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Prediction problem for continuous time stochastic processes with
periodically correlated increments observed with noise
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Abstract We propose solution of the problem of the mean square optimal estimation of linear functionals which depend on
the unobserved values of a continuous time stochastic process with periodically correlated increments based on observations
of this process with periodically stationary noise. To solve the problem, we transform the processes to the sequences of
stochastic functions which form an infinite dimensional vector stationary sequences. In the case of known spectral densities
of these sequences, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the
optimal estimates of the functionals. Formulas determining the least favorable spectral densities and the minimax (robust)
spectral characteristics of the optimal linear estimates of functionals are derived in the case where the sets of admissible
spectral densities are given.
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1. Introduction

In this paper, we study the prediction problem for a continuous time stochastic process ξ(t), t ∈ R, with periodically
correlated increments ξ(d)(t, τT ) = ∆d

Tτξ(t) of order d and period T , where ∆sξ(t) = ξ(t)− ξ(t− s), based on
observations of the process ξ(t) with a periodically correlated noise stochastic process η(t), t ∈ R. The resent
studies, for example, by Basawa et al. [1], Dudek et al. [6], Reisen et al. [40], show a constant interest to the
non-stationary models and robust methods of estimation.

1.1. A brief review of the previous results and the literature

Kolmogorov [18], Wiener [47] and Yaglom [49] developed effective methods of solution of interpolation,
extrapolation (prediction) and filtering problems for stationary stochastic sequences and processes. For a particular
problem, they developed methods of finding an estimate x̃(t) constructed from available observations that
minimizes the mean square error ∆(x̃(t), f) = E|x(t)− x̃(t)|2 in the case where the spectral density f(λ) of the
stationary process or sequence x(t) is exactly known and fixed. Such estimates are called optimal linear estimates
within this article.

The developed classical estimation methods are not directly applicable in practice since the exact spectral
structure of the processes is not usually available. In this case the estimated spectral densities can be considered as
the true ones. However, Vastola and Poor [46] showed with the help of the concrete examples, that such substitution
can result in a significant increase of the estimate error. Therefore it is reasonable to consider the estimates, called
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minimax-robust, which minimize the maximum of the mean-square errors for all spectral densities from a given
set of admissible spectral densities simultaneously. The minimax-robust method of extrapolation was proposed
by Grenander [12] who considered the estimation of the functional Ax =

∫ 1

0
a(t)x(t)dt as a game between two

players, one of which minimizes the mean square error ∆(f, Ãx) by Ãζ and another one maximizes the error by f .
He showed that the game has a saddle point solution under proper conditions. For more details see the further study
by Franke and Poor [7] and the survey paper by Kassam and Poor [17]. A wide range of results has been obtained
by Moklyachuk [26, 27, 28, 29, 30]. These results have been extended on the vector-valued stationary processes
and sequences by Moklyachuk and Masyutka [32].

The concept of stationarity admits some generalizations, a combination of two of which – stationary dth
increments and periodical correlation – is in scope of this article. Random processes with stationary dth increments
x(t) were introduced by Yaglom and Pinsker [38]. The increment sequence x(d)(t, τ) = ∆d

τx(t) generated by
such process is stationary by the variable t, namely, the mathematical expectations Ex(d)(t, τ) and Ex(d)(t+

s, τ1)x(d)(t, τ2) do not depend on t. Yaglom and Pinsker [38] described the spectral representation of such process
and the spectral density canonical factorization, and they also solved the extrapolation problem for these processes.
The minimax-robust extrapolation, interpolation and filtering problems for stochastic processes with stationary
increments were investigated by Luz and Moklyachuk [21].

Dubovetska and Moklyachuk [5] derived the classical and minimax-robust estimates for another generalization
of stationary processes – periodically correlated (cyclostationary) processes, introduced by Gladyshev [11]. The
correlation function K(t, s) = Ex(t)x(s) of such processes is a T -periodic function: K(t, s) = K(t+ T, s+ T ),
which implies a time-dependent spectrum.

Periodically correlated processes are widely used in signal processing and communications, see the books by
Gardner [8], Hurd and Miamee [14], Napolitano [34] and the reviews by Napolitano [36, 35], Gardner et al.
[9], Serpedin et al. [42]. In the recent decade a major contribution to the topic was made by the Workshops on
Cyclostationary Systems and Their Applications, Grodek, Poland, [2, 3].

Periodic time series are often considered as an extension of SARIMA model [1, 25, 37] and are used for
forecasting stream flows with quarterly, monthly or weekly cycles, see Osborn [37]. Particularly, Lund [25]
proposed a test assessing if a PARMA model is preferable to a SARMA one. He also showed that the model’s
performance improves when it includes a fractional integration. A long-range dependence is widely investigated
and confirmed as a reasonable assumption for practical applications. As an example, see Porter-Hudak [39] for the
investigation of the seasonal ARFIMA model with application to the monetary aggregates used by U.S. Federal
Reserve, or Reisen, et al. [40] for a semiparametric robust fractional parameters estimation in the SARFIMA model
illustrated by the forecasting of SO2 pollutant concentrations. The long-range dependence defined in terms of the
third order cumulants of the time series has been studied by Terdik [44, 45].

In this paper, a continuous time stochastic process ξ(t) with periodically stationary dth increments is studied. Its
structural function D(d)(t, s; τ1T, τ2T ) := Eξ(d)(t, τ1T )ξ(d)(s, τ2T ) is a T -periodic function by the variables t and
s: D(d)(t, s; τ1T, τ2T ) = D(d)(t+ T, s+ T ; τ1T, τ2T ) [24]. We deal with the problem of the mean-square optimal
estimation of the linear functionals Aξ =

∫∞
0
a(t)ξ(t)dt and ANT ξ =

∫ (N+1)T

0
a(t)ξ(t)dt which depend on the

unobserved values of the process ξ(t) based on observations of this process with periodically stationary noise at
points t < 0.

Similar problems for discrete time processes have been studied by Kozak and Moklyachuk [19], Luz and
Moklyachuk [22, 23]. The problem of estimation of continuous time stochastic process ξ(t) with periodically
stationary dth increments based on observations of the process without noise at points t < 0 was studied by Luz
and Moklyachuk [24].

1.2. Contributions

The main contribution of this paper is the developed classical and minimax solutions to the prediction problem
for the continuous time stochastic process with periodically stationary increments observed with a periodically
correlated noise. It is presented in sections 4 – 6.
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2 PREDICTION OF PROCESSES WITH PERIODICALLY CORRELATED INCREMENTS

1.3. Organization

The paper is organized as follows. In section 2, we describe a presentation of a continuous time periodically
stationary process as a stationary H-valued sequence. This approach is extended on the periodically stationary
increments in section 3. The traditional Hilbert space projection method of prediction is developed in section 4.
Particularly, formulas for calculating the mean-square errors and the spectral characteristics of the optimal linear
estimates of the functionals Aξ and ANT ξ are derived under some conditions on spectral densities. An approach to
solution of the prediction problem which is based on factorizations of spectral densities is developed in section 5. In
section 6 we present our results on minimax-robust prediction for the studied processes: relations that determine the
least favourable spectral densities and the minimax spectral characteristics are derived for some classes of spectral
densities.

2. Continuous time periodically correlated processes and generated vector stationary sequences

In this section, we present a brief review of properties of periodically correlated processes and describe an approach
to presenting it as stationary H-valued sequences. In the next section, this approach is applied to develop the
spectral theory for periodically correlated increment processes.

Definition 2.1 (Gladyshev [11])
A mean-square continuous stochastic process η : R → H = L2(Ω,F ,P), with Eη(t) = 0, is called periodically
correlated (PC) with period T , if its correlation function K(t, s) = Eη(t)η(s) for all t, s ∈ R and some fixed T > 0
is such that

K(t, s) = Eη(t)η(s) = Eη(t+ T )η(s+ T ) = K(t+ T, s+ T ).

For a periodically correlated stochastic process η(t), one can construct the following sequence of stochastic
functions [4], [31]

{ηj(u) = η(u+ jT ), u ∈ [0, T ), j ∈ Z}. (1)

The sequence (1) forms a L2([0, T );H)-valued stationary sequence {ηj , j ∈ Z} with the correlation function

Bη(l, j) = ⟨ηl, ηj⟩H =

∫ T

0

E[η(u+ lT )η(u+ jT )]du =

∫ T

0

Kη(u+ (l − j)T, u)du = Bη(l − j),

where Kη(t, s) = Eη(t)η(s) is the correlation function of the PC process η(t). Chose the following orthonormal
basis in the space L2([0, T );R)

{ẽk =
1√
T
e2πi{(−1)k[ k2 ]}u/T , k = 1, 2, 3, . . . }, ⟨ẽj , ẽk⟩ = δkj . (2)

Making use of this basis the stationary sequence {ηj , j ∈ Z} can be represented in the form

ηj =

∞∑
k=1

ηkj ẽk, (3)

where

ηkj = ⟨ηj , ẽk⟩ =
1√
T

∫ T

0

ηj(v)e
−2πi{(−1)k[ k2 ]}v/T dv.

The sequence {ηj , j ∈ Z}, or the corresponding to it vector sequence

{η⃗j = (ηkj , k = 1, 2, . . . )⊤, j ∈ Z},
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is called a generated by the process {η(t), t ∈ R} vector stationary sequence. The components {ηkj} : k =
1, 2, . . . ; j ∈ Z of the generated stationary sequence {ηj , j ∈ Z} satisfy the relations [15], [26]

Eηkj = 0, ∥ηj∥2H =

∞∑
k=1

E|ηkj |2 ≤ Pη = Bη(0), Eηklηnj = ⟨Rη(l − j)ẽk, ẽn⟩.

The correlation function Rη(j) of the generated stationary sequence {ηj , j ∈ Z} is a correlation operator function.
The correlation operator Rη(0) = Rη is a kernel operator and its kernel norm satisfies the following properties:

∥ηj∥2H =

∞∑
k=1

⟨Rη ẽk, ẽk⟩ ≤ Pη.

The generated stationary sequence {ηj , j ∈ Z} has the spectral density function g(λ) = {gkn(λ)}∞k,n=1, that is
positive valued operator function of variable λ ∈ [−π, π), if its correlation function Rη(j) can be represented in
the form

⟨Rη(j)ẽk, ẽn⟩ =
1

2π

∫ π

−π

eijλ⟨g(λ)ẽk, ẽn⟩dλ.

We finish our review by the statement, that for almost all λ ∈ [−π, π) the spectral density f(λ) is a kernel operator
with an integrable kernel norm

∞∑
k=1

1

2π

∫ π

−π

⟨g(λ)ẽk, ẽk⟩dλ =

∞∑
k=1

⟨Rη ẽk, ẽk⟩ = ∥ηj∥2H ≤ Pη.

3. Stochastic processes with periodically correlated dth increments

For a given stochastic process {ξ(t), t ∈ R}, consider the stochastic dth increment process

ξ(d)(t, τ) = (1−Bτ )
dξ(t) =

d∑
l=0

(−1)l
(
d

l

)
ξ(t− lτ), (4)

with the step τ ∈ R, generated by the stochastic process ξ(t). Here Bτ is the backward shift operator: Bτξ(t) =
ξ(t− τ), τ ∈ R.

We prefer to use the notation ξ(d)(t, τ) instead of widely used ∆d
τξ(t) to avoid a duplicate with the mean square

error notation.

Definition 3.1
A stochastic process {ξ(t), t ∈ R} is called a stochastic process with periodically stationary (periodically
correlated) increments with the step τ ∈ Z and the period T > 0 if the mathematical expectations exist and satisfy
the relations

Eξ(d)(t+ T, τT ) = Eξ(d)(t, τT ) = c(d)(t, τT ),

Eξ(d)(t+ T, τ1T )ξ(d)(s+ T, τ2T ) = D(d)(t+ T, s+ T ; τ1T, τ2T ) = D(d)(t, s; τ1T, τ2T )

for every t, s ∈ R, τ1, τ2 ∈ Z and for some fixed T > 0.

