runs and compare the lowest
values from each iteration of multistart sample.

2.5. Forecasting Technique

The proposed methodology in this study for time series forecasting is based on a Neural Network Autoregressive
(NNAR) model. The NNAR model combines the power of artificial neural networks (ANNs) with the
autoregressive concept. The autoregressive component allows the model to capture the temporal dependencies
in the time series data, while the neural network component enables the model to learn complex patterns and non-
linear relationships. Thus, we will be applying this technique to forecast both the death and harvest rates as well as
the soil moisture at chosen spatial-temporal grids.

2.5.1. Network Architecture: A feed-forward neural network will be fitted with lagged values of each specific
variable as inputs and a single hidden layer with a varying number of nodes. The inputs are for lags 1 to p (Number
of seasonal/nonseasonal lags used as inputs), and lags m to (mp) where m is the frequency of the variable
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[29]. A total of repeats networks are fitted, each with random starting weights. These are then averaged when
computing forecasts. The network is trained for one-step forecasting. Multi-step forecasts are computed recursively.
For non-seasonal data, the fitted model is denoted as an NNAR(p, k) model, where k is the number of hidden nodes.

2.5.2. Formulation of Forecast Confidence Intervals: The NNAR forecast function generates prediction
intervals using simulations since NNAR models are nonlinear autogressive models and prediction intervals cannot
be analytically derived [29]. The error series is assumed by the function to be homoscedastic (weakly normally
distributed as well). When this assumption was not met, log transformations and the Box-Cox transformation
(with λ set to 0.5) are used to coerce the residuals to be approximately homoscedastic. It then iteratively simulates
the model’s future sample pathways by resampling from the historical values or randomly creating a value from a
normal distribution. It did this by repeatedly simulating a sample path for each variable in the future. By repeatedly
simulating sample paths, it builds up knowledge of the distribution for all future values based on the fitted neural
network. This is then repeated a extensively (default 1000), thus being able to visualize the forecast distributions.
The extremes of these simulations are the considered to reflect a 95% confidence intervals of the each of the
parameter forecasts. These are then used in the Plant-Herbivore model to propagate new model forecasts.

2.6. Models Performance Metrics

The accuracy of the forecasts can be evaluated using various metrics, these are ME = 1
n

∑n
i=1 |yi − ŷi| (Mean

Error), RMSE =
√

1
n

∑n
i=1(yi − ŷi)2 (Root Mean Squared Error), MAE = 1

n

∑n
i=1 |yi − ŷi| (Mean Absolute

Error) , MPE = 1
n

∑n
i=1

(
yi−ŷi

yi

)
× 100% (Mean Percentage Error), and MAPE = 100

n

∑n
i=1

∣∣∣yi−ŷi

yi

∣∣∣ (Mean Absolute
Percentage Error). These measures provide insights into the forecast errors and the overall accuracy of the models
and performance of the NNAR model can be compared with Autoregressive Intergrated Moving Average (ARIMA)
forecasting methods.

3. Results & Discussion

3.1. Parameter Estimation

In this section, we present a comparative analysis of two classes (initial and adjusted iterations) of MultiStart
optimization results. The objective of the optimization was to minimize an initial objective value through multiple
runs of a local solver algorithm. The focus of the analysis was on the convergence rates, final objective values, and
the optimized variable values. Table 2 shows a summary of the initial iteration results.

Table 2. Initial Iteration Results.

Iteration N◦ of Solvers Initial (e2) Final (e2) Convergence (%)
1 10 1563.4521 81.3626 60
2 100 1563.4521 5.8666 47
3 500 1563.4521 5.7372 64.5

The first set of results from the initial iterations class comprised of 10 local solver runs, out of which 6 converged
successfully with a positive local solver exit flag. The final objective function error (81.3626) achieved after
optimization was significantly lower than the initial objective (1563.4521), indicating a successful optimization
process. The optimized variable values of m, a, b and c were 0.79109, 258.9894, 190.1992, and 0.62262,
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respectively.

The second set of results included 100 local solver runs, with 47 converging successfully. The final objective
function value (5.8666) achieved after optimization was even lower than the previous set, demonstrating further
improvement. The optimized variable values of m, a, b and c were 0.42314, 227.491, 286.4273, and 0.48007,
respectively. When the local solver fmincon is initialized 500 times, we see an increase in convergence rate from
the second run but a minimal change in the final objective function. This set of results indicates that increasing the
number of local solver runs can enhance the optimization process and yield more favorable outcomes.

