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Abstract Organizations strive to retain their top talent and maintain workforce stability by predicting employee turnover
and implementing preventive measures. Employee turnover prediction is a critical task, and accurate prediction models can
help organizations take proactive measures to retain employees and reduce turnover rates. Therefore, in this study, we propose
a hybrid genetic algorithm–autoencoder–k-nearest neighbor (GA–DeepAutoencoder–KNN) model to predict employee
turnover. The proposed model combines a genetic algorithm, an autoencoder, and the KNN model to enhance prediction
accuracy. The proposed model was evaluated and compared experimentally with the conventional DeepAutoencoder–KNN
and k-nearest neighbor models. The results demonstrate that the GA–DeepAutoencoder–KNN model achieved a significantly
higher accuracy score (90.95%) compared to the conventional models (86.48% and 88.37% accuracy, respectively). Our
findings are expected to assist human resource teams identify at-risk employees and implement targeted retention strategies to
improve the retention rate of valuable employees. The proposed model can be applied to various industries and organizations,
making it a valuable tool for human resource professionals to improve workforce stability and productivity.
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1. Introduction

Employee turnover occurs when individuals leave their positions in business organizations due to several factors.
There are two distinct categories of employee turnover, i.e., voluntary and involuntary, which are not dependent on
the organization [1]. However, companies may experience employee turnover for various reasons within these
categories, such as receiving better job offers from competing companies, dissatisfaction with salary, and/or
strained relationships with management [2]. Involuntary turnover occurs when businesses terminate or lay off
workers. In contrast, voluntary turnover occurs when a worker independently decides to resign or discontinue
their engagement with the organization [3, 4]. Thus, the most significant difference between the two types of
“turnover” is the initiator of the process. A previous study [5] employed a meta-analytic technique to identify
which factors, such as age, pay, tenure, job satisfaction, and employment perception, have a high correlation with
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employee turnover. However, job satisfaction is a direct measure of the employees’ attitudes toward their work,
including various factors such as the work environment [6]. Job satisfaction serves as an indicator of how employees
perceive their job and has been found to have a significant impact on the likelihood that an employee will leave the
organization. Thus, job satisfaction is a critical factor to consider when predicting employee turnover [6]. Typically,
high turnover has detrimental impacts on an organization because it may be difficult to find an appropriate candidate
to replace an employee with specific expertise. In addition, new employees incur various costs, such as hiring and
training costs [7]. The Society for Human Resource Management has stated that replacing an employee can cost
an organization between six to nine months of the departing employee’s salary [8]. For example, if an employee
earns $60,000 annually, the recruitment and training expenses can range between $30,000 to $45,000 [8].

Involving employees in discussions about the reasons for their attrition is the most effective approach to
improving retention [9]. In addition, a learning curve is involved when a new employee takes over a position,
which can lead to reduced productivity. In the worst-case scenario, employees may even share their loyalties with
competing corporations. The causes, importance and retention strategies of employee turnover was discussed by
the previous study. [10] while Reference [[11]] investigated the case study of employee turnover at ice cream deli
in Mexico. A previous study [12] classified turnover costs into direct and indirect costs. The direct turnover cost
includes the cost of leaving as well as hiring, replacement, and transition costs, and the indirect turnover cost
includes the cost of reduced productivity and performance [13]. Table 1 summarizes the direct and indirect costs
associated with employee turnover. In summary, human resources can minimize the impact of employee turnover
by taking proactive actions to retain employees and by planning for attrition risk analysis.