The functions c(d)(t, τT ) and D(d)(t, s; τ1T, τ2T ) from the Definition 3.1 are called the mean value and the
structural function of the stochastic process ξ(t) with periodically stationary (periodically correlated) increments.

For the stochastic process {ξ(t), t ∈ R} with periodically correlated increments ξ(d)(t, τT ) and the integer step
τ , we follow the procedure described in the Section 2 and construct a sequence of stochastic functions

{ξ(d)j (u) := ξ
(d)
j,τ (u) = ξ

(d)
j (u+ jT, τT ), u ∈ [0, T ), j ∈ Z}. (5)
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4 PREDICTION OF PROCESSES WITH PERIODICALLY CORRELATED INCREMENTS

Sequence (5) forms a L2([0, T );H)-valued stationary increment sequence {ξ(d)j , j ∈ Z} with the structural
function

Bξ(d)(l, j) = ⟨ξ(d)l , ξ
(d)
j ⟩H =

∫ T

0

E[ξ(d)j (u+ lT, τ1T )ξ
(d)
j (u+ jT, τ2T )]du

=

∫ T

0

D(d)(u+ (l − j)T, u; τ1T, τ2T )du = Bξ(d)(l − j).

Making use of the orthonormal basis (2) the stationary increment sequence {ξ(d)j , j ∈ Z} can be represented in the
form

ξ
(d)
j =

∞∑
k=1

ξ
(d)
kj ẽk, (6)

where

ξ
(d)
kj = ⟨ξ(d)j , ẽk⟩ =

1√
T

∫ T

0

ξ
(d)
j (v)e−2πi{(−1)k[ k2 ]}v/T dv.

We call this sequence {ξ(d)j , j ∈ Z}, or the corresponding to it vector sequence

{ξ⃗(d)(j, τ) = ξ⃗
(d)
j = (ξ

(d)
kj , k = 1, 2, . . . )⊤ = (ξ

(d)
k (j, τ), k = 1, 2, . . . )⊤, j ∈ Z}, (7)

an infinite dimension vector stationary increment sequence generated by the increment process {ξ(d)(t, τT ), t ∈
R}. Further, we will omit the word vector in the notion generated vector stationary increment sequence.

Components {ξ(d)kj } : k = 1, 2, . . . ; j ∈ Z of the generated stationary increment sequence {ξ(d)j , j ∈ Z} are such
that, [15], [26]

Eξ(d)kj = 0, ∥ξ(d)j ∥2H =

∞∑
k=1

E|ξ(d)kj |
2 ≤ Pξ(d) = Bξ(d)(0),

and
Eξ(d)kl ξ

(d)
nj = ⟨Rξ(d)(l − j; τ1, τ2)ẽk, ẽn⟩.

The structural function Rξ(d)(j) := Rξ(d)(j; τ1, τ2) of the generated stationary increment sequence {ξ(d)j , j ∈ Z} is
a correlation operator function. The correlation operator Rξ(d)(0) = Rξ(d) is a kernel operator and its kernel norm
satisfies the following limitations:

∥ξ(d)j ∥2H =

∞∑
k=1

⟨Rξ(d) ẽk, ẽk⟩ ≤ Pξ(d) .

Suppose that the structural function Rξ(d)(j) admits a representation

⟨Rξ(d)(j; τ1, τ2)ẽk, ẽn⟩ =
1

2π

∫ π

−π

eijλ(1− e−iτ1λ)d(1− eiτ2λ)d
1

λ2d
⟨f(λ)ẽk, ẽn⟩dλ.

Then f(λ) = {fkn(λ)}∞k,n=1 is a spectral density function of the generated stationary increment sequence {ξ(d)j , j ∈
Z}. It is a positive valued operator functions of variable λ ∈ [−π, π), and for almost all λ ∈ [−π, π) it is a kernel
operator with an integrable kernel norm

∞∑
k=1

1

2π

∫ π

−π

(1− e−iτ1λ)d(1− eiτ2λ)d
1

λ2d
⟨f(λ)ẽk, ẽk⟩dλ =

∞∑
k=1

⟨Rξ(d) ẽk, ẽk⟩ = ∥ζj∥2H ≤ Pξ(d) . (8)
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The stationary dth increment sequence ξ⃗(d)j admits the spectral representation

ξ⃗
(d)
j =

∫ π

−π

eiλj(1− e−iτλ)d
1

(iλ)d
dZ⃗ξ(d)(λ),

where Z⃗ξ(d)(λ) = {Zk(λ)}∞k=1 is a vector-valued random process with uncorrelated increments on [−π, π).
Consider the generated stationary stochastic sequence η⃗j defined in Section ??, which is uncorrelated with the

increment sequence ξ⃗(d)j . It admits the spectral representation

η⃗j =

∫ π

−π

eiλjdZ⃗η(λ), (9)

where Z⃗η(λ) is a vector-valued random process with uncorrelated increments on [−π, π). The spectral
representation of the sequence ζ⃗(d)j , generated by the process ζ(t) = ξ(t) + η(t), is determined by the spectral
densities f(λ) and g(λ) by the relation

ζ⃗
(d)
j =

∫ π

−π

eiλj(1− e−iτλ)d
1

(iλ)d
dZ⃗ξ(d)+η(d)(λ). (10)

The random processes Z⃗η(λ) and Z⃗η(d)(λ) are connected by the relation dZ⃗η(d)(λ) = (iλ)ddZ⃗η(λ), λ ∈ [−π, π),
see [21]. The spectral density p(λ) = {pkn(λ)}∞k,n=1 of the sequence ζ⃗(d)j is determined by the spectral densities
f(λ) and g(λ) by the relation

p(λ) = f(λ) + λ2dg(λ).

In the space H = L2(Ω,F ,P), consider a closed linear subspace

H(ξ⃗ (d)) = span{ξ(d)kj : k = 1, 2, . . . ; j ∈ Z}

generated by the components of the generated stationary increment sequence ξ⃗ (d) = {ξ(d)kj = ξ
(d)
k (j, τ), τ > 0}.

For q ∈ Z, consider also a closed linear subspace

Hq(ξ⃗ (d)) = span{ξ(d)kj : k = 1, 2, . . . ; j ≤ q}.

Define a subspace
S(ξ⃗ (d)) =

⋂
q∈Z

Hq(ξ⃗ (d))

of the Hilbert space H(ξ⃗ (d)). The space H(ξ⃗ (d)) admits a decomposition H(ξ⃗ (d)) = S(ξ⃗ (d))⊕R(ξ⃗ (d)) where
R(ξ⃗ (d)) is the orthogonal complement of the subspace S(ξ⃗ (d)) in the space H(ξ⃗ (d)).

Definition 3.2
A stationary (wide sense) increment sequence ξ⃗(d)j = {ξ(d)kj }∞k=1 is called regular if H(ξ⃗ (d)) = R(ξ⃗ (d)), and it is
called singular if H(ξ⃗ (d)) = S(ξ⃗ (d)).

Theorem 3.1
A stationary increment sequence ξ(d)j is uniquely represented in the form

ξ
(d)
kj = ξ

(d)
S,kj + ξ

(d)
R,kj (11)

where ξ
(d)
R,kj , k = 1, . . . ,∞, is a regular stationary increment sequence and ξ

(d)
S,kj , k = 1, . . . ,∞, is a singular

stationary increment sequence. The increment sequences ξ(d)R,kj and ξ(d)S,kj are orthogonal for all j ∈ Z. They are
defined by the formulas

ξ
(d)
S,kj = E[ξ

(d)
kj |S(ξ⃗

(d))],

ξ
(d)
R,kj = ξ

(d)
kj − ξ

(d)
S,kj .
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6 PREDICTION OF PROCESSES WITH PERIODICALLY CORRELATED INCREMENTS

Consider an innovation sequence ε⃗(u) = {εm(u)}Mm=1, u ∈ Z for a regular stationary increment, namely, the
sequence of uncorrelated random variables such that Eεm(u)εj(v) = δmjδuv, E|εm(u)|2 = 1,m, j = 1, . . . ,M ;u ∈
Z, and Hr(ξ⃗(d)) = Hr(ε⃗) holds true for all r ∈ Z, where Hr(ε⃗) is the Hilbert space generated by elements
{εm(u) : m = 1, . . . ,M ;u ≤ r}, δmj and δuv are Kronecker symbols.

Theorem 3.2
A stationary increment sequence ξ⃗

(d)
j is regular if and only if there exists an innovation sequence

ε⃗(u) = {εm(u)}Mm=1, u ∈ Z and a sequence of matrix-valued functions φ(d)(l, τ) = {φ(d)
km(l, τ)}m=1,M

k=1,∞ , l ≥ 0, such
that

∞∑
l=0

∞∑
k=1

M∑
m=1

|φ(d)
km(l, τ)|2 <∞, ξ

(d)
kj =

∞∑
l=0

M∑
m=0

φ
(d)
km(l, τ)ε⃗m(j − l). (12)

Representation (12) is called the canonical moving average representation of the generated stationary increment
sequence ξ⃗ (d)

j .

The spectral function F (λ) of a stationary increment sequence ξ⃗ (d)
j which admits canonical representation (12)

has the spectral density f(λ) = {fij(λ)}∞i,j=1 admitting the canonical factorization

f(λ) = φ(e−iλ)φ∗(e−iλ), (13)

where the function φ(z) =
∑∞

k=0 φ(k)z
k has analytic in the unit circle {z : |z| ≤ 1} components φij(z) =∑∞

k=0 φij(k)z
k; i = 1, . . . ,∞; j = 1, . . . ,M . Based on moving average representation (12) define

φτ (z) =

∞∑
k=0

φ(d)(k, τ)zk =

∞∑
k=0

φτ (k)z
k.

Then the following factorization holds true:

|1− eiλτ |2d

λ2d
f(λ) = φτ (e

−iλ)φ∗
τ (e

−iλ), φτ (e
−iλ) =

∞∑
k=0

φτ (k)e
−iλk. (14)

4. Hilbert space projection method of prediction

Let a periodically correlated increment process ξ(d)(t, τT ), t ∈ R, generates by formula (6) an infinite dimension
vector stationary increment sequence {ξ⃗(d)j , j ∈ Z} which has the spectral density matrix f(λ) = {fij(λ)}∞i,j=1.
As a noise process, consider a periodically stationary stochastic process η(t), t ∈ R, uncorrelated with the process
ξ(t). Let the process η(t) generates by formula (3) an infinite dimension vector stationary sequence {η⃗j , j ∈ Z}
with the spectral density matrix g(λ) = {gij(λ)}∞i,j=1.

By the classical prediction problem we understand the problem of the mean square optimal linear estimation
of the functionals

Aξ =

∫ ∞

0

a(t)ξ(t)dt, ANT ξ =

∫ (N+1)T

0

a(t)ξ(t)dt

which depend on the unknown values of the stochastic process ξ(t). Estimates are based on observations of the
process ζ(t) = ξ(t) + η(t) at points t < 0.

Assumptions:

• the mean values of the increment sequence ξ⃗(d)j and stationary sequence η⃗j equal to 0; the increment step
τ > 0;
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• the spectral densities f(λ) and g(λ) satisfy the minimality condition∫ π

−π

Tr
[

λ2d

|1− eiλτ |2d
(f(λ) + λ2dg(λ))−1

]
dλ <∞. (15)

The latter assumption is the necessary and sufficient condition under which the mean square errors of the optimal
estimates of the functional Aξ⃗ to be defined below is not equal to 0.