The total percentage error for each of the final objective function is 5.20%, 0.38 % and 0.37 % of the initial error.
The percentage-based analysis reveals a clear trend of continuous improvement in error reduction rates, signifying
that the optimization process was progressively refining the objective function with each iteration. Under the the
hypothesis of plant density simulations amplifying the true error in estimation in our initial iteration results, we
tested this as shown in Table 3.

Table 3. Adjusted Iteration Results.

Iteration N◦ of Solvers Initial (e2) Final (e2) Convergence (%)
1 100 0.93729 0.83915 49
2 500 0.84709 0.83216 99.6

After adjustments in the objective function, a significant decrease in the initial objective functions from Table
2 and Table 3 can be noted. This confirms that the plant simulations amplified the error in estimation therefore
removing it was justified. Further adjustments in the form of testing multiple population start points, narrowing of
parameter intervals and increases in local solvers were made. The initial objective value was reduced to 0.84709
from 1563.4521. The numerous runs initiated by MultiStart show that 498 out of 500 local solver runs successfully
converged to optimal solutions. The convergence of such a high number of runs with positive local solver exit flags
indicates that narrowing of the estimation intervals was significant. The high number of convergence also reveal
how robust and reliable Mulitistart with fmincon and non-linear least squares are in the optimization process.

Table 4. Refined Iteration Results.

Iteration N◦ of Solvers Initial (e2) Final (e2) Convergence (%)
3 100 0.20624 0.12908 99
3 500 0.20624 0.12850 99.6

To investigate whether the weighting parameter wi was increasing the error of estimation, we tested whether its
presence had a significant impact on the initial and final the objective functions values. The final objective value
achieved after the optimization process was significantly improved to 0.12908 achieving the threshold set at 1.0
(Table 4. This improvement can be attributed to the change in weighting parameter wi for the year 2019. It is
important to note that the error function is normalized and thus the thresholds were assigned with this in mind. The
3 thresholds used in the estimation are 1.0, 0.1 and 0.01, all of which are applied in the order stated throughout the
optimization process.

The last iteration yielded the best results compared to previous iterations as shown in Table 5. The objective
function had values that were lower than the adjusted threshold (0.01). Increasing the number of solvers did not
produce much of a difference between the runs thus the results of optimization led to the minimum plant growth
rate (m) = 0.80656, consumption/feeding rate of herbivores (a) =0.98903 , half saturation constant of herbivore
feeding on the plant biomass (b) = 185.7086, and Conversion rate of plant biomass to herbivore offspring (c) =
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Table 5. Final Iteration Results.

Iteration N◦ of Solvers Initial (e2) Final (e2) Convergence (%)
4 10 0.012349 0.0038387 100
4 100 0.012349 0.0038326 97

0.99009 from the first run. Figure 1 shows graphs of livestock population weights and livestock population using
the optimized parameters for the period 2015-2019 along with their corresponding observed data values.

Figure 1. Optimal Parameter Plot.

Model runs based on the final optimized parameters values have produced results that have well captured the
observations. Refining the death rates actually yielded better fits for our model. The final objective value falling
within the set thresholds (1.0, 0.1 & 0.01) and the high convergence rate achieved by the MultiStart optimization
method all demonstrate the effectiveness and reliability of the methods. The optimized parameter values offer
valuable insights into the parameter configurations associated with optimal solutions despite limited observational
data points. In regards to the sensitivity analysis of parameters, the authors in [18] have investigated the impact
of any change on these parameter values on the output of the model using a global sensitivity analysis procedure.
In the reference it is reported that the model is highly sensitive to the variation in the parameter values b (half
saturation constant of the herbivores), a (animal feeding rate), and m (the minimum plant growth rate). Overall,
while the improvement in the objective value are significant, it is still does not account for the models relationship
with plant biomass (vegetative coverage); this means that the parameters do not offer an accurate representation of
the plant and livestock interaction.

3.2. Forecasting

In constructing the dynamic model, we utilize data on soil moisture from 11 regions, as well as livestock harvest and
death rates in Botswana. To effectively use the dynamic model for forecasting, it is crucial to have these variables
available for the desired forecast period. This requires integrating additional models within the dynamic model to
accurately predict soil moisture, harvest, and death rates. In this research, we develop NNAR models to forecast
these variables, as detailed in the following sections.

