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1. Introduction

Stochastic (partial) differential equations play a prominent role in modelling many phenomena in applied sciences.
There is a huge number of works in the literature that are concerned with this type of equations, see for a short list
[1, 2, 3, 4, 5].

Recently, significant progress in applied Mathematics has occurred through the emergence of the so-called G-
stochastic analysis, by virtue of the new results of the pioneer S. Peng [22]. The reason behind this, was the
need to model the uncertainty or the ambiguity, due to incomplete information about the parameters, namely,
when the noise is big. Aspects of model ambiguity such as volatility uncertainty have been studied by Peng
([18, 20, 21]), who has introduced a sublinear G-expectation with a process called G-Brownian motion. Denis
and Martini [11] have also suggested a structure based on quasi-sure analysis from abstract potential theory to
construct a similar structure, by using a tight family P of possibly mutually singular probability measures. This
theory developed quickly due to the great interest of many researchers, which led to the publication of many articles
investigating stochastic differential equations driven by G-Brownian motion (G-SDEs) and their applications (see
e.g. [6, 8, 9, 12, 14, 23, 24, 25] and the references therein). Also, a few works concerned with their qualitative
properties (see, for instance [7, 16, 17]).

Systems subject to stochastic influences often require control strategies or optimisation techniques.
Understanding the temporal regularity of solutions allows for more accurate modelling of real-world phenomena
where random fluctuations play a crucial role and aids in designing effective control mechanisms and optimising
system performance while accounting for random fluctuations. For instance, in finance, where stochastic processes
are widely used to model asset prices, interest rates, and other financial variables, understanding the temporal
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1174 TEMPORAL REGULARITY OF G-SDES

regularity is substantial. It helps in assessing risk and making the right decisions in the context of uncertain market
conditions.

Motivated by the above discussion, in this paper we deal with the class of stochastic differential equations driven
by G-Brownian motion B = (Bt)0≤t≤T , on a particular sublinear expectation space (Ω,H, Ê,FP), where FP is
the universal filtration. More precisely, we aim to study the temporal regularity of the solutions of the following
system {

dXt = b(t,Xt)dt+ σ(t,Xt)dBt + γ(t,Xt)d⟨B⟩t, t ∈ (0, T ]
X0 = x, (1.1)

where x ∈ Rn is the initial condition, ⟨B⟩ is the quadratic variation process of B, and the coefficients

b : [0, T ]×Rn → Rn,

σ : [0, T ]×Rn → Rn×d,

and
γ : [0, T ]×Rn → (Rd2

)×n,

are given deterministic functions for n, d ∈ N∗.
The paper is laid out where in Section 2, we give some notions and preliminaries about G-expectation theory,

G-Brownian motion, and the related stochastic calculus. Section 3, is devoted to the temporal regularity of the
solution of problem (1.1). Section 4, is dedicated to the numerical analysis.

2. Preliminaries

In this section, we recall some notions and results about stochastic calculus, that needed in the G-framework,
mainly based on the references [10, 11, 19, 20, 21, 26, 27].

2.1. G-expectation and G-Brownian motion

Let Ω := {ω ∈ C(R+,Rd) : ω(0) = 0}, equipped with the topology of uniform convergence on compact intervals,
B(Ω) the associated Borel σ-algebra, Ωt := {w.∧t : w ∈ Ω},B the canonical process and P0 be the Wiener measure
on Ω. Let F := FB = {Ft}t≥0 be the raw filtration generated byB, which is only left-continuous. Further, consider
the right-limit filtration F+ := {F+

t , t ≥ 0}, where F+
t := Ft+ := ∩s>tFs.

Given a probability measure P on (Ω,B(Ω)), we consider the right-continuous P-completed filtrations FP
t :=

F+
t ∨N P(F+

t ) and F̂P
t := F+

t ∨N P(F∞), where the P-negligible set N P(G) on a σ-algebra G is defined as

N P(G) := {D ⊂ Ω : there exists D̃ ∈ G such thatD ⊂ D̃ and P[D̃] = 0}.