Table 1. Direct and Indirect Turnover Costs

Direct Turnover Cost Indirect Turnover Cost
Hiring and recruiting costs Loss of knowledge
Training and orientation costs Loss of trade secrets
Severance cost Loss of organization productivity and performance
Time spent on recruiting, hiring, and training processes Loss of organization productivity and performance

As mentioned previously, employee turnover has a detrimental impact on productivity if experienced workers
frequently leave the organization, which causes the organization to have a high percentage of inexperienced workers
[12]. High turnover numbers can reduce an organization’s efficiency due to the huge costs associated with candidate
selection and recruitment [7]. Acquiring employee data is required to solve the employee turnover problem.
However, data with high dimensionality tends to be a challenge for most machine learning tasks. Dimensionality
reduction is a critical procedure that mitigates the detrimental impacts of a high-dimensional feature space and the
data sparsity problem [14]. Reducing data dimensionality also ignores the data’s noisy features while emphasizing
highly relevant features [14].In addition, a large number of inputs increase model complexity and makes it more
difficult to solve the turnover classification task. The curse of dimensionally occurs when a calculation becomes
extremely complex with a high number of variables, which affects the performance of the model by making it
increasingly difficult to discover the relations among data.

Deep learning techniques can be used to predict employee turnover by analyzing employee feedback and
information. Deep learning techniques have succeeded in applications in various domain, such as healthcare
[15], finance [16], cloud detection [17] and human resource, specifically employee turnover [18, 19, 20, 21].It
can learn feature hierarchies from higher levels in the hierarchy generated by a combination of lower-level
characteristics [22]. Deep learning techniques which rely on representation-learning to extract multiple levels
of representation. This process involves the composition of uncomplicated yet nonlinear modules that transform
the raw input representation at one level into a slightly more abstract representation at a higher level [23]. The
concept of representation-learning encompasses a range of techniques that enable a machine to be supplied with
raw data and autonomously uncover the necessary representations for classification or detection purposes [23].
These representation-learning approaches frequently employ many layers of representation generated from basic
but nonlinear modules that translate representation at one level into a more basic level [23]. Previous studies
have explored the fusion of autoencoder and ML techniques, such as the hybrid autoencoder–k-nearest neighbor
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(KNN) model, [24] for improved breast cancer prediction on datasets with high-dimensional and uncertain data. In
addition, another study [25] combined a sparse autoencoder and a support vector machine (SVM) for classification
tasks, achieving an increased classification accuracy of 70.90%–75.90% compared to a single SVM model on a
tabular dataset with 1000 observations and 24 features, which is similar to the dataset used in this study. Thus, in
this study, we utilized a DeepAutoencoder in conjunction with a KNN model. As previous study [25] demonstrated
the utility of genetic algorithms (GA) in terms of enhancing the performance of a deep autoencoder; thus, in this
study, a GA is also utilized to determine the optimal hyperparameters for the DeepAutoencoder–KNN model.The
objective of this study is to propose a hybrid model, which we refer to as the GA–DeepAutoencoder–KNN model,
to address the employee turnover problem. While previous attempts have been made to predict employee turnover,
to the best of our knowledge, no study has investigated the use of the GA–DeepAutoencoder–KNN model to predict
employee turnover.

The remainder of this paper is organized as follows. Section 2 outlines the materials, methods, and proposed
model. Section 3 presents the experimental results and a corresponding discussion. Finally, the paper is concluded
in Section 4, including suggestions for potential future work.

2. Materials and methods

This section outlines the model design utilized to construct the proposed GA–DeepAutoencoder–KNN model. The
primary aim of our experiment was to predict employee attrition, which is a binary classification prediction problem
with outputs of “0” or “1,” where “0” signifies that the employee remains with the organization and “1” represents
that they have left the organization. To classify the output data from the DeepAutoencoder, several algorithms,
such as random forest (RF), KNN, decision tree (DT), SVM, and naı̈ve Bayes (NB), were evaluated to select the
best technique. Note that the selected classifiers are the common algoritms that frequesntly applied in the existing
research works [26, 27, 28] The KNN algorithm was selected as the classifier due to its promising performance
(Table 2). The RF and KNN models exhibited high accuracy scores of 90.81% and 88.37%, respectively; however,
we found that the RF model incurred considerably higher computational costs than the KNN model, as shown in
Figure 1. The computation time of the RF model was 177 s, which is 89% more than that of the KNN classifier
(only 18 s). Thus, the KNN model was used as the classifier to predict employee turnover owing to its superior
accuracy and lower computational costs.

