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Reliability estimation of a multicomponent stress-strength model based on
copula function under progressive first failure censoring
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Abstract In reliability analysis of a multicomponent stress-strength model, most studies assumed independence between
stress and strength variable. However, this assumption may not be realistic. To account for dependency, copula approach
can be used. Although it is important, only few studies considered this case and usually under complete study. Observing
the failures for all units may be difficult due to cost and time limitation. Recently, progressive first failure censoring scheme
has attracted attention in the literature due to its ability to save time and money. To the best of our knowledge, dependent
multicomponent stress-strength model under progressive first failure censoring was not considered yet. In this article, we
derived the likelihood function for progressive first failure censored sample under copula and multicomponent stress strength
model. A simulation study is performed and a real dataset is analyzed to test the applicability of the model. Maximum
likelihood estimates, asymptotic confidence interval and bootstrap confidence intervals are obtained. The results illustrated
that the proposed censoring scheme under copula provides a good estimate for the reliability.
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1. Introduction

A common feature of lifetime data is that, the exact failure time for all units may not be observable, this can be due
to cost, time limitation or the nature of the study. Those units for which the exact failure time is unknown are called
censored data. There are different types of censoring like type-I, type-II, random, progressive type I, progressive
type II, hybrid, first failure and progressive first failure.

Cohen [5] introduced progressive censoring, where the units are allowed to be randomly removed during the
experiment to reduce cost and time. Since then several authors applied progressive censoring, see for example,
Balakrishnan and Aggarwala [3], Kundu and Joarder [12] and Aly et al [1]. Balasooriya [2] introduced first failure
censoring scheme. It is useful in a situation where the lifetime of a product is quite high and test facilities are
scarce but test material is relatively cheap. This censoring approach saves cost and time. In first failure censoring,
one combines the test units into several groups and each group contains a set of test units. The experiment then
performed on each unit until the first failure occurs in each group. Wu and Kus [24] mixed both progressive and
first failure censoring to introduce progressive first failure censoring scheme which can be explained as follows

Suppose n groups are in the experiment each with k units. At first failure x(1), R1 groups are randomly removed
from the experiment along with the group which contains the first failure unit. The remaining groups continue

∗Correspondence to: Ola Abuelamayem (Email: ola.abuelamayem@feps.edu.eg). Department of Statistics, Faculty of Economics and
Political Science, Cairo University, Egypt.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2024 International Academic Press



O. ABUELAMAYEM 1

the experiment and R2 groups are randomly removed at the second failure along with the group which contains
the second failure. And so on, till the mth failure where the experiment terminates and all remaining groups are
removed from the experiment along with the group which contains the mth failure. The likelihood function has the
following form

L = ckm
m∏
i=1

f(x(i))(1− F (x(i)))
k(Ri+1)−1.

where

c = n(n−R1 − 1)(n−R1 −R2 − 2)...(n−R1 −R2 − ...Rm−1 −m+ 1).

Many censoring schemes are special cases of progressive first failure:

• First failure when R=[0,0,...0].
• Progressive type II when k=1.
• Type-II when k=1 and R=[0,0,...,n-m]
• Complete case when k=1 and R=[0,0,...0].

Since then, several authors applied progressive first failure censoring scheme. For example, Soliman et al [21],
Dube et al [7], Maurya et al [15] and Mahmoud et al [17] estimated the parameters for Gombertz, Lindely,
exponentiated Rayleigh and generalized linear exponential distributions, respectively.