3.2.1. Harvest and Death Rates Forecasting
From Figure 2, we can see that livestock death rates have always been higher than harvest rates. This is a cause
for concern since it suggests that farmers are losing more cattle to disease and other causes of death than they sell
or feed off. However, these high death rates can be explained by the criteria used by Statistics Botswana (SB) to
classify a livestock death. According to SB cattle lost to thieves, gone missing, culled and killed by car accidents
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Figure 2. Weighted Livestock Harvest and Death Rates : Statistics Botswana.

are all included in these rates. This classification amplifies the rates with the inclusion of human intervention rather
than natural death rates.

Table 6. NNAR Output Summaries for Regions A,B,C & D.

Model- NNAR(,) harvest Rate - (1,1) Death rate -(1,1)
σ2 6.233 0.09744
Transformed data σ2 0.8067 0.02499
Weights 4 4

The NNAR model for death and harvest rate are relatively simple with each having only 4 weights, 1 lagged input,
1 neuron in the hidden layer with a linear model structure. This can be attributed to the relative size of the data
which has only 41 observations. The forecast confidence intervals for the harvest rates are narrower than that of
the death rate as the data is less erratic in nature as shown in Figure 2 . Square root transformation of both time
series had significant improvements in σ2 estimates, with initial estimates of 6.233 and 0.8067 which later reduced
to 0.09744 and 0.02499 for death and harvest rates respectively.
Figure 3 shows the 3 years forecasts for the death and harvest rates. There seems to be a decreasing trend and a
non-constant variance in the time series data. A large spike in the death rate during the early 90’s is seen and linked
to historical events of lung disease (and foot & mouth). The highest harvest rates can be seen in the period between
the 1990 and 2005, with the largest being in 2003.

3.2.2. Soil Moisture Forecasting
This section includes a comparison of estimated model variances and forecast accuracy results for NNAR and
ARIMA models for two levels of training and testing data sets. Table 7 below shows the estimated variances
by both forecasting techniques. The ETS models tend to have higher variance estimates than NNAR models as
shown in Table 7. Higher variance estimates are due to relatively large smoothing parameters, resulting in more
weight being assigned to recent observations and less to older ones. ETS models generally have a simpler structure
compared to the flexibility of NNAR models.
Table 8-9 present the accuracy measures obtained from the ARIMA (Error-Trend-Seasonality) and NNAR
forecasting models for various spatial points. The accuracy measures serve as quantitative indicators to assess
the performance and reliability of the forecasting models. The accuracy measures are for each spatial point.
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Figure 3. Harvest & Death Rate Forecast.

Table 7. Comparison of Estimated Variances

KEY σ̂2 ETS Model σ̂2 NNAR Model
A 0.155 0.00025000
B 0.103 0.00040800
C 0.150 0.00008930
D 0.176 0.00010100
E 0.136 0.00047300
F 0.150 0.00052100
G 0.155 0.00000429
H 0.145 0.00056200
I 0.123 0.00018000
J 0.109 0.00039500
K 0.149 0.00037900

The spatial points, labeled A to K, represent specific locations or regions for which the forecasting models were
applied. Each spatial point is associated with its respective accuracy measures.

Spatial Point ME RMSE MAE MPE MAPE
A -0.0012 0.0363 0.0294 -19.0546 39.4099
B -0.0038 0.0292 0.0227 -16.3578 30.7445
C 0.0003 0.0348 0.0269 -16.0818 35.9904
D 0.0032 0.0380 0.0266 -11.4256 32.0214
E 0.0063 0.0342 0.0269 -5.0689 30.1192
F 0.0041 0.0337 0.0261 -10.9046 34.2076
G -0.0026 0.0349 0.0285 -17.2919 36.7096
H -0.0027 0.0332 0.0269 -20.2358 38.2159
I -0.0018 0.0299 0.0244 -14.1769 31.9589
J -0.0140 0.0272 0.0235 -28.8870 36.5995
K -0.0017 0.0304 0.0246 -13.8183 30.8865
Table 8. Accuracy Metrics for NNAR Forecasting Models.
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Spatial Point ME RMSE MAE MPE MAPE
A 0.0022 0.0363 0.0288 -14.3299 37.1059
B -0.0027 0.0300 0.0230 -15.2511 30.9511
C -0.0021 0.0357 0.0282 -19.6111 38.3375
D 0.0010 0.0381 0.0270 -14.3997 33.3792
E -0.0024 0.0337 0.0283 -16.2875 35.0846
F -0.0033 0.0344 0.0275 -21.4659 39.1589
G -0.0056 0.0338 0.0279 -21.0717 37.1336
H -0.0079 0.0346 0.0290 -27.9470 43.1502
I -0.0074 0.0295 0.0252 -21.3041 34.8094
J -0.0107 0.0256 0.0218 -23.9857 33.2574
K -0.0047 0.0306 0.0252 -17.6019 32.7280
Table 9. Accuracy measures for ARIMA forecasting models.

