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Abstract A normalization of the generators of the defect spaces of an isometry is obtained, a version of the Levinson
algorithm for Toeplitz block matrices in the infinite-dimensional case is built. Additionally, a factorization of the inverse of
the Toeplitz matrix by blocks is obtained. Under this methodology, the obtained recurrences in the infinite dimensional case
coincide with the case of the finite dimension, and an autoregressive linear filter to estimate stationary second-order stochastic
processes is obtained, usually, the area extension in statistics, applications to spectral estimation, analysis of functional data
and prediction problems among other applications is required. The parallelized algorithm for computing multiplications and
inverses of block matrices is developed using the Pthreads POSIX library. Two real examples of the literature is illustrated,
the parameters of a VAR(1) model and an autoregressive process of order 5 (AR (5)) are estimated. The predicted values
in each case are obtained. The estimated quality of the parallelized algorithm is validated, the TRC test as a measure of
goodness of fit is used, negligible estimation errors are shown. The performance of the parallel algorithm by the acceleration
and efficiency factors is measured, an increase of 8% in speed with respect to the sequential version and the most efficient
for P = 2 threads are shown.
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1. Introduction

The Levinson algorithm ([19]) is a very important result, signal prediction and processing theory is widely used (cf.
[6], [13], [17], [20] and [25]) . In the infinite dimensional framework, linear prediction problems have applications
in the context of continuous time processes, additionally, large amounts of time series is used (cf. [2], [3]). A first
matrix version of the Levinson algorithm in ([33]) is obtained, and later in ([35]). Matrix versions of this algorithm
are also discussed, in ([10], [11], [12], [14], [26] and [27]). The algorithm to orthogonal polynomials in the unit
calculation is also related ([14], [16]). Additionally, that to estimate Schur parameters in the theory of analytical
functions is used (cf. [29] and [30]), the partial autocorrelation coefficients are identified (cf. [2], [8], [10] and [26]),
and the coefficients of reflection in geophysics (cf.[9], [15]). An extension to the case of operator values is found
([15]), the matrix structure of the unit operator from the Naimark dilatation theorem is obtained. In this way, the
succession of choice in Levinson recurrences is obtained. Also, in ([21], [22], [23] and [24]) different approaches
to the algorithm are presented, certain normalization processes of the generators of the defect spaces of an isometry
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are used. Then, The located recurrences in a geometric frame similar to the one studied in ([1]) is allowed, but, the
recurrences for square roots of operators have difficulty calculated.

The main contribution of this work is related to the normalisation of the generators of the defect spaces of an
isometry ([23]). In addition, a version of Levinson’s recurrences is developed which does not require the use of
square roots of operators. Furthermore, a factorisation of the inverse of the Toeplitz matrix by blocks is obtained
([11], [14]), and a parallelized algorithm for computing multiplications and inverses of block matrices is developed
using the Pthreads POSIX library. An iterative inverse through the recurrences of Levinson is obtained. The key
idea is to construct a sequence of operators {Rk}pk=0 for the Levinson recurrences in a separable Hilbert space G.
For example, in the finite-dimensional case, a finite number of covariances of a multivariate process can be shown.
More specifically, the sequence of operators {Rk}pk=0 in a Hilbert space Hp is constructed and a surjective isometry
is obtained:

Vp : Dp → Rp (1)

where Dp, Rp are two closed subspaces Hp. In this context, a normalization of the generators of the defect spaces
of the isometry Vp is proposed, i.e.,

Np = Hp ⊖Dp, Mp = Hp ⊖Rp (2)

to a version of the operator values of the Levinson algorithm is obtained. The methodology of orthogonal
decompositions does not differentiate, the finite dimensional case from the infinite dimensional case. Also, in
the finite dimensional case, the mathematical results in the work as a contribution to the prediction theory can be
interpreted, specifically, stationary second-order multivariate stochastic processes. More specifically, an estimator
for a recursively multivariate autoregressive linear filter is obtained, and simultaneously, the covariance variance
matrix of the error is recursively calculated. Finally, the parameters from Levinson recurrences are obtained, that as
the partial autocorrelation coefficients is interpreted. The characterization of those parameters for the development
of new spectral estimation techniques is used (cf. [7] and [27]).
A methodology in this work is proposed, the methodology from the results known is differed, (cf. [4], [5], [7], [10],
[11], [12], [14], [15], [18], [19], [26], [33] and [35]). Another contribution of the work, the recursive algorithm to
solve problems of extension in statistics, analysis of functional data, and prediction problems can be used in an
infinite dimensional framework.
The rest of the article follows: In Section 2, the Preliminary Section and the used notation are established. In
Section 3, the theoretical aspects are developed, the efficient normalization of the Levinson algorithm in the infinite
dimensional case is obtained. In the Section 4 an application in the finite dimensional case is shown. In Section 5
the implementation of the algorithm is shown. In Section 6 an application through two real examples is presented,
the prediction capacity is shown, finally, in Section 7 the discussions and the conclusions are established.