In reliability studies, a system fails if the stress (Y ) of a component is higher than the strength (X). This is
called stress - strength models. For example, Krishna et al [13] and Jia et al [11] estimated the reliability using
generalized inverted exponential under progressive first failure censoring and Weibull distribution under first
failure progressive unified hybrid censoring scheme, respectively. When the system has several components, it
is called multicomponent stress-strength models. It consists of j independent and identical strength components
and a common stress component. This has several applications in real life, for example, a bridge having j
number of vertical cable representing its strength and load traffic represents its strength. Several authors studied
multicomponent systems under different censoring schemes. For example, Kayal et al [14] studied the case of chen
distribution in the complete case. Jha et al [10] analyzed the system using Gompertz distribution under progressive
type-II censoring. Ma et al [16] estimated the model using Gompertz distribution and generalized hybrid censoring
scheme. Saini et al [22] estimated multicomponent stress-strength model using Burr XII under progressive first
failure. Recently, Sharma and Kumar [23] analyzed a multicomponent stress-strength model using weighted
exponential-Lindely distribution in complete case using Bayesian. All illustrated studies, assumed independence
between stress and strength variables. However, this assumption is less realistic.

There are several cases when stress and strength are dependent. For example, container discharge/loading
operations on a vessel are usually performed by two or more cranes along the quay. Since the cranes must share the
same shuttle vehicles (SV), the completion times, X and Y, of the cranes are dependent. It is relevant to investigate
probability R that one crane completes its operations before the other, so as to allocate the SV efficiently (cited
in Domma and Giordano [6]). In economics, measuring a household financial afford-ability where X and Y are
disposable household income and consumption, respectively. For other examples in engineering, education, quality
control and finance see (Domma and Giordano [6]).

To take dependence between stress and strength into consideration, bivariate distribution of stress - strength
model is introduced. For example, Nadarajah and Kotz [18] used bivariate exponential distribution to take
dependence into consideration. Gupta et al [8] considered bivariate lognormal distribution. However, a shortcoming
of this approach is that it assumes a certain dependence form between X and Y . Sometimes it is hard to find
a dataset that follows exactly this dependence structure. When dependence structure is unknown or it is hard to
imply a bivariate distribution, copula approach can be used. Copula is a function that model the joint cumulative
distribution function through a link function and marginal distributions.
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In complete case, Domma and Giordano [6] applied different copulas to handle dependence between X and Y .
Gao et al [9] considered a multicomponent step-stress model using linear combination of Gumbel, Clayton and
Frank copula and call it mixed copula approach. Zhu [26] considered reliability estimation using unit Gompertz
and Kumaraswamy marginals and Clayton copula. Patil et al [20] considered copula approach with exponential
marginals and different estimation techniques. Under censoring, Bai et al [4] considered multicomponent stress-
strength model under progressive hybrid censoring. The experiment is defined as follows

Suppose there are n identical systems put into life test with pre-fixed removals (R1, R2, ..., Rm). The test is
terminated at the time point τ0 which is pre-fixed. When the first observed time t1 occurs, R1 systems are randomly
removed from the experiment. At the second failure t2, R2 systems are randomly removed from the remaining
systems and so on, if the mth observed failure tm occurs before time τ0, all the remaining systems are randomly
removed and the test terminates at time tm (m∗ = m). Otherwise, if the mth failure occurs after time τ0 the test
terminates at time τ0 with r < m observed failures (m∗ = r) and all the remaining systems are removed.

The likelihood function has the following form

L1 =

m∗∏
i=1

{[∂C(u, v)

∂u
fX∗(ti)]

δi [
∂C(u, v)

∂v
fY (ti)]

1−δi [S(ti)]
Ri}S(tm∗)

n−m∗−
∑m∗

i=1 Ri

where

u = SX∗(ti)

v = SY (ti)

Progressive type-II censoring can be obtained as special case if the test terminates at the mth failure with the
following likelihood function

L2 =

m∏
i=1

{[∂C(u, v)

∂u
fX∗(ti)]

δi [
∂C(u, v)

∂v
fY (ti)]

1−δi [S(ti)]
Ri} (1.1)

where

u = SX∗(ti)

v = SY (ti)

Rm = n−m−
∑m−1

s=1 Rs

To the best of our knowledge, multicomponent stress-strength model under progressive first failure censoring
scheme was not considered yet.

1.1. Contributions

The main contribution of this paper is deriving the likelihood function of a multicomponent stress-strength model
under progressive first failure censoring scheme. The model takes into consideration the dependency between stress
and strength by applying the copula function.