For the NNAR forecasting model (Table 8), it can be observed that the ME (Mean Error) values range from -0.0012
to 0.0140, indicating that the model’s forecasts are generally close to the actual values with small deviations. The
RMSE (Root Mean Squared Error) values vary between 0.0272 to 0.0380, suggesting that the NNAR model has
moderate to low error dispersion. Similarly, the MAE (Mean Absolute Error) values range from 0.0174 to 0.0356,
representing the absolute magnitude of the errors, which are relatively small.

The MPE (Mean Percentage Error) values range from -5.0689 to -28.8870, signifying that the NNAR model tend
to underestimates (negative MPE) the forecasts, but the overall average percentage error is reasonably close to
zero. The MAPE (Mean Absolute Percentage Error) values span from 30.1192 to 39.4099, indicating that, on
average, the NNAR model’s percentage errors can be up to 39.41.

In contrast, the ARIMA forecasting model (Table 9) displays similar patterns for the ME, RMSE, and MAE values
compared to the NNAR model. The MAPE values for the ARIMA model range from 30.9511 to 43.1502, which
is higher than the NNAR model’s MAPE values. This suggests that the ARIMA model has a higher percentage
error, making it less accurate for forecasting. The NNAR models outperform the ARIMA models in 9 of the spatial
points with the exception of only two spatial points (A & J).

In conclusion, based on the accuracy metrics, the NNAR model is more skillful than the ARIMA model at most
spatial points, as it generally shows lower MAPE values, indicating better overall forecasting accuracy.

3.3. The integrated and Optimized dynamical Model forecasts

Figure 4(a) displays the optimized model fit from 2015-2019 (solid blue line) along with the NNAR forecasts
for the livestock data from 2019-2022 (red dash line) and the model forecasts that are divided into two, those
formulated using observed soil moisture (2019-2021, green dash line) and those that integrated NNAR soil
moisture forecasts (2021-2022, blue dash line). The two forecasting methods used above differ on the basis that the
NNAR livestock forecasts are generated solely from the the observed livestock data while the model forecasts are
trajectories based on parameter such as soil moisture, death and harvest rate forecasts which are integrated within
the model. Between the years of 2019-2020 the NNAR livestock forecasts and the model-parameter estimates
forecasts were predicting similar population declines which confirms the continuity of the historical livestock data
trends.

This agreement is expected as NNAR has low uncertainty at shorter lead time and the Plant-Herbivore model used
observed soil moisture data. However, the NNAR forecasts project a recovery in livestock populations from 2020
- 2022, while the model forecasts indicate a further decline. This discrepancy reflects the fundamental difference
between the two methodologies. NNAR forecasts are myopic, relying mainly on historical data, and may not
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(a) NNAR Model Forecasts (b) 95% Confidence Intervals

Figure 4. NNAR and Optimized Parameter Plant-Herbivore Model Forecasts and Confidence intervals.

consider external factors like soil moisture or other ecological variables. The NNAR models generate forecasts that
are unaffected by climatic and environmental variations thus do not take into account the dynamic nature livestock
populations. As a result, the NNAR models are prone to high uncertainty with longer lead time. On the other
hand, the Plant-Herbivore model is constrained by observed SMAP soil moisture until 2021 and by soil moisture
forecast from NNAR between 2021 to 2022. As noted earlier for the NNAR livestock forecast, soil moisture
forecasts from NNAR is also expected to have low uncertainty at shorter lead time. Therefore, the integration
of SMAP observation and NNAR soil moisture into the Plant-Herbivore model lead to consistent simulation of
livestock population. In addition, the Plant-Herbivore model given by Eqn (1) is an initial value problem whose
forecasts depend on the initial values. Therefore, smooth evolution of livestock population that retains historical
trend shows physical consistence inherent in the model.