2. Preliminaries

First, the notation is introduced. The sets of natural and integers numbers by N and Z are denoted. The symbols
R and C to denote the set of real and complex numbers are used; D is used, denote the open unitary disk in the
complex plane,

D := {z ∈ C : |z| < 1} (3)

The unit calculation, the border D by T is denoted. ek is defined

ek(ζ) := ζk, ζ ∈ T, k ∈ Z (4)

As usual, the set of all bounded linear operators acting from the Hilbert space H to the same space as L(H)
is denoted. The symbol 1, the scalar unit and the operator identity is denoted, that is depending on the context.
For the matrix case 1q×q for the identity matrix is used. The symbol A∗, an attached operator and the transpose
conjugate matrix is denoted.
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Given a succession of bounded linear operators {Rk}∞k=0 in a Hilbert space separable G is defined, where
R−n = R∗

n for all n ∈ N, and that is said, that is strictly defined positive if

∞∑
n=0

∞∑
m=0

⟨Rm−nhn, hm⟩G > 0 (5)

for each non-zero succession {hk}∞k=0 ⊂ G with finite support. Rewriting (5) in terms of matrices, the sequence
{Rk}∞k=0 is strictly defined positive, if the bounded operator

Tp : Gp+1 → Gp+1 (6)

is defined by

Tp =


R0 R∗

1 · · · R∗
p

R1 R0 · · · R∗
p−1

...
...

. . .
...

Rp Rp−1 · · · R0

 (7)

that is strictly positive for everything p ∈ N.
That is said that the succession of the first p+ 1 terms {Rk}pk=0 of the succession {Rk}∞k=0 is strictly defined
positive if Tp is positive.
For each p ∈ N, is denoted by T−1

p = {[T−1
p ]ij}i,j=0,1,··· ,p, the inverse of Tp. As a result of the Tp operators being

strictly positive, then T−1
p is the inverse. That follows, the operators [T−1

p ]00 and [T−1
p ]pp are strictly positive,

hence, those are operators of compression of T−1
p to suitable subspaces of Gp+1.

The methodology in this work is explained. Assuming, the succession {Rk}pk=0 is strictly defined positive, a Hilbert
space is built Hp, and an overjective isometry is defined

Vp : Dp → Rp (8)

where Dp and Rp of Hp are certain subspaces. Finally, the defect spaces are obtained

Np = Hp ⊖Dp (9)

and
Mp = Hp ⊖Rp (10)

In addition, that is defined

Ep =

{
ϕ =

p∑
k=0

ekξk : ξk ∈ G, k = 1, · · · , p

}
(11)

as the set of trigonometric polynomials in T to values in a Hilbert space. Now, an internal product in Ep is defined〈
p∑

n=0

enfn,

p∑
m=0

emgm

〉
p

=

p∑
m=0

p∑
n=0

⟨Rm−nfn, gm⟩G

=

〈
Tp

f0
...
fp

 ,

g0
...
gp

〉
Gp+1

.

(12)

The space (Ep, ⟨, ⟩p) is a Hilbert space. In effect, that result is concluded from the operator

Ip : (Ep, ⟨., .⟩p) → Gp+1 (13)

that is defined by
Ip

(∑
ekhk) = (h0, h1 · · · , hp

)
(14)
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that is a bounded and invertible operator.
Let

Dp =

{
p−1∑
k=0

ekξk : ξj ∈ G, j = 0, 1, . . . , p− 1

}
(15)

Rp =

{
p∑

k=1

ekξj : ξj ∈ G, k = 1, . . . , p

}
(16)

and the application Vp : Dp → Rp is defined as the linear extension of Vp(ekξ) = ek+1ξ. Vp is an overjective
isometry, that is easy demonstrated. Note, that Vp is an isometric extension of Vp−1, that is Vp|Dp−1

= Vp−1. Now
in the usual way, that is defined

L2
G =

{
f : T → G|f is measured and

1

2π

∫ 2π

0

∥f(eit)∥2Gdt < ∞
}

(17)

Where, L2
G is a Hilbert space under the internal product

⟨f, g⟩L2
G
=

1

2π

∫ 2π

0

⟨f(eit), g(eit)⟩Gdt (18)

For any k, Gk the subspace of L2
G is denoted as Gk by the functions of the shape eka (a ∈ G) is generated. Of ([28])

is known that Gi⊥Gj for i ̸= j, and even more, that is contained

L2
G =

∞⊕
−∞

Gk (19)

and
∥a∥G = ∥eka∥L2

G
(20)

Moreover, the application is defined

Γp :
(
Ep(G), ⟨., .⟩p) → (Ep, ⟨., .⟩L2

G

)
(21)

through equality

Γp(f) =

p∑
k=0

ek

p∑
s=0

Rk−sfs, f ∈ Ep. (22)

Then, consider the operator
Jp : (Ep(G), ⟨., .⟩L2

G
) → Gp+1 (23)

is defined, by

Jp(

p∑
k=0

ekhk) = (h0, h1 · · · , hp) (24)

Note, that operator is an isometric isomorphism.
The operator Γp in terms of operators Ip, Jp and Tp can be written,

Γp = J∗
pTpIp. (25)

Hence, Γp is bicontinuous. Of ([23]) the operator Γp verifies

⟨Γpf, g⟩L2
G
= ⟨f, g⟩p (26)
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4 LEVINSON PARALLEL ALGORITHM: A FINITE-DIMENSIONAL APPROACH

and, the default spaces of Vp,
Np = Ep ⊖Dp (27)

and
Mp = Ep ⊖Rp (28)

by elements of the form Γ−1
p (epx) and Γ−1

p (e0x), x ∈ G are generated, respectively. Even more

M̃p(e
it)x = Γ−1

p (e0x) =
(
e0[T

−1
p ]00 + · · ·+ ep[T

−1
p ]p0

)
x,

Ñp(e
it)x = Γ−1

p (epx) =
(
e0[T

−1
p ]0p + · · ·+ ep[T

−1
p ]pp

)
x.