1.2. Organization

The paper is organized as follows. In section 2, copula theory is explained. In section 3, the model is explained
and the likelihood function is derived under progressive first failure censoring and copula. Maximum likelihood
estimators are illustrated in section 4. In section 5, numerical analysis is performed using both simulation and a
real dataset. The paper is concluded in section 6.
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2. Copula

Copula is a function that connects marginal distributions to define a bivariate distribution. There are two main steps
to define the required bivariate distribution. First, the marginal distributions should be properly defined. Second,
select a suitable copula to define the dependence structure. Nelsen [19] illustrated that different copulas with the
same marginals resulted in different dependence structure. To illustrate the main concepts of copula, we first need
to explain Sklar’s theorem.

2.1. Sklar’s theorem

Let X and Y be two continuous random variables with distribution functions F1(x) and F2(y), and let F be a joint
distribution function with marginals F1 and F2. Then there exists a copula function (C) such that

F (x, y) = C(F1(x), F2(y)).

Let F−1
1 and F−1

2 be the quasi- inverses of F1 and F2, respectively. Then, the previous equation can be inverted to
express copula in terms of a joint distribution function and the inverses of the marginals as follows

for any u ∈ [0, 1]2

C(u1, u2) = F (F−1
1 (u1), F

−1
1 (u2)).

from the above definition, copula could be considered as a multivariate distribution whose marginals are uniform
(0, 1). Thus, it has a density function, and survival function that can be explained as follows

2.2. Survival copula

Let S(x, y) be a two dimensional survival function with survival marginals S1(x) = 1− F1(x) and S2(y) =
1− F2(y). Then, there exists a survival copula (Ĉ) such that

S(x, y) = Ĉ(S1(x), S2(y)).

Accordingly, for any u∈ [0, 1]2 and quasi inverses S−1
1 and S−1

2 for S1 and S2, respectively. The previous relation
can be inverted as follows

Ĉ(u1, u2) = S(S−1
1 (x), S−1

2 (y)).

Note that there is a difference between survival copula (Ĉ) and joint survival function (C̄). The relation between
them can be explained as follows

C̄(u1, u2) = P (U1 > u1, U2 > u2) = Ĉ(1− u1, 1− u2).

For more details see, Nelsen (2006).

2.3. Copula density

A copula density (c) can be obtained as follows

c(u1, u2) =
∂2C(u1, u2)

∂u∂v
.

Let c, f , f1 and f2 be the density function of C, F , F1 and F2, respectively. Then

f(x, y) = c(F1(x), F2(y))f1(x)f2(y).
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2.4. Archimedean Copula

There are different types of copulas, the most commonly used one is Archimedean copula. This is due to a number
of reasons, the ease with which they can be constructed, the great variety of families of copulas and many useful
properties possessed by the members of this class.

The Archimedean copula is constructed by a continuous, strictly decreasing convex function ϕ from [0,1] to [0,
∞], such that ϕ(1) = 0 and

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)).

where ϕ[−1] is the quasi-inverse of ϕ. ϕ is called the copula generator and is indexed by a dependence parameter α
(ϕα) (For more details see, Nelsen [19]).

In our study, we are interested in Gumbel copula. The privilege of Gumbel copula over others is that it is an
extreme value copula. Here, we considered extreme value copula due to the application of the real dataset. In the
data we are analyzing excessive water drought which is an application to extreme value theory. However, other
copulas can be used in case of other applications. The generator of Gumbel copula in ϕ(t) = (−log(t))α and it has
the following form

Cα(u, v) = e(−[(−log(u))α+(−log(v))α]1/α), α ≥ 1. (2.1)

The Kendall’s tau coefficient (τα) can be obtained using the following relation

τα =
α− 1

α
. (2.2)

The copula will be used in our model to reflect the dependency between stress and strength. This will be illustrated
more in the next section

3. Model description and likelihood derivation

Suppose a system consists of l series components with a common external stress. The strength of the jth component
is denoted by Xj , j = 1, 2, ..., l, with a cumulative distribution function FXj

(xj) and a probability density function
fXj (xj). The stress is denoted by Y with cumulative distribution and probability density functions F(Y )(y) and
fY (y), respectively. The lifetime of a series system is defined by the minimum of Xj . Let X(∗) = min(Xj), j =
1, 2, ..., l with cumulative function defined as follows

FX∗(x) = 1−
l∏

j=1

[1− FXj (xj)].