Lemma 2.1 ([26])
Let P be an arbitrary probability measure on (Ω,F∞). For every F̂P

t -measurable random variable ξ̂, there exists a
P-a.s unique Ft-measurable random variable ξ such that ξ = ξ̂, P-a.s.

For every F̂P-progressively measurable process X̂ , there exists a unique F-progressively measurable process X
such that X = X̂ , dt× P-a.s. Moreover, if X̂ is P-almost surely continuous, then X can be chosen to P-almost
surely continuous. The G-expectation is defined by Peng in [18, 20, 21] through the nonlinear heat equation in the
following sense. A d-dimensional random vector X is said to be G-normally distributed under the G-expectation
Ê[.], and denoted by X ⇝ N(0,Σ), if for each bounded and Lipschitz continuous function φ on Rd, φ ∈ Lip(Rd),
the function u defined by

u(t, x) := Ê[φ(x+
√
tX)], t ≥ 0, x ∈ Rd,

is the unique bounded Lipschitz continuous viscosity solution of the following parabolic equation{
∂u
∂t −G(D2u) = 0, (t, x) ∈ (0,+∞)×Rd

u(0, x) = φ(x)
,
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where D2u = (∂2xixj
u)1≤i,j≤d is the Hessian matrix of u and the nonlinear operator G is defined by

G(A) :=
1

2
sup
γ∈Γ

{tr(γγ∗A)}, γ ∈ Rd×d, (2.1)

where A is a d× d symmetric matrix and Γ is a given non empty, bounded and closed subset of Rd×d, γ∗ denotes
the transpose of γ and

Σ := {γγ∗, γ ∈ Γ} .

Peng [20, 21] has showed that the G-expectation Ê : H := Lip(Rd) −→ R is a consistent sublinear expectation on
the lattice H of real functions i.e., it satisfies:

(i) Sub-additivity: For all X,Y ∈ H, Ê[X + Y ] ≤ Ê[X] + Ê[Y ],
(ii) Monotonicity: For all X,Y ∈ H, X ≥ Y ⇒ Ê[X] ≥ Ê[Y ],

(iii) Constant preserving: For all c ∈ R, Ê[c] = c,
(v) Positive homogeneity: For all λ ≥ 0, X ∈ H, Ê[λX] = λÊ[X].

Now, let Lip(Ω) be the set of random variables of the form ξ := φ(Bt1 , Bt2 , ..., Btn) for some bounded Lipschitz
continuous function φ on Rd×n and 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ T . The coordinate process (Bt, t ≥ 0) is called G-
Brownian motion whenever B1 is G-normally distributed under Ê[.] and for each s, t ≥ 0 and t1, t2, ..., tn ∈ [0, t]
we have

Ê[φ(Bt1 , ..., Btn , Bt+s −Bt)] = Ê[ψ(Bt1 , ..., Btn)],

where ψ(x1, ..., xn) = Ê[φ(x1, ..., xn,
√
sB1)]. This property implies that the increments of theG-Brownian motion

are independent and that Bt+s −Bt and Bs are identically N(0, sΣ)-distributed.
A remarkable result of Peng [20, 21] is that if H is a lattice of real functions on Ω such that Lip(Ω) ⊂ H, then

the G-expectation Ê : H −→ R is a consistent sublinear expectation.
For p ∈ [0,+∞), we denote by Lp

G(Ω) the closure of Lip(Ω) under the Banach norm

∥X∥pLp
G(Ω)

:= Ê[|X|p].

For each t ≥ 0, let L0(Ωt) be the set of Ft-measurable functions. We set

Lip(Ωt) := Lip(Ω) ∩ L0(Ωt), Lp
G(Ωt) := Lp

G(Ω) ∩ L
0(Ωt).