(29)

From those operators, the normalized operators Mp(e
it) and Np(e

it) are defined, that is through of the expressions

Mp(e
it)x = M̃p(e

it)[T−1
p ]

−1/2
00 x, Np(e

it)x = Ñp(e
it)[T−1

p ]−1/2
pp x. (30)

To simplify notation, Mp and Np instead of Mp(e
it) and Np(e

it) is written, respectively. Furthermore, the
polynomial operators Mp and Np are denoted

Mp = e0Mp,0 + · · ·+ epMp,p (31)

and
Np = e0Np,0 + · · ·+ epNp,p (32)

where Np,p = [T−1
p ]

1/2
pp and Mp,0 = [T−1

p ]
1/2
00 .

Consider, the new normalizations
Np = Np[T

−1
p ]−1/2

pp (33)

and
Mp = Mp[T

−1
p ]

−1/2
00 . (34)

Notice, the new trigonometric polynomials Np and Mp are defined as

Np = e0Np,0 + · · ·+ ep−1Np,p−1 + ep1,

Mp = e01 + · · ·+ ep−1Mp,p−1 + epMp,p.
(35)

Notice, of (29), (35) and

Tp

[T−1
p ]00

...
[T−1

p ]p0

 =

1
...
0

 and Tp

[T−1
p ]0p

...
[T−1

p ]pp

 =

0
...
1

 (36)

that follows

Tp


1

Mp,1

...
Mp,p

 =


σ2
0p

0
...
0

 and Tp


Np,0

...
Np,p−1

1

 =


0
...
0
σ2
pp

 (37)

where σ2
0p = [T−1

p ]−1
00 and σ2

pp = [T−1
p ]−1

pp . Moreover, from (37) is obtained

σ2
0p = R0 +R−1Mp,1 + · · ·+R−pMp,p (38)

and
σ2
pp = R0 +R1Np,p−1 + · · ·+RpNp,0 (39)
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The trigonometric polynomials by the classic normal equations (38) and (39) are found (cf. [15], [26] and [36]).
In the rest of the work, the notation is used: σ−2

0p = (σ2
0p)

−1, σ−2
pp = (σ2

pp)
−1, σ0p = (σ2

0p)
1/2, σpp = (σ2

pp)
1/2,

σ−1
0p = (σ−2

0p )
1/2 and σpp = (σ−2

pp )
1/2. The polynomials Np and Mp are rewritten as

Np = Npσpp (40)

and
Mp = Mpσ0p (41)

3. Theoretical aspects of the Levinson algorithm in the infinite dimensional case

In this section, the proposed normalization in the previous section for a version of the Levinson algorithm [23] is
obtained. The obtained version can be efficiently implemented, the square roots of bounded linear operators are not
calculated. The similar parameters to the finite dimensional case are used, the parameters by partial autocorrelation
coefficients are called, the parameters in the statistical analysis of functional data is used.
The trigonometric polynomials Np and Mp for the recurrences of Levinson is verified, [23]

Np = (ζNp−1 −Mp−1Λp)σp−1,p−1σ
−1
pp , N0 = 1

Mp =
(
Mp−1 − ζNp−1Λ

∗
p

)
σ0,p−1σ

−1
0p , M0 = 1.

(42)

where
σ2
pp = R0 −A∗

pαp−1α
∗
p−1Ap = R0 −A∗

pβp−1β
∗
p−1Ap, (43)

σ2
p0 = R0 − Cpαp−1α

∗
p−1C

∗
p = R0 − Cpβp−1β

∗
p−1C

∗
p (44)

and the matrices αp and βp are given

αp =


Mp,0 · · · M1,0 M0,0

Mp,1 · · · M1,1 0
...

...
...

...
Mp,p · · · 0 0

 and βp =


N0,0 N1,0 · · · Np,0

0 N1,1 · · · Np,1

...
... · · ·

...
0 0 · · · Np,p

 (45)

and where A∗
p and Cp are defined

A∗
p = [Rp, Rp−1, · · · , R1] (46)

and
Cp = [R−1, R−2, · · · , R−p]. (47)

Moreover, the following property for the operator Λp : G → G is verified (cf. [23]):

Λp =

p∑
m=1

p−1∑
n=0

M∗
p−1,nRn−mNp−1,m−1 (48)

and additionally ∥Λp∥ = cos
(
∠VpNp−1

Mp−1

)
and Λ1 = R1.

Now, the matrices αp and βp are defined

αp =


Mp,0 · · · M1,0 M0,0

Mp,1 · · · M1,1 0
...

...
...

...
Mp,p · · · 0 0

 and βp =


N0,0 N1,0 · · · Np,0

0 N1,1 · · · Np,1

...
... · · ·

...
0 0 · · · Np,p

 (49)
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and the matrices γ1/2
0p and γ

1/2
pp are defined

γ
1/2
0p =


σ−1
0p · · · 0 0
0 · · · 0 0
...

...
...

...
0 · · · 0 σ−1

00

 and γ1/2
pp =


σ−1
00 · · · 0 0
0 · · · 0 0
...

...
...