Figure 4(b) shows the possible forecast range with changes arising from NNAR inaccuracies in each of the three
parameters mentioned. The corresponding 95% confidence intervals are derived from death rates, harvest rates, soil
moisture forecasts and a combination of the rates. This was done by These confidence intervals were derived from
the extreme values obtained from the 95% confidence intervals of the each of the parameter forecasts. The forecast
are weakly sensitive to changes in soil moisture due to the compounding nature of the estimates from weekly to
yearly values, as such the model forecast show very slight deviations. This does not apply to the harvest rate changes
which result in wider range of livestock estimates than soil moisture but less than that of death rate changes. This is
due to the harvest rate being smaller (on average) than the death rates and consequently having a smaller standard
deviation. The widest of the confidence intervals is the harvest and death rate combined intervals, which use both
extremes of both parameters. This results in higher forecast ranges due to the direct additive relationship these
parameters have with the livestock estimate. For example, the livestock estimate by the end of 2022by the dynamic
model can accumulate ±6× 104 kg of error from nearly zero in 2019. This figure is about a 17% deviation for lead
time of three years and may not affect the use of such a model for early warning systems to prevent related hazards.

4. Conclusions

The Plant-Herbivore models proposed by [26, 18] served as a good reference in studying the relationship
between traditional livestock production and vegetative conditions. The models were found to effectively model
the complex interplay of parameters in Plant-Herbivore interactions. These models were extended in order to
incorporate the existing information for Botswana’s climate and livestock factors thus addressing the absence of
real data for parameter estimation. Estimate aggregation through weighting and time conversion are incorporated
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to reduce the error brought about by the assumption of homogeneity within the data. This approach effectively
bridges the variations in base data, often represented by the Plant-Herbivore model, and the observed data.

The utilization of the Runge-Kutta method with Multistart and local solver fmincon enabled efficient exploration
of parameter spaces, improved the accuracy of parameter estimation, with objective functions achieving set
thresholds in each of the runs. The combination of these optimized parameter estimation techniques, with the
normalized nonlinear least squares, presented very robust results which provide a promising avenues for dynamic
modelling in agro-environmental control systems. The incorporation of nonlinear least squares is explored to
further enhance the optimization process, allowing for the identification of parameters that best fit the observed
livestock data, even in the presence of non-linearity. The combination of these optimized parameter estimation
techniques with the normalized nonlinear least squares, achieved a final cumulative error of 0.0038 from initial
error of 1563.4521, falling within the set thresholds (1.0, 0.1 & 0.01). These techniques offered a systematic
approach to estimate parameters of the extended Plant-Herbivore models accurately tackling the issue of estimation
of parameters for dynamic model systems that exhibit non-convex parameter relationships despite the low number
of observation points.

Neural Network forecasting models were integrated into the parameter estimation process by incorporating them
as a component of the optimization framework. Soil moisture is a dynamic variable within the model that can
exhibit complex temporal and spatial patterns. Neural Networks effectively captured these dynamics by utilizing
their inherent ability to model sequential data. The ARIMA models yielded significantly higher variance estimates
(0.103 - 0.155) than NNAR models (0.000004 - 0.000562), NNAR models had ME (Mean Error) values ranging
from -0.0012 to 0.0140, indicating that the model’s forecasts are generally close to the actual values with small
deviations. The MAPE values for the ARIMA model range from 30.9511 to 43.1502, which is higher than the
NNAR model’s MAPE values (30.1192 - 39.4099). The NNAR models were found to generally perform better for
smaller numbers of predictions than ARIMA models. NNAR forecasts were found to have narrower confidence
intervals than ETS for soil moisture forecasts, the NNAR models were found to better capture the evolving nature
of soil moisture and make more informed predictions. NNAR forecasting was used to obtain soil moisture, death
and harvest rates forecasts, which were then integrated within the extended Plant-Herbivore model to estimate
2021 - 2022 livestock production trajectories This enables accurate and adaptable forecasting addressing the lack
of forecasting capabilities for Plant-Herbivore models.

The paper primarily focuses on the dynamics of Plant-Herbivore interactions and their relationship with
traditional livestock production. However, there might be other external factors, such as land use changes,
human interventions, or disease outbreaks, that can significantly influence the vegetative conditions and livestock
dynamics. These factors are not explicitly considered in the models. The accuracy and reliability of the results
heavily depend on the availability and quality of data, the low number of livestock observation points used within
the optimization, may limit of the generality of the findings. The increase in NNAR uncertainty with increasing
lead time might affect the accuracy of forecast from the Plant-Herbivore model. Therefore, future work should
take this limitation into account and explore other robust data-based forecast such as Long Short-term Memory
Network (LSTM) used in the field of Deep learning for integration with the Plant-Herbivore dybnamic model.
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