The system fails if stress (Y ) exceeds the minimum strength (X∗). Define an indicator δ such that

δ =

{
1 if X∗ ≤ Y
0 if X∗ > Y

.

Now, we will define the experiment under progressive first failure censoring.

Suppose n groups are in the experiment each with k units. At first observed failure t1, R1 groups are randomly
removed from the experiment along with the group which contains the first failure unit. The remaining groups
continue the experiment and R2 groups are randomly removed at the second failure along with the group which
contains the second failure. And so on, till the mth failure where the experiment terminates and all remaining groups
are removed from the experiment along with the group which contains the mth failure. To derive the likelihood
function under progressive first failure, we generalized the likelihood function of progressive type-II censoring in
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eq (1.1). The likelihood function has the following form

L ∝
m∏
i=1

{[∂C(u, v)

∂u
fX∗(ti)]

δi [
∂C(u, v)

∂v
fY (ti)]

1−δi [S(ti)]
k(Ri+1)−1} (3.1)

where

u = SX∗(ti)

v = SY (ti)

Special cases are

• First failure when R=[0,0,...0].
• Progressive type II when k=1.(which matches the likelihood function in eq 1.1)
• Type-II when k=1 and R=[0,0,...,n-m]
• Complete case when k=1 and R=[0,0,...0].

Model assumptions

In our study, we assumed

1) Xj has an exponential distribution with the following distribution and density functions, respectively.

FXj
(xj) = 1− e−λ∗

jxj , xj > 0, λ∗
j > 0,

fXj (xj) = λ∗
je

−λ∗
jxj , xj > 0, λ∗

j > 0.

Accordingly the minimum strength X∗ has an exponential distribution with the following distribution and density
functions, respectively.

FX∗(x∗) = 1− e−λ1x
∗
, xj > 0, λ1 > 0,

fX∗(x∗) = λ1e
−λ1x

∗
, xj > 0, λ1 > 0. (3.2)

where

λ1 =
∑l

j=1 λ
∗
j

2) The common stress Y follows a Weibull distribution with the following distribution and density functions,
respectively.

FY (y) = 1− e−λ2y
β

, y > 0, λ2 > 0, β > 0,

fY (y) = λ2e
−λ2y

β

, y > 0, λ2 > 0, β > 0. (3.3)

3) The dependence between X∗ and Y is represented by Gumbel copula (eq 2.1). Using equation 3.2 and 3.3, the
survival function for observed failures (t) can be written as

S(t) = e(−[(λ1t)
α+(λ2t

β)α]1/α) (3.4)

4) Systems are independent, that is the failure of system i has no effect on the failure of system j, i ̸= j.

Accordingly the reliability of the system be obtained as follows

R∗∗ = P (Y < X∗) =

∫ ∞

0

∫ x∗

0

c(FX∗(x∗), FY (y))fX∗(x∗)fY (y). (3.5)
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6 A DEPENDENT MULTICOMPONENT STRESS-STRENGTH MODEL

Using these assumptions, the likelihood function in eq 3.1 can be written as

L ∝ [e(−[(λ1t)
α+(λ2t

β)α]1/α)([λ1t]
α + [λ2t

β ]α)(
1
α−1)[λ1t]

α−1λ1]
δi

[e(−[(λ1t)
α+(λ2t

β)α]1/α)([λ1t]
α + [λ2t

β ]α)(
1
α−1)[λ2t

β ]α−1λ2βt
β−1]1−δi

[e(−[(λ1t)
α+(λ2t

β)α]1/α)]k(Ri+1)−1 (3.6)

To obtain the estimators using maximum likelihood approach, the first derivatives are obtained and equated to zero.
However, no closed formulas were reached. Accordingly, we used numerical analysis that is illustrated in details
in the next section.