...
0 · · · 0 σ−1

pp

 . (50)

Note
αp = αpγ

1/2
0p and βp = βpγ

1/2
pp . (51)

In addition, Λp is defined
Λp = σ−1

0,p−1Λpσp−1,p−1. (52)

Proposition 1
Let, the matrices αp−1 and βp−1 in the equations (49) are defined

σ2
pp = R0 −A∗

pαp−1γ0,p−1α
∗
p−1Ap = R0 −A∗

pβp−1γp−1,p−1β
∗
p−1Ap (53)

and
σ2
0p = R0 − Cpαp−1γ0,p−1α

∗
p−1C

∗
p = R0 − Cpβp−1γp−1,p−1β

∗
p−1C

∗
p . (54)

Even more,

Λp = σ−2
0,p−1

p∑
m=1

p−1∑
n=0

M
∗
p−1,nRn−mNp−1,m−1. (55)

Proof. The first two formulas from (43), (44) and (51) are obtained. The last formula is obtained

Λp = σ−1
0,p−1Λpσp−1

= σ−1
0,p−1

p∑
m=1

p−1∑
n=0

M∗
p−1,nRn−mNp−1,m−1σp−1

= σ−2
0,p−1

p∑
m=1

p−1∑
n=0

M
∗
p−1,nRn−mNp−1,m−1

that shows the result.
That operator can be written

Λp = σ−2
0,p−1

[
1,M

∗
p−1,1, · · · ,M

∗
p−1,p−1

]
R−1 R−2 · · · R−p

R0 R−1 · · · R−(p−1)

...
... · · ·

...
Rp−2 Rp−3 · · · R−1




Np−1,0

Np−1,1

...
1

 (56)

The inverse of the Toeplitz matrix by blocks can be factored, in [23] is shown,

T−1
p = αpα

∗
p = βpβ

∗
p (57)

In terms of the new normalization, the factorization is rewritten

T−1
p = αpγ0pα

∗
p = βpγppβ

∗
p (58)

The Levinson algorithm to a rapid factorization of the inverse of the Toeplitz matrix is obtained.
Now, the equivalent recurrences are obtained, the calculation of square roots of operators is not required.
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Theorem 1
For each p ∈ N trigonometric polynomial operators Np and Mp, the recurrences are verified

Np = ζNp−1 −Mp−1Λp,

Mp = Mp−1 − ζNp−1Λ̃p,

where
Λ̃p = σ−2

p−1,p−1Λ
∗
pσ

2
0,p−1 (59)

and initial conditions N0 = 1, M0 = 1, Λ1 = R−1
0 R−1 and Λ̃1 = R−1

0 R1.

Proof. From (42) is obtained

Npσpp = ζNp−1σp−1,p−1 −Mp−1σ0,p−1

(
σ−1
0,p−1Λpσp−1,p−1

)
,

Mpσ0p = Mp−1σ0,p−1 − ζNp−1σp−1,p−1

(
σ−1
p−1,p−1Λ

∗
pσ0,p−1

)
,

(60)

thereby

Np = ζNp−1 −Mp−1Λp,

Mp = Mp−1 − ζNp−1

(
σ−1
p−1,p−1Λ

∗
pσ0,p−1

)
.

(61)

Now, Λ
∗
p = σp−1,p−1Λ

∗
pσ

−1
0,p−1 of Λp = σ−1

0,p−1Λpσp−1,p−1 is obtained. Therefore

σ−2
p−1,p−1Λ

∗
pσ

2
0,p−1 = σ−1

p−1,p−1Λ
∗
pσ0,p−1 = Λ̃p. (62)

Finally, Λ1 = R−1
0 R−1 of (56) is obtained, and therefore Λ̃1 = R−1

0 R1.
The following result to computational recurrences is allowed:

Corollary 1
For k = 2, · · · , p,

Nk,k = Mk,0 = 1, Nk,0 = −Λk, Mk,k = −Λ̃k, (63)

and for i = 1, · · · , k − 1

Nk,i = Nk−1,i−1 −Mk−1,iΛk,

Mk,i = Mk−1,i −Nk−1,i−1Λ̃k,
(64)

with initial conditions

• M0,0 = M1,0 = N0,0 = N1,1 = 1,
• N1,0 = −Λ1,
• M1,1 = −Λ̃1,
• Λ1 = R−1

0 R−1,
• Λ̃1 = R−1

0 R1.

Proof. Of the theorem 1 is obtained[
Nk,0, Nk,1, · · · , Nk,k−1, 1

]
=
[
0, Nk−1,0, · · · , Nk−1,k−2, 1

]
−
[
Λk,Mk−1,1Λk, · · · ,Mk−1,k−1Λk, 0

]
;[

1,Mk,1, · · · ,Mk,k−1,Mk,k

]
=
[
1,Mk−1,1, · · · ,Mk−1,k−1, 0

]
−
[
0, Nk−1,0Λ̃k, · · · , Nk−1,k−2Λ̃k, Λ̃k

] (65)

the result is obtained.
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4. Applications in the finite dimensional case

Let X = {Xt}t∈Z a stochastic process q-varied of the second order and stationary with zero mean and covariance
function Rk, k = 0,±1, · · · , is given

Rk = E(Xt+kX
∗
t ) =

1

2π

∫
T

eikθW (eiθ)dθ (66)

where E is the mathematical expectation and W is the spectral density of the process.
The space by the X process is generated

HX = Lin{
∑

AtXt : At ∈ Cq×q} (67)

and space L2(W ) is defined

L2(W ) = {Φ : T → Cq×q : ∥Φ∥2 =
1

2π

∫
T

Trace(ΦWΦ∗)dθ < ∞} (68)