Table 2. Accuracy Scores of ML Algorithms

Model Accuracy (%)
RF 90.81
KNN 88.37
DT 83.78
SVM 70.00
NB 68.24

According to the literature [29], the KNN model is very costly when facing the curse of dimensionality on a
large number of datasets. The idea behind nearest neighbor classification is to categorize data items according to
the class of their nearest neighbors, and it is frequently advantageous to include multiple neighbors [30]. However,
the nearest neighbor calculation in the KNN method cannot discriminate candidate points when the distance
between the nearest and farthest points from the query point is nearly equal in a high-dimensional space [31].
In addition to the curse of dimensionality, prediction accuracy can be reduced greatly due to the presence of noise
in a dataset [32]. Thus, the proposed model utilizes the DeepAutoencoder before the KNN model to reduce the
feature dimensionality by learning the relationships between data. Subsequently, the KNN algorithm is trained
using training and test sets generated by the DeepAutoencoder. In addition, GridSearchCV is employed to select
optimal hyperparameters for the KNN model, and the results are shown in Table 3.
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Figure 1. Computation time of KNN and RF models

Table 3. KNN Hyperparameter Selection Using GridSearchCV

Hyperparameter Description Value
n neighbors Number of neighbors 1
weights Weight function used in prediction Uniform
metric Distance metric Manhattan

2.1. Autoencoder Integration

An autoencoder is a type of neural network that has the same number of nodes in the input and output layers
[33]. It learns the relationships of the data in an unsupervised learning manner. Interesting information about the
data structure can be discovered by limiting the number of hidden nodes in an autoencoder method [34]. Here, the
network is forced to learn a compressed representation of the input by configuring the smaller node in the hidden
layer. Additionally, the correlation between the input features can be discovered when the number of hidden layers
increases. Figure 2 shows the autoencoder’s structure, which is composed of an encoder layer, code size layer,
and decoder layer. The node located in the middle layer is referred to as the code size, and a smaller code size
corresponds to a higher degree of data compression.

Figure 2. Autoencoder structure

The autoencoder equations can be expressed as follows:

z = f(we, be;x),

r = g(wd, bd; z),
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where f(.) and g(.) represent the encoder and decoder functions of the autoencoder, respectively. In addition, we

and be represent the parameter weight and bias for the encoder, respectively, and wd and bd represent the parameter
weight and bias for the decoder, respectively [35]. In our experiment, the DeepAutoencoder was provided with a
total of 30 features through its input layer, with a corresponding number of 30 nodes allocated to the output layer.
Note that the activation function utilized in the proposed model is consistent with that of the autoencoder-SVM
model [36]. Here, the ReLu activation function is used for the hidden layer, and the mean square function is used
as the loss function. In summary, the proposed autoencoder model has the following training steps.

1. Feed the 30-input feature into the input layer of the autoencoder
2. The input is transformed into a lower-dimensional layer (encoder) and then expanded to reproduce the initial

data (decoder). The equations for the encoder and decoder layers are expressed as follows:

Y = f(x) = s(WX + bx),

X ′′ = g(Y ) = s(W ′′Y + by),

where f(x) represents the decoded function, g(x) is the decoded function, W represents the weight, and
b represents the bias. In addition, S is the activation function. In our experiment, ReLu was used as the
activation function for the hidden layer of the autoencoder. The autoencoder training process was used to
determine the parameter θ = (W, bx, by) to minimize the reconstruction loss with the cost function, and the
mean squared error was used as the cost function for the proposed autoencoder. The mean squared error is
expressed as follows:

L(θ) =
1

n

n∑
i=1

(Yi − Y )2

where n is the number of data points, Yi represents the observed value, and Y represents the predicted value.
3. The output of the decoder is fed into the output layer with 30 nodes (which is the same as the number of

input nodes). Here, the sigmoid function is used as the activation function for the output layer; however, the
related hyperparameters, such as the number of hidden layers, number of nodes in the hidden layers, number
of epochs, and learning rate, can greatly affect the performance of the autoencoder. Thus, the GA was utilized
to find the optimal hyperparameter values for the autoencoder (Figure 3).