4. Numerical Analysis

In this section, a simulation study is performed to evaluate the performance of the presented likelihood function.
Also, a real dataset is analyzed to test its applicability.

4.1. simulation

Monte Carlo simulation is performed using R package with 1000 replications. The objective of the simulation
study is to test the efficiency and consistency of the estimates under progressive first failure censoring. This is
done by taking different sample sizes and different number of failures. Also, studying the effect and importance of
considering the dependency in the model by taking different values for τ . Moreover, a comparison with other types
of censoring is presented. The following different combinations will be considered

• M1: τ = 0.75, N = 500 , n = 100 , k=5, m=25 ,
R=(3,3,3,...,3).

• M2: τ = 0.75, N = 100 , n = 20 , k=5, m=5 ,
R=(3,3,3,3,3).

• M3: τ = 0.75, N = 250, n = 50 , k=5, m=25 ,
R=(1,1,1,...,1).

• M4: τ = 0.75, N = 50 , n = 10 , k=5, m=5 ,
R=(5,0,0,0,0).

• M1: τ = 0.5, N = 500 , n = 100 , k=5, m=25 ,
R=(3,3,3,...,3).

• M2: τ = 0.5, N =100 , n = 20 , k=5, m=5 ,
R=(3,3,3,3,3).

• M3: τ = 0.5, N = 250, n = 50, k=5, m=25 ,
R=(1,1,1,...,1).

• M4: τ = 0.5, N = 50 , n = 10 , k=5, m=5 ,
R=(5,0,0,0,0).

The following steps are used to perform the simulation study

Step1: Generate N independent samples from Gumbel copula using Weibull and exponential marginals.

Step 2: divide the observations to n groups with k units within each group.

Step 3: At first observed failure t1, R1 groups are randomly removed along with the group which contains the
first failure. R2 groups are randomly removed at the second failure t2 along with the group which contains the
second failure and so on.

Step 4: Maximize the likelihood function in equation 3.6.

Step 5: Calculate the reliability using equation 3.5 after substituting by the maximum likelihood estimates
obtained from the previous step.

Step 6: Repeat the five previous steps 1000 times.

To obtain the confidence interval for the reliability function, bootstrap method is used with the following steps:
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Step 1: Given N , n, R ,k and m, compute the maximum likelihood estimates λ̂1, λ̂2, β̂ and α̂.

Step 2: Generate a bootstrap sample using the maximum likelihood estimates λ̂1, λ̂2, β̂ and α̂. Then obtain the
maximum likelihood estimates for this new sample λ̂∗

1, λ̂∗
2, β̂∗ and α̂∗.

Step 3: Repeat the second step N1 times and obtain N1 estimates λ̂∗(z)
1 , λ̂∗(z)

2 , β̂∗(z) and α̂∗(z), z = 1, 2, ..., N1.

Step 4: Calculate the reliability using equation 3.5 with λ̂
∗(z)
1 , λ̂∗(z)

2 , β̂∗(z) and α̂∗(z) say R̂∗∗(z).

Step 5: Arrange R̂∗∗(z) in an ascending order.

Step 6: The two sided 100 (1-α) % confidence interval is given by
(R̂∗∗

L , R̂∗∗
U ) = (R̂∗∗N1(α/2), R̂∗∗N1(1−α/2)).