An internal matrix product in the space can be introduced

(Φ,Ψ)W =
1

2π

∫
T

ΦWΦ∗dθ (69)

On the other hand,
X =

{
Xt =

(
X1

t , · · · , X
q
t

)}
t∈Z

(70)

the Gramians of the process is defined

[Xt, Xs] =
{
E(Xi

tX
j
s )
}
i,j=1,··· ,q

(71)

Note, Rk = [Xk, X0].
The application from (66) is obtained ∑

AtXt →
∑

Atet (72)

is an isometric isomorphism between HX and L2(W ).
The following result from the expression of the covariance is obtained[∑

j∈J

AjXj ,
∑
k∈K

BkXk

]
=

(∑
j∈J

Ajej ,
∑
k∈K

Bkek

)
W

(73)

where J and K are two finite sets of indices.
The following result is a direct consequence of the previous equality and the proposition 1. σ2

0,p−1Λp as the partial
autocorrelation coefficients between X0 and Xp is interpreted.

Proposition 2
For each p ∈ N, the following formula is validated

σ2
0,p−1Λp =

(
p−1∑
m=0

M
∗
p−1,mem,

p−1∑
n=0

N
∗
p−1,nen+1

)
W

=

[
p−1∑
m=0

M
∗
p−1,mXm,

p−1∑
n=0

N
∗
p−1,nXn+1

]
.

Now, the estimation of a multivariate autoregressive filter is considered. A multivariate input time series {Zt} in
a multivariate output time series {Xt} is transformed, the rule is followed

Xt +N
∗
l,l−1Xt−1 + · · ·+N

∗
l,0Xt−l = Zt, t = 0, 1, · · · (74)
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Let {Xt = (X1
t , · · · , X

q
t )

∗} a time series q-varied second-order centered stationary with covariance, such that

Rk = E(Xt+kX
∗
t ) = E(XkX

∗
0) = [Xk,X0] (75)

The time series to {Zt} is supposed

E(Zt) = 0 and [Zt,Zs] = σ2δt−s. (76)

Now, of (74) and (37),

σ2 =

l∑
k=0

N
∗
l,k[Xt−l+k,Xt] =

l∑
k=0

N
∗
l,kRk−l = σ2

ll (77)

in as much as
[Xt +N

∗
l,l−1Xt−1 + · · ·+N

∗
l,0Xt−l, N

∗
l,l−1Xt−1 + · · ·+N

∗
l,0Xt−l]

= [N
∗
l,0, · · · , N

∗
l,l−1, 1]

R0 · · · R−l

... · · ·
...

Rl · · · R0




N l,0

...
N l,l−1

0

 = [0, · · · , σ2
ll]


N l,0

...
N l,l−1

0

 = 0

The multivariate filter and the variance of the time series {Zt} from the recurrences of Levinson are estimated.

5. Efficient version of Levinson parallel algorithm

Suppose, a sample x1, · · · ,xp,xp+1 from a time series q-varied centered stationary is taken. The covariance
function is estimated

R̂k =


1

p+1

∑p+1−k
t=1 xt+kxt for k = 0, 1, · · · , p

1
p+1

∑p+1
t=−k+1 xt+kxt for k = −p, · · · ,−1

The notation for the estimator is simplified σ−2
kk , σ

−2
0k , σ

2
kk, σ

2
0k, Λk, Λ̃k, αk, A

∗
k, Ck instead of

σ̂−2
kk , σ̂

−2
0k , σ̂

2
kk, σ̂

2
0k, Λ̂k,

̂̃
Λk α̂k, Â

∗
k, Ĉk, respectively. The Levinson’s recurrences to adjust an autoregression

in an increasing way. The Levinson’s recurrences to adjust an autoregression in an increasing way is made, i.e., an
autoregressive order process l < p+ 1, AR(l) is adjusted.The order l of autoregression is estimated, the criterion
of minimize is used

AICC = −2 lnL(N
∗
l,0, · · · , N

∗
l,l−1, σ

2
ll) + 2(lq2 + 1)pq/(pq − lq2 − 2) (78)

where L is the likelihood.
The normalized version methodology of the Levinson algorithm is illustrated, the data is [5]. One of the important
results in the investigation is obtained, an algorithm to estimate a multivariate autoregressive process is obtained,
that is defined

γ0k =


σ−2
0k · · · 0 0
0 · · · 0 0
...

...
...

...
0 · · · 0 σ−2

00

 .

Note: The square root of the matrix is defined (50).
————————————————————————————————–
Efficient version of Levinson algorithm
————————————————————————————————–
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• Step 1. Enter the data:

– Read the data x1, · · · ,xp,xp+1,
– Analyze the stationarity, if is required, the data can be transformed
– Estimate the covariance R̂0, R̂1, · · · , R̂p (only covariance matrices are needed R̂0, R̂1, · · · , R̂l so, that

can be estimated).

• Step 2. Initialize the input parameters:

– M0,0 = M1,0 = N0,0 = N1,1 = 1q×q, N1,0 = −R̂−1
0 R̂−1, M1,1 = −R̂−1

0 R̂1, Λ1 = R̂−1
0 R̂−1,

Λ̃1 = R̂−1
0 R̂1, γ00 = σ−2

00 = R̂−1
0 and α0 = 1q×q,

– If the order of the autoregressive process is l = 1 calculate σ2
11 = R̂0 − R̂1R̂

−1
0 R̂−1 then finish the

algorithm with an output filter N1,0 = −R̂−1
0 R̂1 and a prediction error matrix σ2

11.