2.2. G-stochastic integral

For p ∈ [0,+∞). Let M0,p
G (0, T ) be the space of F-progressively measurable, Rd-valued elementary processes of

the form

η(t) =

n−1∑
i=0

ηi1[ti,ti+1)(s),

where 0 = t0 < t1 < · · · < tn = T, n ≥ 1 and ηi ∈ Lip(Ωti). Let Mp
G(0, T ) be the closure of M0,p

G (0, T ) under
the norm

∥η∥p
Mp

G(0,T )
:= Ê[

∫ T

0

|η (t) |pds].

For each η ∈M0,2
G (0, T ), the G-stochastic integral is defined pointwisely by

It(η) =

∫ t

0

η (s) dGBs :=

n−1∑
j=0

ηj(Bt∧tj+1
−Bt∧tj ),
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with I(η) := IT (η), the mapping I : M0,2
G (0, T ) → L2

G(Ωt) is continuous and thus can be continuously extended
to M2

G(0, T ).
The quadratic variation process of G-Brownian motion can be formulated in L2

G(Ωt) by the continuous d× d-
symmetric-matrix-valued process defined by

⟨B⟩Gt := Bt ⊗Bt − 2

∫ t

0

Bs ⊗ dGBs, (2.2)

whose diagonal is constituted of non-decreasing processes. Here, for a, b ∈ Rd, the d× d-symmetric matrix a⊗ b
is defined by (a⊗ b)x = (a · x)b for x ∈ Rd, where ” · ” denotes the scalar product in Rd.

Define the mapping J :M0,1
G (0, T ) 7→ L1

G(ΩT ):

J =

∫ T

0

η (t) d⟨B⟩Gt :=

n−1∑
j=0

ηj(⟨B⟩Gtj+1
− ⟨B⟩Gtj ).

Then J can be uniquely extended to Q :M1
G(0, T ) → L1

G(ΩT ), where

Q :=

∫ T

0

η (t) d⟨B⟩Gt , η ∈M1
G(0, T ).

Now, we have the following ”isometry” (formulated for the case d = 1, for simplicity).

Lemma 2.2 ([21])
Assume d = 1 and let η ∈M2

G(0, T ), then we have

Ê

(∫ T

0

η (s) dGBs

)2
 = Ê

[∫ T

0

η (s)
2
d⟨B⟩Gs

]
.

2.3. A dual representation of G-expectation

Denis et al. [10, 11] have proved the following dual representation of the G-expectation in terms of a weakly
compact (tight) family P of possibly mutually singular probability measures on (Ω,B(Ω)). Moreover, they have
given an explicit constructions of P . This duality expresses the G-expectation as a robust expectation with respect
to P . Soner et al. [26, 27] have performed an in-depth analysis of such a construction and its consequences on the
G-stochastic analysis, in particular the question of aggregation of processes.

Proposition 2.3 ([10, 11])
There exists a family of weakly compact probability measures P on (Ω,B(Ω)) such that for each ξ ∈ L1

G(Ω)

Ê[ξ] = sup
P∈P

EP[ξ] (2.3)

Moreover, the set function
C(A) := sup

P∈P
P(A), A ∈ B(Ω),

defines a regular Choquet capacity.

This leads us to the following ([11, 26]).

Definition 2.4
A set A ∈ B(Ω) is called polar if C(A) = 0, or equivalent if P(A) = 0 for all P ∈ P . We say that a property holds
P-quasi-surely (q.s.) if it holds almost-surely for all P ∈ P , i.e. outside a polar set. A probability measure P is
called absolutely continuous with respect to P if P(A) = 0 for all A ∈ NP .
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Denote by NP :=
⋂

P∈P N P(F∞) the P-polar sets. We shall use the following universal filtration FP for the
possibly mutually singular probability measures {P, P ∈ P} (cf. [27]).

FP := {F̂P
t }t≥0, where F̂P

t :=
⋂
P∈P

(FP
t ∨NP) for t ≥ 0. (2.4)

The dual formulation of the G-expectation suggests the following aspect of aggregation.