The Hilbert space projection method of estimation may be applied under the condition that the element, which
we want to estimate, belongs to the Hilbert spaceH = L2(Ω,F ,P) of random variables with a zero mean value and
a finite variance. That is not the case for the functional Aξ. To overcome this difficulty we find a representation of
the functional Aξ as a sum of a functional with finite second moment from the space H and a functional depended
on the observed values of the process ζ(t) = ξ(t) + η(t). This representation is described by the following two
lammas.

Lemma 4.1 ([24])
The linear functional

Aζ =

∫ ∞

0

a(t)ζ(t)dt

allows the representation
Aζ = Bζ − V ζ,

where

Bζ =

∫ ∞

0

bτ (t)ζ(d)(t, τT )dt, V ζ =

∫ 0

−τTd

vτ (t)ζ(t)dt,

and

vτ (t) =

d∑
l=⌈− t

τT ⌉
(−1)l

(
d

l

)
bτ (t+ lτT ), t ∈ [−τTd; 0), (16)

bτ (t) =

∞∑
k=0

a(t+ τTk)d(k) = DτTa(t), t ≥ 0, (17)

Here ⌈x⌉ denotes the least integer greater than or equal to x, [x] denotes the integer part of x, coefficients
{d(k) : k ≥ 0} are determined by the relation

∞∑
k=0

d(k)xk =

( ∞∑
j=0

xj

)d

,

DτT is the linear transformation acting on an arbitrary function x(t), t ≥ 0, as follows:

DτTx(t) =

∞∑
k=0

x(t+ τTk)d(k).

From Lemma 4.1, we obtain the following representation of the functional Aξ:

Aξ = Aζ −Aη = Bζ −Aη − V ζ = Hξ − V ζ,

where
Hξ := Bζ −Aη,

and

Aζ =

∫ ∞

0

a(t)ζ(t)dt, Aη =

∫ ∞

0

a(t)η(t)dt,
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Bζ =

∫ ∞

0

bτ (t)ζ(d)(t, τT )dt, V ζ =

∫ 0

−τTd

vτ (t)ζ(t)dt,

the functions bτ (t), t ∈ [0;∞), and vτ (t), t ∈ [−τTd; 0), are calculated by formulas (17) and (16) respectively.
The functional Hξ allows a representation in terms of the sequences η⃗j = (ηkj , k = 1, 2, . . . )⊤ and ζ⃗

(d)
j =

ξ⃗
(d)
j + η⃗

(d)
j = (ζ

(d)
kj , k = 1, 2, . . . )⊤, j ∈ Z, which is described in the following lemma.

Lemma 4.2
The functional Hξ = Bζ −Aη can be represented in the form

Hξ =

∞∑
j=0

(⃗bτj )
⊤
ζ⃗
(d)
j −

∞∑
j=0

(⃗aj)
⊤
η⃗j = Bζ⃗ − V η⃗ =: Hξ⃗,

where the vector
b⃗τj = (bτkj , k = 1, 2, . . . )⊤ = (bτ1j , b

τ
3j , b

τ
2j , . . . , b

τ
2k+1,j , b

τ
2k,j , . . . )

⊤,

with the entries

bτkj = ⟨bτj , ẽk⟩ =
1√
T

∫ T

0

bτj (v)e
−2πi{(−1)k[ k2 ]}v/T dv,

and the vector
a⃗j = (akj , k = 1, 2, . . . )⊤ = (a1j , a3j , a2j , . . . , a2k+1,j , a2k,j , . . . )

⊤,

with the entries

akj = ⟨aj , ẽk⟩ =
1√
T

∫ T

0

aj(v)e
−2πi{(−1)k[ k2 ]}v/T dv, k = 1, 2, . . . , j = 0, 1, . . . ,∞.

The coefficients {a⃗j , j = 0, 1, . . . ,∞} and {⃗bτj , j = 0, 1, . . . ,∞} are related as

b⃗τj =

∞∑
m=j

diag∞(dτ (m− j))⃗am = (Dτa)j , j = 0, 1, . . . ,∞. (18)

where a = ((⃗a0)
⊤, (⃗a1)

⊤, . . .)⊤, the coefficients {dτ (k) : k ≥ 0} are determined by the relationship

∞∑
k=0

dτ (k)x
k =

( ∞∑
j=0

xτj

)d

,

Dτ is a linear transformation determined by a matrix with the infinite dimension matrix entries Dτ (k, j), k, j =
0, 1, . . . such that Dτ (k, j) = diag∞(dτ (j − k)) if 0 ≤ k ≤ j ≤ ∞ and Dτ (k, j) = diag∞(0) for 0 ≤ j < k ≤ ∞;
diag∞(x) denotes an infinite dimensional diagonal matrix with the entry x on its diagonal.

Proof
See Appendix.

Assume, that coefficients {a⃗j , j = 0, 1, . . . } and {⃗bτj , j = 0, 1, . . . }, that determine the functional Hξ⃗, satisfy the
conditions

∞∑
j=0

∥a⃗j∥ <∞,

∞∑
j=0

(j + 1)∥a⃗j∥2 <∞, ∥a⃗j∥2 =

∞∑
k=1

|akj |2, (19)

∞∑
j=0

∥⃗bτj ∥ <∞,

∞∑
j=0

(j + 1)∥⃗bτj ∥2 <∞, ∥⃗bτj ∥2 =

∞∑
k=1

|bτkj |2. (20)
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Under conditions (19) - (20) the functional Hξ⃗ has finite second moment. Since the functional V ζ depends on
the observations {ξ(t) + η(t) : t ∈ [τTd; 0)}, the estimates Âξ and Ĥξ⃗ of the functionals Aξ and Hξ⃗, as well as the
mean-square errors ∆(f, g; Âξ) = E|Aξ − Âξ|2 and ∆(f, g; Ĥξ⃗) = ∆(f, g; Ĥξ⃗) = E|Hξ⃗ − Ĥξ⃗|2 of the estimates
Âξ and Ĥξ⃗ satisfy the relations

Âξ = Ĥξ⃗ − V ζ (21)

and
∆(f, g; Âξ) = E|Aξ − Âξ|2 = E|Hξ⃗ − V ζ − Ĥξ⃗ + V ζ|2 = E|Hξ⃗ − Ĥξ⃗|2 = ∆(f, g; Ĥξ⃗).

Thus, the functional Hξ⃗ is a target element to be estimated. Let us describe its spectral representation. Making use
of representations (10) and (9), we obtain

Hξ⃗ =

∫ π

−π

(B⃗τ (e
iλ))⊤

(1− e−iλτ )d

(iλ)d
dZ⃗ξ(d)+η(d)(λ)−

∫ π

−π

(A⃗(eiλ))⊤dZ⃗η(λ),

where

B⃗τ (e
iλ) =

∞∑
j=0

b⃗τj e
iλj =

∞∑
j=0

(Dτa)je
iλj , A⃗(eiλ) =

∞∑
j=0

a⃗je
iλj .

The classical approach of estimation consists in finding a projection of the element Hξ⃗ on the closed linear
subspace of H = L2(Ω,F ,P) generated by the observations. Let us define this subspace as

H0−(ξ(d)τ + η(d)τ ) = span{ξ⃗(d)kj + η⃗
(d)
kj : k = 1, . . . ,∞; j = −1,−2,−3, . . . }.

Define also the closed linear subspaces of the Hilbert space L2(f(λ) + λ2dg(λ)) of vector-valued functions
endowed by the inner product

⟨g1; g2⟩ =
∫ π

−π

(g1(λ))
⊤(f(λ) + λ2dg(λ))g2(λ)dλ

as
L0−
2 (f(λ) + λ2dg(λ)) = span{eiλj(1− e−iλτ )d

1

(iλ)d
δ⃗k, k = 1, 2, 3, . . . ; j = −1,−2,−3, . . . },

where δ⃗k = {δkl}∞l=1, δkl are Kronecker symbols.

Remark 4.1
Representation (10) yields a map between the elements eiλj(1− e−iλτ )d(iλ)−dδ⃗k of the space L0−

2 (f(λ) +

λ2dg(λ)) and the elements ξ⃗(d)kj + η⃗
(d)
kj of the space H0−(ξ

(d)
τ + η

(d)
τ ).

The mean square optimal estimate Ĥξ⃗ is found as a projection of the element Hξ⃗ on the subspace H0−(ξ
(d)
τ +

η
(d)
τ ):

Ĥξ⃗ = Proj
H0−(ξ

(d)
τ +η

(d)
τ )

Hξ⃗.

Relation (21) let us write the optimal estimate Âξ in the form

Âξ = Proj
H0−(ξ

(d)
τ +η

(d)
τ )

Hξ⃗ − V ζ

or in the form

Âξ =

∫ π

−π

(⃗hτ (λ))
⊤dZ⃗ξ(d)+η(d)(λ)−

∫ 0

−τTd

vτ (t)ζ(t)dt, (22)

where h⃗τ (λ) = {hτk(λ)}∞k=1 is the spectral characteristic of the estimate Ĥξ⃗.
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Denote

A⃗τ (e
iλ) = (1− eiλτ )dA⃗(eiλ) =

∞∑
j=0

a⃗τj e
iλj ,

where

a⃗τj =

min{[j/τ ],d}∑
l=0

(−1)l
(
d

l

)
a⃗(j − τ l), j ≥ 0. (23)

Define the vector
aτ = ((⃗aτ0)

⊤, (⃗aτ1)
⊤, (⃗aτ2)

⊤, . . .)⊤.

With the help of the Fourier coefficients

T τ
l,j =

1

2π

∫ π

−π

eiλ(j−l) λ2d

|1− eiλτ |2d
(
g(λ)(f(λ) + λ2dg(λ))−1

)⊤
dλ, l, j ≥ 0,

P τ
l,j =

1

2π

∫ π

−π

eiλ(j−l) λ2d

|1− eiλτ |2d
(
(f(λ) + λ2dg(λ))−1

)⊤
dλ, l, j ≥ 0,

Ql,j =
1

2π

∫ π

−π

eiλ(j−l)
(
f(λ)(f(λ) + λ2dg(λ))−1g(λ)

)⊤
dλ, l, j ≥ 0,

of the corresponding matrix functions, define the linear operators Pτ , Tτ and Q in the space ℓ2 by matrices with
the infinite dimensional matrix entries (Pτ )l,j = P τ

l,j , (Tτ )l,j = T τ
l,j and (Q)l,j = Ql,j , l, j ≥ 0.

Notation: ⟨x⃗, y⃗⟩ =
∑∞

j=0(x⃗j)
⊤y⃗j for vectors x⃗ = ((x⃗0)

⊤, (x⃗1)
⊤, (x⃗2)

⊤, . . .)⊤, y⃗ = ((y⃗0)
⊤, (y⃗1)

⊤, (y⃗2)
⊤, . . .)⊤.

Theorem 4.1
Consider two uncorrelated processes: a stochastic process ξ(t), t ∈ R with a periodically stationary increments,
which determines a generated stationary dth increment sequence ξ⃗(d)j with the spectral density matrix f(λ) =
{fkn(λ)}∞k,n=1, and a periodically stationary stochastic process η(t), t ∈ R, which determines a generated
stationary sequence η⃗j with the spectral density matrix g(λ) = {gkn(λ)}∞k,n=1. Let the coefficients a⃗j , b⃗τj , j =
0, 1, . . . , generated by the function a(t), t ≥ 0, satisfy conditions (19) – (20). Let minimality condition (15) be
satisfied. The optimal linear estimate Âξ of the functional Aξ based on observations of the process ξ(t) + η(t) at
points t < 0 is calculated by formula (22). The spectral characteristic h⃗τ (λ) is calculated by formula

(⃗hτ (λ))
⊤ = (B⃗τ (e

iλ))⊤
(1− e−iλτ )d

(iλ)d

−
(
(A⃗τ (e

iλ))⊤g(λ) + (C⃗τ (e
iλ))⊤

) (−iλ)d

(1− eiλτ )d
(f(λ) + λ2dg(λ))−1, (24)

where

C⃗τ (e
iλ) =

∞∑
j=0

(P−1
τ Dτa−P−1

τ Tτa
τ )je

iλj .