• Step 3. For k = 2, · · · , l + 1

– Construct the matrix A∗
k−1 = [R̂k−1, · · · , R̂1] and the conjugate matrix Ak−1,

– Construct the matrix Ck−1 = [R̂∗
1, · · · , R̂∗

k−1] and the conjugate matrix C∗
k−1,

– Construct the matrix αk−2 as in (49) and the conjugated transpose α∗
k−2,

– Construct the matrix γ0,k−2 with (50).

• Step 3.1. Create Threads

– For each block matrix multiplication, P-threads are created,
– P-threads execute the block matrix multiplication algorithm as a function,

– Obtain Pk−2 = αk−2γ0,k−2α
∗
k−2,

– Obtain σ2
0,k−1 = R̂0 − Ck−1Pk−2C

∗
k−1,

– Obtain σ−2
0,k−1 =

(
σ2
0,k−1

)−1
,

– Obtain σ2
k−1,k−1 = R̂0 −A∗

k−1Pk−2Ak−1,

– Obtain σ−2
k−1,k−1 =

(
σ2
k−1,k−1

)−1
,

• Step 3.1.1. If k ≤ l

– Obtain Λk = σ−2
0,k−1

∑k
m=1

∑k−1
n=0 M

∗
k−1,nRn−mNk−1,m−1. using matrix multiplication given in (56),

– Obtain Λpartial
k = σ2

0,k−1Λk,
– Calculate Λ̃k = σ−2

k−1,k−1Λ
∗
kσ

2
0,k−1,

– Set
Nk,k = Mk,0 = 1q×q, Nk,0 = −Λk, Mk,k = −Λ̃k,

Set i = 1, · · · , k − 1

– Set

Nk,k−i = Nk−i−1,k−i −Mk−1,k−iΛk,

Mk,k−i = Mk−1,k−i −Nk−1,k−i−1Λ̃k,

• Step 4. Output:

– The estimated coefficients N l,l−1, · · · , N l,0, M l,l, · · · ,M l,1, the variances of prediction errors forward
and backward σ2

ll and σ2
0l respectively, and the partial autocorrelation coefficients Λparcial

1 , · · · ,Λparcial
l .

– Calculate the execution time of the total program.
– Calculate the criteria for model validation.
– Calculate the efficiency and speedup factors for the P threads.

————————————————————————————————–
The implementation of the algorithm is illustrated, a time series of stationary second-order multivariate stochastic
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processes is used, the manipulation of large dimensions in covariance matrices is required, for this reason, P-
threads is implemented for handling the parallel version about inverse matrix and matrix multiplication; especially,
the inverse factorization of the Toeplitz matrix of blocks is calculated. If data series is massive then the matrix
multiplication and inverse matrix can be very complicated, that is the reason, a parallel implementation in the
matrix multiplication and inverse matrix of the version of the Levinson algorithm is proposed, that was another
contribution of the work. Parallel computing with the objective of reducing time is used, computationally expensive
problems are solved, the problems with time and spatial complexity are concerned, [31] and [32]. In particular
in the algorithm, the parallelization of the matrix multiplication is proposed, specifically, the calculation of σ2

0l,
σ2
ll, (POSIX is necessary to calculate those inverses σ−2

0l , σ−2
ll ), Λl, and Λ̃l. The POSIX (Pthread) thread library

of the ANSI C programming environment, an interface to create and interact with the threads is provided, that
run separately within a program, the individual matrix multiplication in small batches of independently data is
performed.

6. Results

In the following, an application of the methodology is shown through two well-known examples in the literature.

Example 1
The information is obtained, a simulation of 1000 observations of a VAR(1) model is based

x1t = 0.7x1t−1 + 0.2x2t−1 + ϵ1t, x2t = 0.2x1t−1 + 0.7x2t−1 + ϵ2t (79)

where ϵ1t and ϵ2t are errors with Gaussian distribution N(µ,Σ).
The model in matrix form [

x1t

x2t

]
=

(
0.7 0.2
0.2 0.7

)[
x1t−1

x2t−1

]
+

[
ϵ1t
ϵ2t

]
(80)

where

Π1 =

(
0.7 0.2
0.2 0.7

)
µ =

[
1
5

]
Σ =

(
1 0.5
0.5 1

)
(81)

The parameters of the VAR(1) model with the proposed algorithm are estimated

Φ̂11 =

(
−0.716904 −0.192663
−0.190657 −0.720195

)
(82)

The variances of prediction errors forward and backward

σ2
11 =

(
1.354971 −0.739258
−0.739258 1.485544

)
, σ2

01 =

(
1.306668 −0.659502
−0.659502 1.406564

)
(83)

and partial autocorrelation coefficients

Λpartial
2 =

(
−0.021336 −0.003619
−0.013424 −0.063632

)
(84)

In Table (1) the estimates for the data are shown, the estimation of six observations by the VAR (1) model is

presented, the algorithm for the first four simulated observations is well fitted.
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Table 1. Data real and predictions of model VAR(1) by the proposed algorithm are shown.