Table 5.1: The maximum likelihood estimates.
λ1 λ2 β α

M1 τ=0.75 ABias 0.066 0.061 0.237 0.052
MSE 0.120 0.471 0.566 0.412
C.I (0.898,2.234) (0.600,3.278) (1.120,3.626) (2.799, 5.305)

M1 τ=0.5 ABias 0.059 0.185 0.819 0.443
MSE 0.142 0.487 1.452 0.357
C.I (0.828,2.290) (0.496,3.134) (1.087,4.551) (1.657, 3.229)

M2 τ=0.75 ABias 0.312 0.037 0.151 0.029
MSE 0.743 1.374 1.802 2.169
C.I (0.237, 3.387) (-0.334, 4.260) (0.463, 4.765) (1.144, 6.916)

M2 τ=0.5 ABias 0.371 0.140 0.692 0.366
MSE 1.549 1.583 2.951 1.159
C.I (-0.568, 4.310) (-0.605, 4.327) (-0.674, 6.060) (0.256, 4.476)

λ1 λ2 β α

M3 τ=0.75 ABias 0.109 0.294 0.584 0.139
MSE 0.116 0.669 1.387 0.559
C.I (0.977, 2.241) (0.297, 3.291) (0.579, 4.589) (2.699, 5.579)

M3 τ=0.5 ABias 0.064 0.474 1.291 0.743
MSE 0.149 1.729 3.712 0.760
C.I (0.818, 2.310) (-0.878, 3.930) (0.488, 6.094) (1.849, 3.637)

M4 τ=0.75 ABias 0.853 0.138 0.412 0.102
MSE 1.779 2.335 3.008 2.808
C.I (-0.231, 4.997) (-1.133, 4.857) (-0.986, 5.812) (0.819, 7.387)

M4 τ=0.5 ABias 0.418 0.312 1.054 0.613
MSE 2.575 2.237 6.259 2.279
C.I (-0.618, 5.454) (-1.179, 4.555) (-1.410, 7.50) (-0.091, 5.317)

The maximum likelihood estimates of the model parameters are obtained. The absolute bias (ABias= |estimate −
real value|), mean square error (MSE = variance + Bias2) and 95% confidence interval(estimate -(+) 1.96

√
(var) )

are obtained and presented in Table 5.1. Reliability estimates and 95% bootstrap confidence intervals are illustrated
in table 5.2. The results are analyzed in three different ways

First, consider the following division to study the effect of increasing τ .

• Set 1: M1, M2, M3 and M4 at which τ = 0.75.
• Set 2: M1, M2, M3 and M4 at which τ = 0.5.

Stat., Optim. Inf. Comput. Vol. 12, Month 2024
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It can be seen that for the majority of cases the MSE, ABias and reliability are less in set 1 than that in set 2.
For example, in table 5.1 (parameter λ2 and M2), the ABias decreases from 0.140 at τ = 0.5 to 0.037 at τ = 0.75.
Also, the MSE decreases from 1.583 to 1.374. Moreover, from table 5.2, the reliability decreased from 0.389 to
0.330. Accordingly, as the association increases, the estimates becomes closer to the real value. This indicates that
the estimation in case of considering dependence is more precise.

Table 5.2:Reliability estimates
M1 τ=0.75 Estimate 0.367

bootstrap C.I (0.127, 0.503)
M1 τ=0.5 Estimate 0.433

bootstrap C.I (0.141, 0.487)
M2 τ=0.75 Estimate 0.330

bootstrap C.I (0.036, 0.503)
M2 τ=0.5 Estimate 0.389

bootstrap C.I (0.0008, 0.496)
M3 τ=0.75 Estimate 0.310

bootstrap C.I (0.066, 0.450)
M3 τ=0.5 Estimate 0.362

bootstrap C.I (0.0004, 0.440)
M4 τ=0.75 Estimate 0.188

bootstrap C.I (0.002, 0.308)
M4 τ=0.5 Estimate 0.243

bootstrap C.I (0.106, 0.468)
Progressive type II τ=0.75 Estimate 0.373

bootstrap C.I (0.007,0.523)
Progressive type II τ=0.5 Estimate 0.446

bootstrap C.I (0.008,0.523 )
Type II τ=0.75 Estimate 0.407

bootstrap C.I (0.013,0.531 )
Type II τ=0.5 Estimate 0.483

bootstrap C.I (0.126,0.521)

Second, the following division is used to study the effect of increasing the number of failures (m).

• Set 1: M1.
• Set 2: M2.