The value of the mean-square error is calculated by the formula

∆(f, g; Âξ⃗) =
1

2π

∫ π

−π

λ2d

|1− eiλτ |2d
(Cf

τ (e
iλ))⊤(f(λ) + λ2dg(λ))−1f(λ)(f(λ) + λ2dg(λ))−1Cf

τ (eiλ)dλ

+
1

2π

∫ π

−π

λ4n

|1− eiλτ |4n
(Cg

τ (e
iλ))⊤(f(λ) + λ2dg(λ))−1g(λ)(f(λ) + λ2dg(λ))−1Cg

τ (eiλ)dλ

= ⟨Dτa−Tτa
τ ,P−1

τ Dτa−P−1
τ Tτa

τ ⟩+ ⟨Qa,a⟩, (25)
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where

Cf
τ (e

iλ) := g(λ)A⃗τ (e
iλ) + C⃗τ (e

iλ),

Cg
τ (e

iλ) := |1− eiλτ |2dλ−2df0(λ)A⃗(eiλ)− (1− e−iλτ )dC⃗τ (e
iλ).

Proof
See Appendix.

Corollary 4.1
The spectral characteristics h⃗1τ (λ) and h⃗2τ (λ) of the optimal estimates B̂ζ⃗ and Âη⃗ of the functionals Bζ⃗ and Aη⃗
based on observations ξ(t) + η(t) at points t < 0 are calculated by the formulas

(⃗h1τ (λ))
⊤ = (B⃗τ (e

iλ))⊤
(1− e−iλτ )d

(iλ)d

− (−iλ)d

(1− eiλτ )d

( ∞∑
j=0

(P−1
τ Dτa)je

iλj

)⊤

(f(λ) + λ2dg(λ)−1,

(⃗h2τ (λ))
⊤ = (A⃗τ (e

iλ))⊤g(λ)
(−iλ)d

(1− eiλτ )d
(f(λ) + λ2dg(λ))−1

− (−iλ)d

(1− eiλτ )d

( ∞∑
j=0

(P−1
τ Tτa

τ )je
iλj

)⊤

(f(λ) + λ2dg(λ))−1,

respectively.

The optimal estimate ÂNT ξ of the functional ANT ξ which depend on the unknown values of the process ξ(t) at
points t ∈ [0, T (N + 1)], based on observations of the process ξ(t) + η(t) at points t < 0 can be obtained by using
Theorem 4.1.
We first formulate the following corollaries from Lemma 4.1 and Lemma 4.2.

Corollary 4.2
The linear functional

ANT ξ =

∫ (N+1)T

0

a(t)ξ(t)dt

allows the representation
ANT ξ = BNT ξ − VNT ξ,

where

BNT ξ =

∫ (N+1)T

0

bτ,N (t)ξ(d)(t, τT )dt, VNT ξ =

∫ 0

−τTd

vτ,N (t)ξ(t)dt,

and

vτ,N (t) =

min{[ (N+1)T−t
τT ],d}∑

l=⌈− t
τT ⌉

(−1)l
(
d

l

)
bτ,N (t+ lτT ), t ∈ [−τTd; 0), (26)

bτ,N (t) =

[ (N+1)T−t
τT ]∑
k=0

a(t+ τTk)d(k) = DτT,Na(t).t ∈ [0; (N + 1)T ], (27)

The linear transformation DτT,N acts on an arbitrary function x(t), t ∈ [0; (N + 1)T ], as follows

DτT,Nx(t) =

[ (N+1)T−t
τT ]∑
k=0

x(t+ τTk)d(k).
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Corollary 4.3
The functional

HNT ξ = BNT ζ −ANT η,

BNT ζ =

∫ T (N+1)

0

bτ,N (t)ζ(d)(t, τT )dt, ANT η =

∫ T (N+1)

0

a(t)η(t)dt,

can be represented in the form

HNT ξ =

N∑
j=0

(⃗bτ,Nj )
⊤
ζ⃗
(d)
j −

N∑
j=0

(⃗aj)
⊤
η⃗j = BN ζ⃗ − VN η⃗ =: HN ξ⃗,

where the vector

b⃗τ,Nj = (bτ,Nkj , k = 1, 2, . . . )⊤ = (bτ,N1j , bτ,N3j , bτ,N2j , . . . , bτ,N2k+1,j , b
τ,N
2k,j , . . . )

⊤,

with the entries

bτ,Nkj = ⟨bτ,Nj , ẽk⟩ =
1√
T

∫ T

0

bτ,Nj (v)e−2πi{(−1)k[ k2 ]}v/T dv.

The coefficients {a⃗j , j = 0, 1, . . . , N} and {⃗bτ,Nj , j = 0, 1, . . . , N} are related as

b⃗τ,Nj =

N∑
m=j

diag∞(dτ (m− j))⃗am = (Dτ
NaN )j , j = 0, 1, . . . , N. (28)

where aN = ((⃗a0)
⊤, (⃗a1)

⊤, . . . , (⃗aN )⊤, 0, . . .)⊤, Dτ
N is a linear transformation determined by a matrix with the

infinite dimension matrix entries Dτ
N (k, j), k, j ≥ 0 such that Dτ

N (k, j) = diag∞(dτ (j − k)) if 0 ≤ k ≤ j ≤ N
and Dτ

N (k, j) = diag∞(0) for 0 ≤ j < k or j, k > N .

Put a(t) = 0, t > T (N + 1). Define vector coefficients {a⃗τ,Nj : 0 ≤ j ≤ N + τd} by the formula

a⃗τ,Nj =

min{[ jτ ],d}∑
l=max{⌈ j−N

τ ⌉,0}
(−1)l

(
d

l

)
a⃗(j − τ l), 0 ≤ j ≤ N + τd,

and a vector
aτN = ((⃗aτ,N0 )⊤, (⃗aτ,N1 )⊤, (⃗aτ,N2 )⊤, . . . , (⃗aτ,NN+τd)

⊤, 0 . . .)⊤.

The following theorem holds true.

Theorem 4.2
Consider two uncorrelated processes: a stochastic process ξ(t), t ∈ R with periodically stationary increments,
which determines a generated stationary dth increment sequence ξ⃗(d)j with the spectral density matrix f(λ) =
{fkn(λ)}∞k,n=1, and a periodically stationary stochastic process η(t), t ∈ R, which determines a generated
stationary sequence η⃗j with the spectral density matrix g(λ) = {gkn(λ)}∞k,n=1. Let the coefficients a⃗j , b⃗τj , j =
0, 1, . . . , N generated by the function a(t), 0 ≤ t ≤ T (N + 1), satisfy conditions

∥a⃗j∥2 =

∞∑
k=1

|akj |2 <∞, j = 0, 1, . . . , N,

and

∥⃗bτ,Nj ∥2 =

∞∑
k=1

|bτ,Nkj |2 <∞, j = 0, 1, . . . , N.
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Let minimality condition (15) be satisfied. The optimal linear estimate ÂNT ξ of the functional ANT ξ based on
observations of the process ξ(t) + η(t) at points t < 0 is calculated by formula

ÂNT ξ =

∫ π

−π

(⃗hτ,N (λ))⊤dZ⃗ξ(d)+η(d)(λ)−
∫ 0

−τTd

vτ,N (t)ζ(t)dt,

where the spectral characteristic h⃗τ,N (λ) of the optimal estimate ÂNT ξ is calculated by formula

(⃗hτ,N (λ))⊤ =
(1− e−iλτ )d

(iλ)d

(
N∑
j=0

(Dτ
NaN )je

iλj

)⊤

− (−iλ)d

(1− eiλτ )d

(
N+τd∑
j=0

a⃗τ,Nj eiλj

)⊤

g(λ)(f(λ) + λ2dg(λ))−1

− (−iλ)d

(1− eiλτ )d

( ∞∑
j=0

(P−1
τ Dτ

NaN −P−1
τ Tτaτ,N )je

iλj

)⊤

(f(λ) + λ2dg(λ))−1,

The value of the mean-square error is calculated by formula

∆(f, g; ÂNT ξ) = ∆(f, g; ĤN ξ⃗) = E|HN ξ⃗ − ĤN ξ⃗|2

= ⟨Dτ
NaN −Tτaτ,N ,P

−1
τ Dτ

NaN −P−1
τ Tτaτ,N ⟩+ ⟨QNaN ,aN ⟩,

where QN is a linear operator in the space ℓ2 defined by the matrix with the infinite dimensional matrix entries
(QN )l,j = Ql,j , 0 ≤ l, j ≤ N , and (QN )l,j = 0 otherwise.

5. Prediction based on factorizations of spectral densities

Assume that the following canonical factorizations take place

|1− eiλτ |2d

λ2d
(f(λ) + λ2dg(λ)) = Θτ (e

−iλ)Θ∗
τ (e

−iλ),Θτ (e
−iλ) =

∞∑
k=0

Θτ (k)e
−iλk, (29)

g(λ) =

∞∑
k=−∞

g(k)eiλk = Φ(e−iλ)Φ∗(e−iλ), Φ(e−iλ) =

∞∑
k=0

ϕ(k)e−iλk. (30)

Define the matrix-valued function Ψτ (e
−iλ) = {Ψij(e

−iλ)}j=1,∞
i=1,M

by the equation

Ψτ (e
−iλ)Θτ (e

−iλ) = EM ,

where EM is an identity M ×M matrix. Then the following factorization takes place

λ2d

|1− eiλτ |2d
(f(λ) + λ2dg(λ))−1 = Ψ∗

τ (e
−iλ)Ψτ (e

−iλ), Ψτ (e
−iλ) =

∞∑
k=0

ψτ (k)e
−iλk, (31)

Remark 5.1
Any spectral density matrix f(λ) is self-adjoint: f(λ) = f∗(λ). Thus, (f(λ))⊤ = f(λ). One can check that an
inverse spectral density f−1(λ) is also self-adjoint f−1(λ) = (f−1(λ))∗ and (f−1(λ))⊤ = f−1(λ).

The following Lemmas provide factorizations of the operators Pτ and Tτ , which contain coefficients of
factorizations (29) – (31).

Stat., Optim. Inf. Comput. Vol. 12, Month 2024



14 PREDICTION OF PROCESSES WITH PERIODICALLY CORRELATED INCREMENTS

Lemma 5.1
Let factorization (29) takes place and let M ×∞ matrix function Ψτ (e

−iλ) satisfy equation Ψτ (e
−iλ)Θτ (e

−iλ) =
EM . Define the linear operators Ψτ and Θτ in the space ℓ2 by the matrices with the matrix entries (Ψτ )k,j =
ψτ (k − j), (Θτ )k,j = Θτ (k − j) for 0 ≤ j ≤ k, (Ψτ )k,j = 0, (Θτ )k,j = 0 for 0 ≤ k < j. Then:
a) the linear operator Pτ admits the factorization

Pτ = (Ψτ )
⊤Ψτ ;

b) the inverse operator (Pτ )
−1 admits the factorization

(Pτ )
−1 = Θτ (Θτ )

⊤.

Lemma 5.2
Let factorizations (29) and (30) take place. Then the operator Tτ admits the representation

Tτ = (Ψτ )
⊤Zτ ,

where Zτ is a linear operator in the space ℓ2 defined by a matrix with the entries

(Zτ )k,j =

∞∑
l=j

ψτ (l − j)g(l − k), k, j ≥ 0

g(k) =

∞∑
m=max{0,−k}

ϕ(m)ϕ∗(k +m), k ∈ Z.