Y Yt1 prediction Yt2 prediction
992 0.9113 0.8395 4.7072 4.7830
993 0.7333 0.9113 4.9311 4.7072
994 1.0136 0.7333 4.4093 4.9311
995 1.1683 1.0136 4.3109 4.4093
996 -1.7974 1.1683 2.6171 4.3109
997 -3.3086 0.5698 1.9862 4.8428

Table 2. Internal temperature and predictions with the AR(5) model by the proposed algorithm are generated.

T Internal temperature prediction
1001 25.3700 25.0522
1002 24.8100 22.5688
1003 24.2600 25.4424
1004 23.6900 23.6065
1005 23.0900 21.8244
1006 22.5100 22.8673

Example 2
The information at the DGF weather station is obtained, the temperature variation for the months of January 2015
until October 2015, the data from the web site http://infomet.dgf.uchile.cl/OBSERVACIONES/observaciones.html
can be obtained. The internal temperature of the weather station Xt1, t = 1, . . . , 1000 and the external temperature
(ambient temperature) of the weather station Xt2, t = 1, . . . , 1000.

The parameters of an autoregressive model of order l = 5 with the proposed algorithm are estimated

Φ̂51 =

(
9.144482 5.407727
−9.538830 −5.633143

)
, Φ̂52 =

(
−12.036434 −7.260416
0.294659 0.175459

)

Φ̂53 =

(
9.648738 5.851278
1.102902 0.680174

)
, Φ̂54 =

(
−3.758930 −3.993432
0.972126 0.650071

)
Φ̂55 =

(
−0.995541 0.895917
0.822545 0.744335

)
The variances of prediction errors forward and backward

σ2
ll =

(
−0.5796179 0.8374511
0.8838184 −1.1885251

)
, σ2

0l =

(
−0.3347509 0.7757447
0.7147060 −1.2169395

)
The partial autocorrelation coefficients is defined

Λpartial
5 =

(
0.2535453 −0.1503487
−0.2272904 −1.345889

)
Assuming, the fitted AR(5) model is the true model for Xt = (Xt1, Xt2)

′, the one- and two-step ahead predictors
of X1001, X1002, . . . , X1006 in Tables (2) and (3) are shown. The estimation of six temperature measurements is

presented, the first three measurements of internal temperature and air temperature by the proposed algorithm are
well adjusted. To validate the estimation quality of the algorithm, the TRC statistical test [34] as a measure of
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Table 3. Air temperature and predictions with the AR(5) model by the proposed algorithm are generated.

T Air temperature prediction
1001 21.2700 27.2549
1002 20.8700 24.1049
1003 20.2500 23.4520
1004 19.4900 22.2563
1005 19.0200 26.8286
1006 18.6100 26.9572

Table 4. The TRC for the AR(2) model is estimated.

Measures Y992, . . . ,Y997

TRC 0.0189

goodness of fit is used. In the case, that is interesting to know if any model, k = 1, 2, . . . ,m, are better than the
benchmark in terms of expected loss. Let

dk,t = L (ξt, δ0,t−h)− L (ξt, δk,t−h) , k = 1, 2, . . . ,m (85)

where dk,t denotes the performance of model k relative to the benchmark at time t, and those variables in the
relative yield vector performances are stacked, dt = (d1,t, . . . , dm,t). Provided that µ = E(dt) is well defined, the
null hypothesis of interest is formulated

H0 : µ ≤ 0 , and our maintained hypothesis is µ ∈ Rm (86)

Under the assumption that model k is better than the benchmark if and only if E(dk,t) > 0, the exclusive focus on
the properties of dt and abstract entirely from all aspects that relate to the construction of the δ − variables (where
δ is a finite set of possible decision rules). Thus dt , t = 1, . . . , n, is de facto viewed as our data.
In [34], the RC from the test statistic is built

TRC
n = max

(√
nd̄1, . . . ,

√
nd̄m

)
(87)

where

d̄ =
1

n

n∑
i=1

dt (88)

and an asymptotic null hypothesis of distribution is based

n
1
2 d̄ ∼ Nm

(
0, Σ̂

)
(89)

where
E
(
Σ̂
)
= Σ (90)

Table (4), the results of the prediction evaluation through the TRC statistic are presented, a low error for the
predicted values with respect to true values is shown. To measure the execution time, the function gettimeofday
is used in the library sys\time:h. The 169467 µs execution time of the sequential algorithm is shown for 1000 data
from the bivariate series of the example 1. Table (5) the execution time of the Levinson parallel algorithm are
shown, the speedup and efficiency factors for the parallel algorithm for different numbers of threads are presented.
When the number of pthreads greater than 4, the efficiency is not increased, i.e., not all the threads are executing

useful work. Perhaps, the loss of efficiency is due to the increased cost of communication among processors, also,
the delays in the communications and synchronizations with the non-parallelizable processes. The ideal case P = 2
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Table 5. The speedup and efficiency factors of the Levison parallelized algorithm for different numbers of threads.

Pthread Time (µs) speedup efficiency
P = 2 156002 1.086312996 0.543156498
P = 3 258954 0.654428972 0.218142991
P = 4 267358 0.633857973 0.158464493
P = 8 455937 0.37168951 0.046461189

P = 16 873991 0.193900166 0.01211876
P = 32 1601456 0.105820578 0.003306893

Table 6. The TRC statistic for Air temperature and predictions with the AR(5) model.

Measures Y1001, . . . ,Y1006

TRC 0.4495

Table 7. The speedup and efficiency factors of the Levison parallelized algorithm for different numbers of threads.