Lemma 2.5 ([26])
Let η ∈M2

G(0, T ). Then, η is Itô-integrable for every P ∈ P . Moreover, for every t ∈ [0, T ],∫ t

0

η (s) dGBs =

∫ t

0

η (s) dBs, P-a.s. for every P ∈ P (2.5)

where the right hand side is the usual Itô integral. Consequently, the quadratic variation process ⟨B⟩G defined in
(2.2) coincide with the usual quadratic variation process quasi-surely.

In the rest of this paper, we will omit the letter G from both the G-stochastic integral and the G-quadratic
variation.

Lemma 2.6 ([10])
If (Pn)

∞
n=1 ⊂ P converges weakly to P ∈ P . Then for each ξ ∈ L1

G(ΩT ), EPn [ξ] → EP[ξ].

Considering the properties of the quadratic variation process ⟨B⟩ in the G-framework and the dual formulation
of the G-expectation, we have the following Burkholder-Davis-Gundy-type estimates.

Lemma 2.7 ([13])
For each p ≥ 2 and η ∈Mp

G(0, T ), there exists a constant Cp depends only on p and T such that

Ê
[
sup

s≤u≤t

∣∣∣∣∫ u

s

η (r) dBr

∣∣∣∣p] ≤ CpÊ

[(∫ t

s

|η (r) |2dr
)p/2

]
(2.6)

≤ Cp|t− s|
p
2−1

∫ t

s

Ê[|η (r) |p|]dr

If σ̄ is a positive constant such that d⟨B⟩t
dt ≤ σ̄ quasi-surely, then, for each p ≥ 1 and η ∈Mp

G(0, T ),

Ê
[
sup

s≤u≤t

∣∣∣∣∫ u

s

η (r) d⟨B⟩r
∣∣∣∣p] ≤ σ̄p|t− s|p−1

∫ t

s

Ê[|η (r) |p]dr (2.7)

3. Temporal regularity of the solution

Let T > 0 be fixed, {Bt, t ∈ [0, T ]} be one dimensional G-Brownian motion and let (Ω,H, Ê,FP) be a sublinear
expectation space, we associate the universal filtration FP :

FP := {F̂P
t }t≥0,

where
F̂P

t :=
⋂
P∈P

(FP
t ∨NP) for t ≥ 0.

Consider the following system written in integral form,
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1178 TEMPORAL REGULARITY OF G-SDES

X (t) = x+

∫ t

0

b(s,X (s))ds+

∫ t

0

σ(s,X (s))dBs (3.1)

+

∫ t

0

γ(s,X (s))d⟨B⟩s, for t ∈ [0, T ].

To ensure the well-posedness of problem (3.1), we consider the following assumptions:

(A1): The functions b(., x), γ(., x) and σ(., x) are belong to M2
G(0, T ) for every x ∈ Rn.

(A2): The functions b, σ and γ are bounded and Lipschitz continuous with respect to x uniformly in time, also we
suppose that γ(t, x) is a symmetric d× d matrix with each element.

Theorem 3.1 ([19])
Under the above assumptions, the G-SDE (3.1) admits a unique solution X ∈M2

G(0, T ), that satisfies

Ê

(
sup

t∈[0,T ]

|X(t)|2
)
<∞.

Also, we need the following proposition.

Proposition 3.2 ([16])
Let p > 0 and let X := (X(t))t∈[0,T ] be the solution of the G-SDE (3.1). Under the global Lipschitz condition
imposed on the functions b, σ and γ, the solution X satisfies for every t ∈ [0, T ] the following

Ê[

(
sup

s∈[0,t]

|X (s) |p
)

≤ C <∞ (3.2)

where C is a positive constant depends on p, x, t and the Lipschitz constant.