Remark 5.2
Lemma 5.1 and Lemma 5.2 imply the factorization

(Pτ )
−1Tτa

τ = Θτ (Θτ )
⊤(Ψτ )

⊤Zτa
τ = ΘτZτa

τ = Θτeτ ,

where eτ := Zτa
τ .

The proofs of Lemma 5.1 and Lemma 5.2, as well as the justification of the following representations of the
spectral characteristics h⃗1τ (λ) and h⃗2τ (λ), correspond to the ones in [23] for the finite-dimensional vector stationary
increment sequences.

The spectral characteristic h⃗2τ (λ) of the optimal estimate Âη⃗ from Corollary 4.1 can be presented as

h⃗2τ (λ) =
(1− e−iλτ )d

(iλ)d
Ψ⊤

τ (e
−iλ)C⃗τ,g(e

−iλ),

where

C⃗τ,g(e
−iλ) =

∞∑
m=1

(ψτCτ,g)me
−iλm.

Here ψτ = (ψτ (0), ψτ (1), ψτ (2), . . .),

(ψτCτ,g)m =

∞∑
k=0

ψτ (k)cτ,g(k +m),

cτ,g(m) =

∞∑
k=0

g(m+ k)⃗aτk =

∞∑
l=0

ϕ(l)

∞∑
k=0

ϕ⊤(l +m+ k)⃗aτk =

∞∑
l=0

ϕ(l)(Φ̃aτ )l+m,

(Φ̃aτ )m =

∞∑
k=0

ϕ⊤(m+ k)⃗aτk.
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The spectral characteristic h⃗1τ (λ) of the optimal estimate B̂ξ⃗ from Corollary 4.1 can be presented in the form

h⃗1τ (λ) =
(1− e−iλτ )d

(iλ)d

(
B⃗τ (e

iλ)−Ψ⊤
τ (e

−iλ)r⃗τ (e
iλ)
)
=

(1− e−iλτ )d

(iλ)d
Ψ⊤

τ (e
−iλ)C⃗τ,1(e

−iλ),

where

r⃗τ (e
iλ) =

∞∑
m=0

(θ⊤τ D
τA)me

iλm =

∞∑
m=0

∞∑
p=0

θ⊤τ (p)⃗b
τ
p+me

iλm,

C⃗τ,1(e
−iλ) =

∞∑
m=1

(θ⊤τ B̃τ )me
−iλm =

∞∑
m=1

∞∑
p=m

θ⊤τ (p)⃗b
τ
p−me

−iλm

=

∞∑
m=1

∞∑
p=0

θ⊤τ (m+ p)⃗bτpe
−iλm,

a vector θ⊤τ = ((Θτ (0))
⊤, (Θτ (1))

⊤, (Θτ (2))
⊤, . . .); A is a linear symmetric operator determined by the matrix

with the vector entries (A)k,j = a⃗k+j , k, j ≥ 0; B̃τ is a linear operator, which is determined by a matrix with the
vector entries (B̃τ )k,j = b⃗τk−j for 0 ≤ j ≤ k, (B̃τ )k,j = 0 for 0 ≤ k < j.

Then the spectral characteristic h⃗τ (λ) of the estimate Âξ can be calculated by the formula

h⃗τ (λ) =
(1− e−iλτ )d

(iλ)d

( ∞∑
k=0

ψ⊤
τ (k)e

−iλk

) ∞∑
m=1

(
θ⊤τ B̃τ − ψτCτ,g

)
m
e−iλm

=
(1− e−iλτ )d

(iλ)d
Ψ⊤

τ (e
−iλ)

(
C⃗τ,1(e

−iλ)− C⃗τ,g(e
−iλ)

)
= B⃗τ (e

iλ)
(1− e−iλτ )d

(iλ)d
− ˜⃗hτ (λ), (32)

where

˜⃗
hτ (λ) =

(1− e−iλτ )d

(iλ)d

( ∞∑
k=0

ψ⊤
τ (k)e

−iλk

)( ∞∑
m=0

(θ⊤τ D
τA)me

iλm +

∞∑
m=1

(ψτCτ,g)me
−iλm

)

=
(1− e−iλτ )d

(iλ)d
Ψ⊤

τ (e
−iλ)

(
r⃗τ (e

iλ) + C⃗τ,g(e
−iλ)

)
,

The value of the mean square error of the estimate Âξ is calculated by the formula

∆(f, g; Âξ) = ∆(f, g; Ĥξ⃗) = E|Hξ⃗ − Ĥξ⃗|2

=
1

2π

∫ π

−π

(A⃗(eiλ))⊤g(λ)A⃗(eiλ)dλ

+
1

2π

∫ π

−π

(
˜⃗
hτ (e

iλ))⊤(f(λ) + λ2dg(λ))
˜⃗
hτ (eiλ)dλ

− 1

2π

∫ π

−π

(iλ)d

(1− e−iλτ )d
(h̃τ (e

iλ))⊤g(λ)A⃗τ (eiλ)dλ

− 1

2π

∫ π

−π

(−iλ)d

(1− eiλτ )d
(A⃗τ (eiλ))⊤g(λ)

˜⃗
hτ (eiλ)dλ

= ∥Φ⊤aτ∥2 + ∥Φ̃aτ∥21 +
〈
θ⊤τ D

τA− ψτCτ,g, θ
⊤
τ D

τA
〉

−
〈
θ⊤τ D

τA,Zτa
τ
〉
−
〈
Zτa

τ , ψτCτ,g

〉
1
, (33)
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where ∥x⃗∥21 = ⟨x⃗, x⃗⟩1, ⟨x⃗, y⃗⟩1 =
∑∞

j=1(x⃗j)
⊤y⃗j for the vectors

x⃗ = ((x⃗0)
⊤, (x⃗1)

⊤, (x⃗2)
⊤, . . .)⊤, y⃗ = ((y⃗0)

⊤, (y⃗1)
⊤, (y⃗2)

⊤, . . .)⊤.

The obtained results are summarized in the form of the following theorem.

Theorem 5.1
Let the conditions of Theorem 4.1 be fulfilled and the spectral densities f(λ) and g(λ) of the stochastic processes
ξ(t) and η(t) admit canonical factorizations (29) – (31). Then the spectral characteristic h⃗τ (λ) and the value of
the mean square error ∆(f, g; Âξ) of the optimal estimate Âξ of the functional Aξ based on observations of the
processes ξ(t) + η(t) at points t < 0 can be calculated by formulas (32) and (33) respectively.

6. Minimax (robust) method of prediction

Consider the estimation problem for the functional Aξ based on the observations ξ(t) + η(t) at points t < 0 when
the spectral densities of sequences are not exactly known while a set D = Df ×Dg of admissible spectral densities
is defined. The minimax (robust) approach of estimation is applied. It is formalized by the following two definitions.

Definition 6.1
For a given class of spectral densities D = Df ×Dg the spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg are called least
favorable in the class D for the optimal linear prediction of the functional Aξ if the following relation holds true:

∆(f0, g0) = ∆(h(f0, g0); f0, g0) = max
(f,g)∈Df×Dg

∆(h(f, g); f, g).

Definition 6.2
For a given class of spectral densities D = Df ×Dg the spectral characteristic h0(λ) of the optimal linear estimate
of the functional Aξ is called minimax-robust if there are satisfied the conditions

h0(λ) ∈ HD =
⋂

(f,g)∈Df×Dg

L0−
2 (f(λ) + λ2dg(λ)),

and
min
h∈HD

max
(f,g)∈Df×Dg

∆(h; f, g) = max
(f,g)∈Df×Dg

∆(h0; f, g).

Taking into account the introduced definitions and the derived relations we can verify that the following lemmas
hold true.

Lemma 6.1
Spectral densities f0 ∈ Df , g0 ∈ Dg which satisfy condition (15) are least favorable in the class D = Df ×Dg for
the optimal linear prediction of the functional Aξ⃗ if operators P0

τ , T0
τ , Q0 defined by the Fourier coefficients of the

functions
λ2d

|1− eiλτ |2d
(
g0(λ)(f0(λ) + λ2dg0(λ))−1

)⊤
,

λ2d

|1− eiλτ |2d
(
(f0(λ) + λ2dg0(λ))−1

)⊤
,(

f0(λ)(f0(λ) + λ2dg0(λ))−1g0(λ)
)⊤

determine a solution of the constrained optimization problem

max
(f,g)∈Df×Dg

(⟨Dτa−Tτa
τ ,P−1

τ Dτa−P−1
τ Tτa

τ ⟩+ ⟨Qa,a⟩)

= ⟨Dτa−T0
τa

τ , (P0
τ )

−1Dτa− (P0
τ )

−1T0
τa

τ ⟩+ ⟨Q0a,a⟩. (34)

The minimax spectral characteristic h0 = hτ (f
0, g0) is calculated by formula (24) if hτ (f0, g0) ∈ HD.
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Lemma 6.2
The spectral densities f0 ∈ Df , g0 ∈ Dg which admit canonical factorizations (14), (29) and (30) are least
favourable densities in the class D for the optimal linear prediction of the functional Aξ based on observations of
the process ξ(t) + η(t) at points t < 0 if the matrix coefficients of canonical factorizations (29) and (30) determine
a solution to the constrained optimization problem

∥Φ⊤aτ∥2 + ∥Φ̃aτ∥21 +
〈
θ⊤τ D

τA− ψτCτ,g, θ
⊤
τ D

τA
〉
−
〈
θ⊤τ D

τA,Zτa
τ
〉
−
〈
Zτa

τ , ψτCτ,g

〉
1
→ sup, (35)

for

f(λ) =
λ2d

|1− eiλτ |2d
Θτ (e

−iλ)Θ∗
τ (e

−iλ)− λ2dΦ(e−iλ)Φ∗(e−iλ) ∈ Df ,

g(λ) = Φ(e−iλ)Φ∗(e−iλ) ∈ Dg.

The minimax spectral characteristic h⃗0 = h⃗τ (f
0, g0) is calculated by formula (32) if h⃗τ (f0, g0) ∈ HD.

Lemma 6.3
The spectral density g0 ∈ Dg which admits canonical factorizations (29), (30) with the known spectral density f(λ)
is the least favourable in the class Dg for the optimal linear prediction of the functional Aξ based on observations
of the process ξ(t) + η(t) at points t < 0 if the matrix coefficients of the canonical factorizations

f(λ) + λ2dg0(λ) =
λ2d

|1− eiλτ |2d

( ∞∑
k=0

θ0τ (k)e
−iλk

)( ∞∑
k=0

θ0τ (k)e
−iλk

)∗

, (36)

g0(λ) =

( ∞∑
k=0

ϕ0(k)e−iλk

)( ∞∑
k=0

ϕ0(k)e−iλk

)∗

(37)

and the equation Ψ0
τ (e

−iλ)Θ0
τ (e

−iλ) = EM determine a solution to the constrained optimization problem

∥Φ⊤aτ∥2 + ∥Φ̃aτ∥21 +
〈
θ⊤τ D

τA− ψτCτ,g, θ
⊤
τ D

τA
〉
−
〈
θ⊤τ D

τA,Zτa
τ
〉
−
〈
Zτa

τ , ψτCτ,g

〉
1
→ sup, (38)

for
g(λ) = Φ(e−iλ)Φ∗(e−iλ) ∈ Dg.

The minimax spectral characteristic h⃗0 = h⃗τ (f, g
0) is calculated by formula (32) if h⃗τ (f, g0) ∈ HD.