Pthread Time (µs) speedup efficiency
P = 2 392342 1.051671756 0.525835878
P = 3 535435 0.770616415 0.256872138
P = 4 605314 0.68165448 0.17041362
P = 8 1169730 0.352743796 0.044092974

P = 16 1340776 0.307743426 0.019233964
P = 32 1914501 0.215520911 0.006735028

can be used, a 8% increase in speed-up with respect to the sequential algorithm is provided.
The results of the prediction evaluation are measured, the TRC statistic in the Table (6) is presented. A low error for
the predicted values with respect to the values true by the considered series is shown. The execution time 412615
µs of the sequential algorithm for 1000 bivariate series data from the example 2 is shown. In the Table (7), the
execution time of the Levinson parallel algorithm is shown, and the speedup and efficiency factors for the parallel
algorithm by different numbers of threads are observed.
When the number of pthreads greater than 4, the efficiency is not increased, i.e., not all the threads are executing

useful work. Perhaps, the loss of efficiency is due to the increased cost of communication among processors, also,
the delays in the communications and synchronizations with the non-parallelizable processes. The ideal case P = 2
can be used, a 5% increase in speed-up with respect to the sequential algorithm is provided.

7. Discussion and Conclusions

In this work, we have obtained a version of the Levinson algorithm through techniques of operator theory. The
introduction of a normalization technique for the generators of defect spaces associated with an isometry has
enabled the development of a version of the Levinson algorithm tailored for infinite-dimensional Toeplitz block
matrices. This framework facilitates the estimation of stationary second-order stochastic processes, particularly in
the context of autoregressive linear filters. The implications of this work extend to spectral estimation, functional
data analysis, and prediction tasks.

To evaluate the performance and applicability of the algorithm, we have implemented a parallelized version
utilizing the Pthreads POSIX library and tested it on two real-world examples: estimating parameters for a Vector
Autoregression (VAR)(1) model and an autoregressive process of order 5 (AR(5)). The accuracy of the parallelized
algorithm has been assessed using the TRC goodness-of-fit test, which demonstrates negligible estimation errors.

The study provides a analysis of performance metrics, including speedup and efficiency factors. Our results
reveal that the parallel algorithm achieves an optimal scenario with a speed increase of 8% when using 2
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threads compared to the sequential algorithm. However, as the number of threads increases beyond 4, the study
acknowledges a decrease in efficiency attributed to communication overhead and synchronization delays.

The analysis of the algorithm’s performance has revealed several weaknesses that should be addressed in
future work. Firstly, the algorithm exhibits scalability limitations, as its efficiency decreases when the number
of threads increases. Although it demonstrates good performance with a small number of threads, this limitation
may restrict its applicability in high-performance computing environments. To overcome this challenge, future
research should focus on proposing strategies to improve scalability, such as exploring load balancing techniques
or communication optimizations. By addressing these scalability limitations, the algorithm’s suitability for high-
performance computing environments can be significantly improved, ensuring efficient processing of large-scale
data.

Secondly, a weakness of the presented study is the lack of a comparative analysis with existing parallel
algorithms or optimization strategies for similar problems. While the algorithm’s performance and accuracy have
been demonstrated, a direct comparison with state-of-the-art methods would provide a clearer understanding of
its novelty and competitive edge. Therefore, it is recommended to incorporate a comparative analysis section
in future work. This section should benchmark the proposed algorithm against existing parallel algorithms or
optimization strategies in terms of computational efficiency and accuracy. By conducting such a comparative
analysis, researchers can assess the algorithm’s competitive advantages and highlight its unique contributions to
the field, further strengthening its credibility and impact.

To address the identified weaknesses and further improve the algorithm’s performance, several areas of future
work can be pursued. Firstly, comprehensive comparative studies should be conducted to establish the effectiveness
of the proposed algorithm. These studies would involve benchmarking the algorithm against state-of-the-art
methods, specifically focusing on computational efficiency and accuracy. By comparing the proposed algorithm
with existing parallel algorithms or optimization strategies, researchers can gain insights into its relative strengths
and weaknesses, thereby establishing its competitive advantages and highlighting its novelty. Incorporating a
comparative analysis section would provide a more comprehensive evaluation of the algorithm’s performance and
strengthen its position in the field.

Furthermore, future work should prioritize the investigation and development of scalability strategies. The
observed scalability limitations indicate the need for solutions that can enhance the algorithm’s performance with
an increasing number of threads. Exploring load balancing techniques and communication optimizations would be
crucial in improving scalability. By addressing these limitations, the algorithm’s applicability in high-performance
computing environments can be significantly expanded, enabling efficient processing of larger datasets. It is
recommended to discuss potential strategies and approaches in the future work section, emphasizing the importance
of overcoming scalability challenges.

Lastly, it is recommended to provide a more detailed description of the implementation details related to
parallelization. Researchers should clarify the strategies employed to manage communication overhead and any
optimizations utilized in the usage of the Pthreads library. This level of transparency and technical clarity will
enable readers to better understand the intricacies of the parallelization process and facilitate the replication
and implementation of the algorithm in future research. Ensuring transparency in implementation details would
strengthen the integrity of the study and allow for a more comprehensive evaluation of its methodology.

By addressing these weaknesses and incorporating the recommended future work, the analysis and discussion of
the results section will be strengthened. This will provide a more comprehensive evaluation of the algorithm’s
performance, scalability, and competitiveness, ultimately contributing to its further development and broader
impact in the field.
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