Lemma 3.3
Let n ∈ N∗, p ≥ 2 and ai ≥ 0, i ∈ {1, ..., n}. We have(

n∑
i=1

ai

)p

≤ np−1
n∑

i=1

api (3.3)

In order to prove the temporal regularity of the solution of the G-SDE (3.1), we require that the functions b, σ
and γ satisfy the linear growth condition with respect to the second argument uniformly in t, i.e.

Assumption H. There exists a constant c > 0 such that for all y ∈ Rn and t ∈ [0, T ], we have

|b(t, y)|+ |σ(t, y)|+ |γ(t, y)| ≤ c|y|. (3.4)

Definition 3.4
Let p > 0 and T > 0 be fixed. The solution X = (X(t))t∈[0,T ] of the G-SDE (3.1), is said to be time Hölder
continous with exponent θ ∈ (0, 1), if there exists a positive constant C such that

Ê (|X (t)−X (s) |p) ≤ C|t− s|pθ

for all t, s ∈ [0, T ].

The main result of this paper reads as follows.
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Theorem 3.5
Let p ≥ 2 and T > 0 be a fixed time. Under the hypotheses (A1), (A2) and Assumption H, the solution X of the
G-SDE (3.1) is time Hölder continous with exponent 1

2 , i.e. for all 0 ≤ s < t ≤ T , we have

Ê (|X (t)−X (s) |p) ≤ C|t− s|
p
2 ,

where C = 3p−1cpC(T
p
2 + σ̄pT

p
2 + Cp).

Proof
Let p ≥ 2, T > 0, t, s ∈ [0, T ] and X be the solution of the problem. Without loss the generality, we assume that
s < t. From Eq.(3.1), the basic inequality (3.3) and the sub-addivity of the G-expectation, we have

Ê (|X(t)−X(s)|p) ≤ 3p−1Ê
(
|
∫ t

s

b(r,X (r))dr|p
)

+3p−1Ê
(
|
∫ t

s

σ(r,X (r))dBr|p
)
+ 3p−1Ê

(
|
∫ t

s

γ(r,X (r))d⟨B⟩r|p
)

= 3p−1(I1 + I2 + I3). (3.5)

We estimate I1, by using of Hölder’s inequality, Assumption H and Proposition 3.2, we can write

I1 = Ê
(
|
∫ t

s

b(r,X (r))dr|p
)

≤ (t− s)p−1

∫ t

s

Ê (|b(r,X (r))|p) dr

≤ cp(t− s)p−1

∫ t

s

Ê (|X (r) |p) dr

≤ cp(t− s)p−1

∫ t

s

Ê
(

sup
0≤r≤T

|X (r) |p
)
dr

≤ cpC(t− s)p. (3.6)

Next, to estimate I2, we first use Burkholder-Davis-Gundy inequality in Lemma 2.7 as follows

I2 = Ê
(
|
∫ t

s

σ(r,X (r))dBr|p
)

≤ Cp(t− s)
p
2−1

∫ t

s

Ê|σ(r,X (r))|pdr.

By the Assumption H and Proposition 3.2 we obtain

I2 ≤ Cpc
p(t− s)

p
2−1

∫ t

s

Ê (|X (r) |p) dr

≤ Cpc
p(t− s)

p
2−1

∫ t

s

Ê
(

sup
0≤r≤T

|X (r) |p
)
dr

≤ Cpc
pC(t− s)

p
2 . (3.7)

Similarly, we estimate I3,

I3 = Ê
(
|
∫ t

s

γ(r,X (r))d⟨B⟩r|p
)

≤ σ̄p(t− s)p−1

∫ t

s

Ê (|γ(r,X (r))|p) dr

≤ σ̄pcpC(t− s)p. (3.8)
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By substituting the estimates (3.6), (3.7) and (3.8) into (3.5), we obtain the desired result which is

Ê (|X (t)−X (s) |p) ≤ C(t− s)
p
2 (3.9)

4. Simulation under uncertainty

In this section, we focus on the numerical simulation of a particular G-SDE. Precisely, we introduce an example in
which we will apply the local linearization method consists in approximating locally the drift of the stochastic
differential equation with a linear function, which has been proposed in the context of stochastic differential
equations by Ozaki, especially in the general case in which the drift is allowed to depend on the time variable
and also the diffusion coefficient can vary in the Shoji-Ozaki method, for more details see [15].