Lemma 6.4
The spectral density f0 ∈ Df which admits canonical factorizations (14), (29) with the known spectral density
g(λ) is the least favourable spectral density in the class Df for the optimal linear prediction of the functional Aξ
based on observations of the process ξ(t) + η(t) at points t < 0 if matrix coefficients of the canonical factorization

f0(λ) + λ2dg(λ) =
λ2d

|1− eiλτ |2d

( ∞∑
k=0

θ0τ (k)e
−iλk

)( ∞∑
k=0

θ0τ (k)e
−iλk

)∗

, (39)

and the equation Ψ0
τ (e

−iλ)Θ0
τ (e

−iλ) = EM determine a solution to the constrained optimization problem〈
θ⊤τ D

τA− ψτCτ,g, θ
⊤
τ D

τA
〉
−
〈
θ⊤τ D

τA,Zτa
τ
〉
−
〈
Zτa

τ , ψτCτ,g

〉
1
→ sup, (40)

for

f(λ) =
λ2d

|1− eiλτ |2d
Θτ (e

−iλ)Θ∗
τ (e

−iλ)− λ2dΦ(e−iλ)Φ∗(e−iλ) ∈ Df

for the fixed matrix coefficients {ϕ(k) : k ≥ 0}. The minimax spectral characteristic h⃗0 = h⃗τ (f
0, g) is calculated

by formula (32) if h⃗τ (f0, g) ∈ HD.
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For more detailed analysis of properties of the least favorable spectral densities and minimax-robust spectral
characteristics we observe that the minimax spectral characteristic h0 and the least favourable spectral densities
(f0, g0) form a saddle point of the function ∆(h; f, g) on the set HD ×D.

The saddle point inequalities

∆(h; f0, g0) ≥ ∆(h0; f0, g0) ≥ ∆(h0; f, g) ∀f ∈ Df ,∀g ∈ Dg,∀h ∈ HD

hold true if h0 = h⃗τ (f
0, g0) and h⃗τ (f

0, g0) ∈ HD, where (f0, g0) is a solution of the constrained optimisation
problem

∆̃(f, g) = −∆(⃗hτ (f
0, g0); f, g) → inf, (f, g) ∈ D, (41)

where the functional ∆(⃗hτ (f
0, g0); f, g) is calculated by the formula

∆(⃗hτ (f
0, g0); f, g) =

=
1

2π

∫ π

−π

λ2d

|1− eiλτ |2d
(Cf0

τ (eiλ))⊤(f0(λ) + λ2dg0(λ))−1f(λ)(f0(λ) + λ2dg0(λ))−1Cf0
τ (eiλ)dλ

+
1

2π

∫ π

−π

λ4n

|1− eiλτ |4n
(Cg0

τ (eiλ))⊤(f0(λ) + λ2dg0(λ))−1g(λ)(f0(λ) + λ2dg0(λ))−1Cg0
τ (eiλ)dλ,

where

Cf0
τ (eiλ) := g0(λ)A⃗τ (e

iλ) +

∞∑
j=0

((P0
τ )

−1Dτa− (P0
τ )

−1T0
τa

τ )je
iλj ,

Cg0
τ (eiλ) := |1− eiλτ |2dλ−2df0(λ)A⃗(eiλ)− (1− e−iλτ )d

∞∑
j=0

((P0
τ )

−1Dτa− (P0
τ )

−1T0
τa

τ )je
iλj .

or it is calculated by the formula

∆(⃗hτ (f
0, g0); f, g) =

1

2π

∫ π

−π

|1− eiλτ |2d

λ2d
(r0τ,f (e

−iλ))⊤Ψ0
τ (e

−iλ)f(λ)(Ψ0
τ (e

−iλ))∗r0τ,f (e
−iλ)dλ

+
1

2π

∫ π

−π

(r0τ,g(e
−iλ))⊤Ψ0

τ (e
−iλ)g(λ)(Ψ0

τ (e
−iλ))∗r0τ,g(e

−iλ)dλ,

where

r0τ,f (e
−iλ) =

∞∑
m=0

((θ0τ )
⊤DτA)me

iλm +

∞∑
m=1

(ψ
0

τC
0
τ,g)me

−iλm,

r0τ,g(e
−iλ) = (1− e−iλτ )d

( ∞∑
m=0

((θ0τ )
⊤DτA)me

iλm +

∞∑
m=1

(ψ
0

τC
0
τ,g)me

−iλm

)
− (Θ0

τ (e
−iλ))⊤A(eiλ).

The constrained optimization problem (41) is equivalent to the unconstrained optimisation problem

∆D(f, g) = ∆̃(f, g) + δ(f, g|Df ×Dg) → inf, (42)

where δ(f, g|Df ×Dg) is the indicator function of the set D = Df ×Dg. Solution (f0, g0) of this unconstrained
optimization problem is characterized by the condition 0 ∈ ∂∆D(f

0, g0), where ∂∆D(f
0, g0) is the subdifferential

of the functional ∆D(f, g) at point (f0, g0) ∈ D = Df ×Dg, that is the set of all continuous linear functionals Λ
on L1 × L1 which satisfy the inequality ∆D(f, g)−∆D(f

0, g0) ≥ Λ((f, g)− (f0, g0)), (f, g) ∈ D (see [30, 41]
for more details). This condition makes it possible to find the least favourable spectral densities in some special
classes of spectral densities D = Df ×Dg.
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The form of the functional ∆(⃗hτ (f
0, g0); f, g) is convenient for application the Lagrange method of indefinite

multipliers for finding solution to the problem (42). Making use of the method of Lagrange multipliers and the form
of subdifferential of the indicator function δ(f, g|Df ×Dg) of the set Df ×Dg of spectral densities, we describe
relations that determine least favourable spectral densities in some special classes of spectral densities (see [21, 30]
for additional details).

6.1. Least favorable spectral densities in classes D0 ×D1δ

Consider the prediction problem for the functional Aξ which depends on unobserved values of a process ξ(t) with
stationary increments based on observations of the process ξ(t) + η(t) at points t < 0 under the condition that the
sets of admissible spectral densities Dk

0 , D
k
1δ, k = 1, 2, 3, 4 are defined as follows:

D1
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

λ2d
f(λ)dλ = P

}
,

D2
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

λ2d
Tr [f(λ)]dλ = p

}
,

D3
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

λ2d
fkk(λ)dλ = pk, k = 1,∞

}
,

D4
0 =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|1− eiλτ |2d

λ2d
⟨B1, f(λ)⟩ dλ = p

}
,

and

D1
1δ =

{
g(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣gij(λ)− g1ij(λ)
∣∣ dλ ≤ δji , i, j = 1,∞

}
.

D2
1δ =

{
g(λ)

∣∣∣∣ 12π
∫ π

−π

|Tr(g(λ)− g1(λ))| dλ ≤ δ

}
;

D3
1δ =

{
g(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣gkk(λ)− g1kk(λ)
∣∣ dλ ≤ δk, k = 1,∞

}
;

D4
1δ =

{
g(λ)

∣∣∣∣ 12π
∫ π

−π

|⟨B2, g(λ)− g1(λ)⟩| dλ ≤ δ

}
;

Here g1(λ) = {g1ij(λ)}∞i,j=1 is a fixed spectral density, p, pk, k = 1,∞, are given numbers, P , B2 are a given
positive-definite Hermitian matrices, δ, δk, k = 1,∞, δji , i, j = 1,∞, are given numbers.

From the condition 0 ∈ ∂∆D(f
0, g0) we find the following equations which determine the least favourable

spectral densities for these given sets of admissible spectral densities.
For the first set of admissible spectral densities D1

0 ×D1
1δ, we have equations

(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
α⃗f · α⃗∗

f×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (43)

(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
{βijγij(λ)}∞i,j=1 ×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (44)
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1

2π

∫ π

−π

∣∣g0ij(λ)− g1ij(λ)
∣∣ dλ = δji , (45)

where α⃗f , βij are Lagrange multipliers, functions |γij(λ)| ≤ 1 and

γij(λ) =
g0ij(λ)− g1ij(λ)∣∣g0ij(λ)− g1ij(λ)

∣∣ : g0ij(λ)− g1ij(λ) ̸= 0, i, j = 1,∞.

For the second set of admissible spectral densities D2
0 ×D2

1δ, we have equations

(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
= α2

f

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)2

, (46)

(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
= β2γ2(λ)

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)2

, (47)

1

2π

∫ π

−π

|Tr (g0(λ)− g1(λ))| dλ = δ, (48)

where α2
f , β2 are Lagrange multipliers, the function |γ2(λ)| ≤ 1 and

γ2(λ) = sign (Tr (g0(λ)− g1(λ))) : Tr (g0(λ)− g1(λ)) ̸= 0.

For the third set of admissible spectral densities D3
0 ×D3

1δ, we have equations

(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

){
α2
fkδkl

}∞
k,l=1

×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (49)

(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

){
β2
kγ

2
k(λ)δkl

}∞
k,l=1

×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (50)

1

2π

∫ π

−π

∣∣g0kk(λ)− g1kk(λ)
∣∣ dλ = δk, (51)

where α2
fk, β2

k are Lagrange multipliers, δkl are Kronecker symbols, functions
∣∣γ2k(λ)∣∣ ≤ 1 and

γ2k(λ) = sign (g0kk(λ)− g1kk(λ)) : g
0
kk(λ)− g1kk(λ) ̸= 0, k = 1,∞.

For the fourth set of admissible spectral densities D4
0 ×D4

1δ, we have equations

(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
= α2

f

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
B⊤

1 ×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (52)
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(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
= β2γ′2(λ)

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
B⊤

2 ×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (53)

1

2π

∫ π

−π

∣∣〈B2, g
0(λ)− g1(λ)

〉∣∣ dλ = δ, (54)

where α2
f , β2 are Lagrange multipliers, function |γ′2(λ)| ≤ 1 and

γ′2(λ) = sign
〈
B2, g

0(λ)− g1(λ)
〉
:
〈
B2, g

0(λ)− g1(λ)
〉
̸= 0.

The derived results are summarized in the following theorem.

Theorem 6.1
The least favorable spectral densities f0(λ), g0(λ), in the classes Dk

0 ×Dk
1δ, k = 1, 2, 3, 4 for the optimal linear

predictionof the functional Aξ from observations of the process ξ(t) + η(t) at points t < 0 are determined by
equations (43)–(45), (46)–(48), (49)–(51), (52)–(54), respectively, the minimality condition (15), the constrained
optimization problem (34) and restrictions on densities from the corresponding classes Dk

0 ,Dk
1δ, k = 1, 2, 3, 4. The

minimax-robust spectral characteristic of the optimal estimate of the functional Aξ is determined by formula (24).

In the case where the spectral densities f(λ) and g(λ) admit canonical factorizations (29) and (30), the equation
for the least favourable spectral densities are described below.

For the first set of admissible spectral densities D1
0 ×D1

1δ:(
r0τ,f (e

iλ)
) (

r0τ,f (e
iλ)
)∗

= (Θτ (e
−iλ))⊤α⃗f · α⃗∗

fΘτ (e−iλ), (55)(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= (Θτ (e
−iλ))⊤ {βijγij(λ)}Ti,j=1 Θτ (e−iλ), (56)

1

2π

∫ π

−π

∣∣g0ij(λ)− g1ij(λ)
∣∣ dλ = δji , (57)

where α⃗f , βij are Lagrange multipliers, functions |γij(λ)| ≤ 1 and

γij(λ) =
g0ij(λ)− g1ij(λ)∣∣g0ij(λ)− g1ij(λ)

∣∣ : g0ij(λ)− g1ij(λ) ̸= 0, i, j = 1,∞.

For the second set of admissible spectral densities D2
0 ×D2

1δ:(
r0τ,f (e

iλ)
) (

r0τ,f (e
iλ)
)∗

= α2
f (Θτ (e

−iλ))⊤Θτ (e−iλ), (58)(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= β2γ2(λ)(Θτ (e
−iλ))⊤Θτ (e−iλ), (59)

1

2π

∫ π

−π

∣∣Tr (g0(λ)− g1(λ))
∣∣ dλ = δ, (60)

where α2
f , β2 are Lagrange multipliers, function |γ2(λ)| ≤ 1 and

γ2(λ) = sign (Tr (g0(λ)− g1(λ))) : Tr (g0(λ)− g1(λ)) ̸= 0.