It can be seen that for different values of τ as m increases, the MSE decreases and the reliability increases. For
example, in table 5.1, the MSE for λ1 decreased from 0.743 at m = 5 to 0.120 at m = 25. Also, from table 5.2, it
can be seen that the reliability increases from 0.330 to 0.367 at m = 5 and m = 25, respectively. This illustrates
that increasing the number of analyzed units, gives better estimates. Although the ratio relative to the total is the
same, but the information gained from analyzing more units as absolute numbers resulted in better estimates.

Third, consider the following division to study the effect of increasing the number of groups and accordingly the
total sample size.

• Set 1: M1 and M2.
• Set 2: M3 and M4.

By comparing M1 with M3 and M2 with M4, it is seen that, for different values of τ , as the number of groups
increases and accordingly the total sample size increases, the ABias and MSE decrease. For example, in table 5.1
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at τ = 0.5 and λ2, the ABias decreased from 0.312 to 0.140 for M4 and M2, respectively. Also, the MSE decreased
from 2.237 to 1.583 for M4 and M2, respectively. This illustrates the consistency of the parameters.

To study how progressive first failure performs relative to other types of censoring. A comparison is performed
with progressive type II and type II censoring schemes with same assumptions as M1. It can be seen from table 5.2
that the reliability estimates are very close in the three schemes.

Finally, by summarizing all tables, it is clear that the CIs includes the true values of the proposed parameters.

4.2. A real data

This data set represents the monthly water capacity for Shasta reservoir in California, USA (see Wang etal [25]).
The data illustrates the monthly water capacity from 1981 till 1985. The aim is to infer about excessive drought.
The water level will not cause excessive drought if the water capacity in July is less than the minimum water
capacity from January till June in the same year. X1J , j = 1, 2, ..., 6 are water capacities from January till June in
1981, and Y1J is water capacity in November 1981. X2J , j = 1, 2, ..., 6 are water capacities from January till June
in 1982, and Y1J is water capacity in November 1982, and so on till 1985. The data is divided by the maximum
capacity 4526800.

X =


0.763 0.854 0.954 0.949 0.882 0.797
0.786 0.803 0.897 0.988 0.996 0.967
0.826 0.791 0.823 0.947 1 0.988
0.752 0.837 0.913 0.959 0.949 0.899
0.689 0.716 0.761 0.784 0.713 0.631

 Y =


0.670
0.899
0.921
0.792
0.506


First, we perform Anderson-Darling goodness of fit test to check if the data in X and Y follow exponential and
Weibull distributions, respectively. The p-value for X and Y respectively are 0.084 and 0.928, Hence, we can
assume the data follow exponential and Weibull distribution at 5% level of significance.

Second, we test the correlation between X and Y using Pearson correlation coefficient, and the p-value of the
test is 0.023. Therefor, we can conclude there is significant correlation between X and Y at 5% level of significance
and the copula model can be applied.

Now, we obtained the reliability estimates using both complete data and progressive first failure with R=[2,0].
The results are presented in table 5.3, and it can be seen that progressive first failure provides a good estimate for
the reliability function as it is close to that from the complete case.

Table 5.3:Reliability estimates for real data
Reliability estimate

Complete case 0.370
Progressive first failure 0.297

5. Conclusion

In lifetime data, it is difficult to observe the failure time for all units of the study due to time and cost limitation and
sometimes the nature of the study. Accordingly, performing the study under censoring is more realistic. Recently,
progressive first failure censoring has attracted attention in the literature due to it is ability to save cost and time. To
the best of our knowledge, a dependent multicomponent stress-strength model under progressive first failure was
not performed yet. In our study, we derived the likelihood function under copula progressive first failure censoring
scheme and multicomponent stress-strength model. A simulation study is performed and a real dataset is analyzed.
The results indicated that progressive first failure censoring provided a good reliability estimate but with a fewer
number of analyzed units. An extension of this work can be done by taking into consideration any prior information
about the parameters through Bayesian estimation.
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