Consider the following G-SDE:
dX (t) =

(
α0 + α1X (t) + α2X (t)

2
+ α3X (t)

3
)
dt+ σ

√
X (t)dBt

− 1
2σ

2d⟨B⟩t, t ∈ (0, T ],
X (0) = x,

(4.1)

Since this equation does not have a constant diffusion coefficient, we apply the Lamperti transform see [15] for
more details to obtain the process Y that has a unitary diffusion coefficient given by

F (x) =
1

σ

x∫
0

1√
u
du =

2

σ

√
x,

and its inverse
F−1 (y) =

(σ
2
y
)2

.

We apply the Shoji-Ozaki method for the particular choice of α0 = 6, α1 = −11, α2 = 6, α3 = −1, and σ = 1,
hence the process Y satisfies{

dY (t) =
23−11Y (t)2+ 3

2Y (t)4− 1
24

Y (t)6

2Y (t) dt+ dBt − 1
2σ

2d⟨B⟩t, t ∈ (0, T ],
Y (0) = 2

√
X (0).

(4.2)

Now, basing on the numerical simulation for the G-Brownian motion, which has been achieved by Yang and Zhao
in [28], we simulate the solution of the G-SDE (4.2), where its classical version (i.e., SDE) has been already
studied by Iacus (see [15] page 91).

To do this, we first need to simulate the G-normal distribution, the G-Brownian motion and the G-quadratic
variation process. Then, for N ∈ N∗ be fixed, the set of points (tn = n.T

N )n=0,N , and h = tn+1 − tn, we use Euler-
Maruyama scheme to obtain the following: Y0 = Y (0) ,

Yn+1 = Yn +

(
23−11Y 2

n+ 3
2Y

4
n− 1

24
Y 6
n

2Yn

)
h+

(
Btn+1 −Btn

)
− 1

2σ
2
(
⟨B⟩tn+1 − ⟨B⟩tn

)
.

Since Yn appears in the denominator, then we require that the initial condition not be zero. Figure 1, represents
the trajectories of the approximate solution of G-SDE (4.2) where the volatility of the G-Brownian motion ranges
within the interval [0.4, 0.9]. In Figure 2, we represent the trajectories of the approximate solution with volatility
interval [0.4, 0.5].
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Figure 1. Approximate solution of G-SDE (4.2) with σ2=0.4 and σ2=0.9, and initial condition Y (0) = 3/2.

Figure 2. Approximate solution of G-SDE (4.2) with σ2=0.4, σ2=0.5, and initial condition Y (0) = 1.

Figure 3, showed the trajectories of the approximate solutions of both Y (t) and X(t). Note that, we can easily
obtain X (t) from Y (t) by the relation

X (t) =

(
Y (t)

2

)2

.
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Figure 3. Approximate solution of G-SDE of (4.2) versus the approximate solution of (4.1) with σ2=0.4, σ2=0.5, and initial
condition Y (0) = 1.

Conclusion

In this article, we investigated the temporal regularity of solutions of stochastic systems in the context of G-
Brownian motion, which provides valuable insights into the behaviour of the solutions under uncertainty and
enhances the understanding of the evolution of dynamical systems and how random fluctuations can influence
them over time. We have imposed global Lipschitz and linear growth conditions to ensure certain mathematical
constraints, such as the existence and uniqueness of the solutions.

On the other hand, this paper contributes to the development of more robust mathematical models for real-
world phenomena and refining predictions, particularly when we face probability uncertainty, which is described
by the Brownian motion. Also, we have established the numerical simulations of a G-SDE, which facilitates the
implementation of other more complex systems subject to random influences in various scientific and engineering
domains.
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