For the third set of admissible spectral densities D3
0 ×D3

1δ:(
r0τ,f (e

iλ)
) (

r0τ,f (e
iλ)
)∗

= (Θτ (e
−iλ))⊤

{
α2
fkδkl

}T
k,l=1

Θτ (e−iλ), (61)(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= (Θτ (e
−iλ))⊤

{
β2
kγ

2
k(λ)δkl

}T
k,l=1

Θτ (e−iλ), (62)
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1

2π

∫ π

−π

∣∣g0kk(λ)− g1kk(λ)
∣∣ dλ = δk, (63)

where α2
fk, β2

k are Lagrange multipliers, δkl are Kronecker symbols, functions
∣∣γ2k(λ)∣∣ ≤ 1 and

γ2k(λ) = sign (g0kk(λ)− g1kk(λ)) : g
0
kk(λ)− g1kk(λ) ̸= 0, k = 1,∞.

For the fourth set of admissible spectral densities D4
0 ×D4

1δ:

(
r0τ,f (e

iλ)
) (

r0τ,f (e
iλ)
)∗

= α2
f (Θτ (e

−iλ))⊤B1Θτ (e−iλ), (64)(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= β2γ′2(λ)(Θτ (e
−iλ))⊤B2Θτ (e−iλ), (65)

1

2π

∫ π

−π

∣∣〈B2, g
0(λ)− g1(λ)

〉∣∣ dλ = δ, (66)

where α2
f , β2 are Lagrange multipliers, function |γ′2(λ)| ≤ 1 and

γ′2(λ) = sign
〈
B2, g

0(λ)− g1(λ)
〉
:
〈
B2, g

0(λ)− g1(λ)
〉
̸= 0.

The following theorems hold true.

Theorem 6.2
The least favorable spectral densities f0(λ), g0(λ) in the classes Dk

0 ×Dk
1δ, k = 1, 2, 3, 4 for the optimal linear

prediction of the functional Aξ from observations of the process ξ(t) + η(t) at points t < 0 are determined
by canonical factorizations (29) and (30), equations (55)–(57), (58)–(60), (61)–(63), (64)–(66), respectively,
constrained optimization problem (35) and restrictions on densities from the corresponding classes Dk

0 ,Dk
1δ, k =

1, 2, 3, 4. The minimax-robust spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by
formula (32).

Theorem 6.3
In the case where the spectral density g(λ) is known, the least favorable spectral density f0(λ) in the classes Dk

0 ,
k = 1, 2, 3, 4 for the optimal linear predictionof the functional Aξ from observations of the process ξ(t) + η(t) at
points t < 0 is determined by canonical factorizations (30) and (29), equations (55), (58), (61), (64), respectively,
constrained optimization problem (40) and restrictions on density from the corresponding classes Dk

0 , k = 1, 2, 3, 4.
The minimax-robust spectral characteristic of the optimal estimate of the functional Aξ is determined by formula
(32).

6.2. Least favorable spectral densities in classes Dε ×DU
V

Consider the prediction problem for the functional Aξ depending on unobserved values of the process ξ⃗(m) with
stationary increments based on observations of the process ξ(t) + η(t) at points t < 0 under the condition that the
sets of admissible spectral densities Dk

ε ,DUk
V , k = 1, 2, 3, 4 are defined as follows:

D1
ε =

{
f(λ)

∣∣∣∣f(λ) = (1− ε)f1(λ) + εW (λ),
1

2π

∫ π

−π

|1− eiλτ |2d

λ2d
f(λ)dλ = P

}
,

D2
ε =

{
f(λ)

∣∣∣∣Tr [f(λ)] = (1− ε)Tr [f1(λ)] + εTr [W (λ)],
1

2π

∫ π

−π

|1− eiλτ |2d

λ2d
Tr [f(λ)]dλ = p

}
;

D3
ε =

{
f(λ)

∣∣∣∣fkk(λ) = (1− ε)f1kk(λ) + εwkk(λ),
1

2π

∫ π

−π

|1− eiλτ |2d

λ2d
fkk(λ)dλ = pk, k = 1,∞

}
;

D4
ε =

{
f(λ)

∣∣∣∣ ⟨B1, f(λ)⟩ = (1− ε) ⟨B1, f1(λ)⟩+ ε ⟨B1,W (λ)⟩ , 1

2π

∫ π

−π

|1− eiλτ |2d

λ2d
⟨B1, f(λ)⟩ dλ = p

}
;
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and

DU1
V =

{
g(λ)

∣∣∣∣V (λ) ≤ g(λ) ≤ U(λ),
1

2π

∫ π

−π

g(λ)dλ = Q

}
,

DU2
V =

{
g(λ)

∣∣∣∣Tr [V (λ)] ≤ Tr [g(λ)] ≤ Tr [U(λ)],
1

2π

∫ π

−π

Tr [g(λ)]dλ = q

}
,

DU3
V =

{
g(λ)

∣∣∣∣vkk(λ) ≤ gkk(λ) ≤ ukk(λ),
1

2π

∫ π

−π

gkk(λ)dλ = qk, k = 1,∞
}
,

DU4
V =

{
g(λ)

∣∣∣∣ ⟨B2, V (λ)⟩ ≤ ⟨B2, g(λ)⟩ ≤ ⟨B2, U(λ)⟩ , 1

2π

∫ π

−π

⟨B2, g(λ)⟩ dλ = q

}
.

Here f1(λ), V (λ), U(λ) are known and fixed spectral densities, W (λ) is an unknown spectral density,
p, pk, q, qk, k = 1,∞, are given numbers, P,B1, Q,B2 are given positive-definite Hermitian matrices.

The condition 0 ∈ ∂∆D(f
0, g0) implies the following equations determining the least favourable spectral

densities for these given sets of admissible spectral densities.
For the first set of admissible spectral densities D1

ε ×DU1
V , we have equations

(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
(α⃗f · α⃗∗ + Γ(λ))×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (67)

(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
(β⃗ · β⃗∗ + Γ1(λ) + Γ2(λ))×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (68)

where α⃗f and β⃗ are vectors of Lagrange multipliers, function Γ(λ) ≤ 0 and Γ(λ) = 0 if f0(λ) > (1− ε)f1(λ), the
matrix Γ1(λ) ≤ 0 and Γ1(λ) = 0 if g0(λ) > V (λ), the matrix Γ2(λ) ≥ 0 and Γ2(λ) = 0 if g0(λ) < U(λ).

For the second set of admissible spectral densities D2
ε ×DU2

V , we have equations(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
= (α2

f + γ(λ))

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)2

, (69)

(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
= (β2 + γ1(λ) + γ2(λ))

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)2

, (70)

where α2
f , β2 are Lagrange multipliers, function γ(λ) ≤ 0 and γ(λ) = 0 if Tr [f0(λ)] > (1− ε)Tr [f1(λ)], function

γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr [g0(λ)] > Tr [V (λ)], the function γ2(λ) ≥ 0 and γ2(λ) = 0 if Tr [g0(λ)] < Tr [U(λ)].
For the third set of admissible spectral densities D3

ε ×DU3
V , we have equation

(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

){
(α2

fk + γk(λ))δkl
}∞
k,l=1

×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (71)

(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
=

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

){
(β2

k + γ1k(λ) + γ2k(λ))δkl
}∞
k,l=1

×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (72)
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where α2
fk, β2

k are Lagrange multipliers, δkl are Kronecker symbols, functions γk(λ) ≤ 0 and γk(λ) = 0 if f0kk(λ) >
(1− ε)f1kk(λ), functions γ1k(λ) ≤ 0 and γ1k(λ) = 0 if g0kk(λ) > vkk(λ), functions γ2k(λ) ≥ 0 and γ2k(λ) = 0 if
g0kk(λ) < ukk(λ).

For the forth set of admissible spectral densities D4
ε ×DU4

V , we have equation

(
Cf0

τ (eiλ)
) (

Cf0
τ (eiλ)

)∗
= (α2

f + γ′(λ))

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
B⊤

1 ×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (73)

(
Cg0

τ (eiλ)
) (

Cg0
τ (eiλ)

)∗
= (β2 + γ′1(λ) + γ′2(λ))

(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
B⊤

2 ×

×
(
|1− eiλτ |2d

λ2d
(f0(λ) + λ2dg0(λ))

)
, (74)

where α2
f , β2, are Lagrange multipliers, function γ′(λ) ≤ 0 and γ′(λ) = 0 if ⟨B1, f

0(λ)⟩ > (1− ε)⟨B1, f1(λ)⟩,
functions γ′1(λ) ≤ 0 and γ′1(λ) = 0 if ⟨B2, g

0(λ)⟩ > ⟨B2, V (λ)⟩, functions γ′2(λ) ≥ 0 and γ′2(λ) = 0 if
⟨B2, g

0(λ)⟩ < ⟨B2, U(λ)⟩.
The following theorem holds true.

Theorem 6.4
The least favorable spectral densities f0(λ), g0(λ) in classes Dk

ε ×DUk
V , k = 1, 2, 3, 4 for the optimal linear

extrapolation of the functional Aξ from observations of the process ξ(t) + η(t) at points t < 0 are determined by
equations (67)–(68), (69)–(70), (71)–(72), (73)–(74), respectively, the minimality condition (15), the constrained
optimization problem (34) and restrictions on densities from the corresponding classes Dk

ε ,DUk
V , k = 1, 2, 3, 4. The

minimax-robust spectral characteristic of the optimal estimate of the functional Aξ is determined by formula (24).

Let the spectral densities f(λ) and g(λ) admit the canonical factorizations (29) and (30). The equations for the
least favourable spectral densities are described below.

For the first set of admissible spectral densities D1
ε ×DU1

V , we have equation(
r0τ,f (e

iλ)
) (

r0τ,f (e
iλ)
)∗

= (Θτ (e
−iλ))⊤(α⃗f · α⃗∗

f + Γ(λ))Θτ (e−iλ), (75)(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= (Θτ (e
−iλ))⊤(β⃗ · β⃗∗ + Γ1(λ) + Γ2(λ))Θτ (e−iλ) (76)

where α⃗f and β⃗ are vectors of Lagrange multipliers, matrix Γ(λ) ≤ 0 and Γ(λ) = 0 if f0(λ) > (1− ε)f1(λ), matrix
Γ1(λ) ≤ 0 and Γ1(λ) = 0 if g0(λ) > V (λ), matrix Γ2(λ) ≥ 0 and Γ2(λ) = 0 if g0(λ) < U(λ).

For the second set of admissible spectral densities D2
ε ×DU2

V , we have equations(
r0τ,f (e

iλ)
) (

r0τ,f (e
iλ)
)∗

= (α2
f + γ(λ))(Θτ (e

−iλ))⊤Θτ (e−iλ), (77)(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= (β2 + γ1(λ) + γ2(λ))(Θτ (e
−iλ))⊤Θτ (e−iλ), (78)

where α2
f , β2 are Lagrange multipliers, function γ(λ) ≤ 0 and γ(λ) = 0 if Tr [f0(λ)] > (1− ε)Tr [f1(λ)], function

γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr [g0(λ)] > Tr [V (λ)], the function γ2(λ) ≥ 0 and γ2(λ) = 0 if Tr [g0(λ)] < Tr [U(λ)].
For the third set of admissible spectral densities D3

ε ×DU3
V , we have equation(

r0τ,f (e
iλ)
) (

r0τ,f (e
iλ)
)∗

= (Θτ (e
−iλ))⊤

{
(α2

fk + γk(λ))δkl
}∞
k,l=1

Θτ (e−iλ), (79)

(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= (Θτ (e
−iλ))⊤

{
(β2

k + γ1k(λ) + γ2k(λ))δkl
}∞
k,l=1

Θτ (e−iλ), (80)
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where α2
fk, β2

k are Lagrange multipliers, δkl are Kronecker symbols, functions γk(λ) ≤ 0 and γk(λ) = 0 if f0kk(λ) >
(1− ε)f1kk(λ), functions γ1k(λ) ≤ 0 and γ1k(λ) = 0 if g0kk(λ) > vkk(λ), functions γ2k(λ) ≥ 0 and γ2k(λ) = 0 if
g0kk(λ) < ukk(λ).

For the fourth set of admissible spectral densities D4
ε ×DU4

V , we have equation(
r0τ,f (e

iλ)
) (

r0τ,f (e
iλ)
)∗

= (α2
f + γ′(λ))(Θτ (e

−iλ))⊤B1Θτ (e−iλ), (81)(
r0τ,g(e

iλ)
) (

r0τ,g(e
iλ)
)∗

= (β2 + γ′1(λ) + γ′2(λ))(Θτ (e
−iλ))⊤B2Θτ (e−iλ), (82)

where α2
f , β2, are Lagrange multipliers, function γ′(λ) ≤ 0 and γ′(λ) = 0 if ⟨B1, f

0(λ)⟩ > (1− ε)⟨B1, f1(λ)⟩,
functions γ′1(λ) ≤ 0 and γ′1(λ) = 0 if ⟨B2, g

0(λ)⟩ > ⟨B2, V (λ)⟩, functions γ′2(λ) ≥ 0 and γ′2(λ) = 0 if
⟨B2, g

0(λ)⟩ < ⟨B2, U(λ)⟩.
The following theorems hold true.

Theorem 6.5
The least favorable spectral densities f0(λ), g0(λ) in the classes Dk

ε ×DUk
V , k = 1, 2, 3, 4 for the optimal linear

prediction of the functional Aξ from observations of the process ξ(t) + η(t) at points t < 0 by canonical
factorizations (29) and (30), equations (75)–(76), (77)–(78), (79)–(80), (81)–(82), respectively, constrained
optimization problem (35) and restrictions on densities from the corresponding classes Dk

ε ,DUk
V , k = 1, 2, 3, 4.

The minimax-robust spectral characteristic of the optimal estimate of the functional Aξ is determined by formula
(32).

Theorem 6.6
If the spectral density g(λ) is known, the least favorable spectral density f0(λ) in the classes Dk

ε , k = 1, 2, 3, 4 for
the optimal linear prediction of the functional Aξ from observations of the process ξ(t) + η(t) at points t < 0 is
determined by canonical factorizations (30) and (29), equations (75), (77), (79), (81), respectively, constrained
optimization problem (40) and restrictions on density from the corresponding classes Dk

fε, k = 1, 2, 3, 4. The
minimax-robust spectral characteristic of the optimal estimate of the functional Aξ is determined by formula (32).

Conclusions

In this article, we dealt with continuous time stochastic processes with periodically correlated dth increments.
These stochastic processes form a class of non-stationary stochastic processes that combine periodic structure of
covariation functions of processes as well as integrating one.

We derived solutions of the problem of estimation of the linear functionals constructed from the unobserved
values of a continuous time stochastic process with periodically correlated dth increments. Estimates are based
on observations of this process with periodically stationary noise at points t < 0. We obtained the estimates by
representing the process under investigation as a vector-valued sequence with stationary increments. Based on the
solutions for these type of sequences, we solved the corresponding problem for the considered class of continuous
time stochastic processes. The problem is investigated in the case of spectral certainty, where spectral densities of
sequences are exactly known. In this case we propose an approach based on the Hilbert space projection method.
We derive formulas for calculating the spectral characteristics and the mean-square errors of the optimal estimates
of the functionals. In the case of spectral uncertainty where the spectral densities are not exactly known while,
instead, some sets of admissible spectral densities are specified, the minimax-robust method is applied. We propose
a representation of the mean square error in the form of a linear functional in L1 with respect to spectral densities,
which allows us to solve the corresponding constrained optimization problem and describe the minimax-robust
estimates of the functionals. Formulas that determine the least favorable spectral densities and minimax-robust
spectral characteristics of the optimal linear estimates of the functionals are derived for a wide list of specific
classes of admissible spectral densities.

The further steps of the study consist in practical application of the developed estimates and techniques in the
fields of environmental researches, financial and econometrics forecasting, signal processing etc., as well as an
investigation of their limitations.
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Appendix

Proof of Lemma 4.2.
Define

bτj (u) = bτ (u+ jT ), ζ
(d)
j (u) = ζ

(d)
j (u+ jT, τT ), u ∈ [0, T ),

and
aj(u) = a(u+ jT ), ηj(u) = ηj(u+ jT ), u ∈ [0, T ).

Making use of decomposition (6) for the increment sequence {ζ(d)j , j ∈ Z} and the solution of equation

(−1)k
[
k

2

]
+ (−1)m

[m
2

]
= 0 (83)

of two variables (k,m), which is given by pairs (1, 1), (2l + 1, 2l) and (2l, 2l + 1) for l = 2, 3, . . . , rewrite the
functional Bζ as [31]

Bζ =

∫ ∞

0

bτ (t)ζ(d)(t, τT )dt =

∞∑
j=0

∫ T

0

bτj (u)ζ
(d)
j (u)du

=

∞∑
j=0

1

T

∫ T

0

( ∞∑
k=1

bτkje
2πi{(−1)k[ k2 ]}u/T

)( ∞∑
m=1

ζ
(d)
mje

2πi{(−1)m[m2 ]}u/T

)
du

=

∞∑
j=0

∞∑
k=1

∞∑
m=1

bτkjζ
(d)
mj

1

T

∫ T

0

e2πi{(−1)k[ k2 ]+(−1)m[m2 ]}u/T du

=

∞∑
j=0

∞∑
k=1

bτkjζ
(d)
kj =

∞∑
j=0

(⃗bτj )
⊤
ζ⃗
(d)
j

= Bζ⃗.

The representation of the functional V η is obtained in the same way:

V η =

∫ ∞

0

a(t)η(t)dt =

∞∑
j=0

∫ T

0

aj(u)ηj(u)du =

∞∑
j=0

∞∑
k=1

akjηkj =

∞∑
j=0

(⃗aj)
⊤
η⃗j = V η⃗.

From Lemma 4.1 we obtain

bτj (u) =

∞∑
l=0

a(u+ jT + τT l)d(l) = DτTa(u), u ∈ [0;T ), j = 0, 1, . . . ,

and

bτkj =

∞∑
l=0

akj+τld(l), j = 0, 1, . . . ,

which finalizes the proof of Lemma 4.2.
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Proof of Theorem 4.1.
A projection Ĥξ⃗ of the element Hξ⃗ on the subspace H0−(ξ

(d)
τ + η

(d)
τ ) is characterized by two conditions:

1) Ĥξ⃗ ∈ H0−(ξ
(d)
τ + η

(d)
τ );

2) (Hξ⃗ − Ĥξ⃗) ⊥ H0−(ξ
(d)
τ + η

(d)
τ ).

The second condition implies the following relation which holds true for all j ≤ −1 and for all k ≥ 1

∫ π

−π

(
(B⃗τ (e

iλ))⊤
(1− e−iλτ )d

(iλ)d
(f(λ) + λ2dg(λ))− (⃗hτ (λ))

⊤(f(λ) + λ2dg(λ))−

− (A⃗(eiλ))⊤g(λ)(−iλ)d
)
δ⃗k

(1− eiλτ )d

(−iλ)d
e−iλjdλ = 0.

From these relations, we conclude that the spectral characteristic h⃗τ (λ) of the estimate Ĥξ⃗ allow a representation
in the form (24) where

C⃗τ (e
iλ) =

∞∑
j=0

c⃗τj e
iλj ,

and c⃗τj = {cτkj}∞k=1, j = 0, 1, 2, . . . , are unknown coefficients to be found.
Condition 1) implies (iλ)d(1− e−iλτ )−dh⃗τ (λ) ∈ L0−

2 , and thus,

∫ π

−π

(
(B⃗τ (e

iλ))⊤ − (A⃗τ (e
iλ))⊤g(λ)

λ2d

|1− eiλτ |2d
(f(λ) + λ2dg(λ))−1

− (C⃗τ (e
iλ))⊤

λ2d

|1− eiλτ |2d
(f(λ) + λ2dg(λ))−1

)
e−iλjdλ = 0⃗, j ≥ 0,

which can be presented as a system of linear equations

b⃗τl −
∞∑
j=0

T τ
l,j a⃗

τ
j =

∞∑
j=0

P τ
l,j c⃗

τ
j , l ≥ 0, (84)

determining the unknown coefficients c⃗τj , j ≥ 0.
Rewrite the system of equations (84) in the matrix form

Dτa−Tτa
τ = Pτc

τ ,

where

cτ = ((c⃗τ0)
⊤, (c⃗τ1)

⊤, (c⃗τ2)
⊤, . . .)⊤.

Consequently, the unknown coefficients c⃗τj , j ≥ 0, determining the spectral characteristic h⃗τ (λ) are as follows

c⃗τj = (P−1
τ Dτa−P−1

τ Tτa
τ )j , j ≥ 0,

where (P−1
τ Dτa−P−1

τ Tτa
τ )j , j ≥ 0, is the jth infinite dimension vector entry of the vector P−1

τ Dτa−
P−1

τ Tτa
τ . The existence of the inverse matrix (Pτ )−1 is justified in [21] under condition (15). Thus, the function

C⃗τ (e
iλ) is calculated as

C⃗τ (e
iλ) =

∞∑
j=0

(P−1
τ Dτa−P−1

τ Tτa
τ )je

iλj

Stat., Optim. Inf. Comput. Vol. 12, Month 2024



28 PREDICTION OF PROCESSES WITH PERIODICALLY CORRELATED INCREMENTS

and the spectral characteristic h⃗τ (λ) is calculated by the formula

(⃗hτ (λ))
⊤ = (B⃗τ (e

iλ))⊤
(1− e−iλτ )d

(iλ)d

− (A⃗τ (e
iλ))⊤g(λ)

(−iλ)d

(1− eiλτ )d
(f(λ) + λ2dg(λ))−1

− (−iλ)d

(1− eiλτ )d

( ∞∑
k=0

(P−1
τ Dτa−P−1

τ Tτa
τ )ke

iλj

)⊤

(f(λ) + λ2dg(λ))−1.

The value of the mean square error of the estimate Âξ⃗ is calculated by the formula

∆(f, g; Âξ⃗) = ∆(f, g; Ĥξ⃗) = E|Hξ⃗ − Ĥξ⃗|2

=
1

2π

∫ π

−π

λ2d

|1− eiλτ |2d
(
(A⃗τ (e

iλ))⊤g(λ) + (C⃗τ (e
iλ))⊤

)
× (f(λ) + λ2dg(λ))−1 f(λ) (f(λ) + λ2dg(λ))−1

×
(
g(λ)A⃗τ (eiλ) + C⃗τ (eiλ)

)
dλ

+
1

2π

∫ π

−π

λ4d

|1− eiλτ |4d

(
|1− eiλτ |2d

λ2d
(A⃗(eiλ))⊤f(λ)− (1− e−iλτ )d(C⃗τ (e

iλ))⊤
)

× (f(λ) + λ2dg(λ))−1 g(λ) (f(λ) + λ2dg(λ))−1

×
(
|1− eiλτ |2d

λ2d
f(λ)A⃗(eiλ)− (1− eiλτ )dC⃗τ (eiλ)

)
dλ

= ⟨Dτa−Tτa
τ ,P−1

τ Dτa−P−1
τ Tτa

τ ⟩+ ⟨Qa,a⟩,

which finalizes the proof of Theorem 4.1.
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