Figure 3. Architecture of the proposed model
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2.2. GA Integration

The GA is an optimization algorithm that can discover the optimal areas of a search space by mimicking the process
of Darwinian evolution [37].The individuals in the GA can be represented as a fixed-length string or vector that
encodes a single possible solution to the given problem [38]. The GA begins by generating random individuals to
form an initial population, and these individuals are then assigned a fitness value using a fitness function, where
higher scores indicate better solutions, which increases the likelihood of being selected as parents. Then, mutation
and recombination operators are used to promote solution diversity. Eventually, a new population (referred to as
“children”) is created to continue the iterative cycle. Figure 4 shows the GA process employed in the proposed
model, beginning with the population initialization phase and continuing through fitness evaluation, selection,
crossover, mutation, and termination.

Figure 4. Process of GA

According to the literature [39], finding the optimal number of initial population is a difficult problem. The
factors that could affect the initial population of the GA include the fitness function, search space, diversity, problem
difficulty, selection pressure, and the number of individuals. Thus, in this study, the initial population was set to 10
despite the fact that different numbers of generations were tested and evaluated (Section 3). For example, if we set
the initial population number to 10 and run 10 generations using the genetic algorithm. In this case, a total of 100
fitness functions will run through the GA. The reason being, with each generation generating 10 new populations,
there will be a total of 42 fitness functions. The total fitness function can be calculated as follows. Furthermore,
The decision variables are described in Table 4.

Total number of fitness functions = initial population× generation (1)

= 10× 10

= 100 total fitness function

A previous study [40] suggested that the number of nodes in the hidden layer is smaller than the number of
nodes in the input layer to extract the correlation between inputs. Consequently, the decision variable for the
number of nodes in the hidden layer was set between 5 and 25. Note that a small learning rate causes small weight
changes, and a large learning rate causes larger changes [41]. In addition, an incorrect learning rate may cause the
GA search to fall into a suboptimal solution. In the experiment, learning rates from 0.001 to 0.25 were set as the
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Table 4. Decision Variables for the Hyperparameters

Hyperparameter Decision Variables
Learning rate 0.001, 0.003, 0.004, 0.100, 0.150, 0.200, 0.250
Number of hidden layers 1-7
Number of nodes in hidden layer 1 5, 10, 15, 20, 25
Number of nodes in hidden layer 2 5, 10, 15, 20, 25
Number of nodes in hidden layer 3 5, 10, 15, 20, 25
Number of nodes in hidden layer 4 5, 10, 15, 20, 25
Number of nodes in hidden layer 5 5, 10, 15, 20, 25
Number of nodes in hidden layer 6 5, 10, 15, 20, 25
Number of nodes in hidden layer 7 5, 10, 15, 20, 25
Number of epochs 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Batch size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

decision variable. The generation of the solution permits an asymmetric autoencoder, which means that the number
of layers in the encoder and decoder may not be equal. The GA will determine the hyperparameter values for the
autoencoder using an approach that is similar to that reported in the literature [42], where the authors allow the
solution of an asymmetric autoencoder to be obtained from an evolutionary algorithm. Chromosome encoding is
the process of representing genetic information in a form that can be manipulated by an evolutionary algorithm,
where the encoding scheme determines how the genes in the chromosome correspond to the traits or parameters of
the individual being evolved. Figure 5 shows the encoding scheme for the chromosome.

Figure 5. Chromosome encoding

2.2.1. Fitness Evaluation In the fitness evaluation phase, the hyperparameter of each population was input to the
DeepAutoencoder–KNN model to obtain the model’s testing accuracy score, where a higher accuracy score means
the model exhibits better predictive performance. The accuracy score of each population was then stored in an
array for the next parent selection process.

2.2.2. Parent And Survivor Selection The selection process in the GA ensures that an individual with a high fitness
value is selected for the next generation. There are many types of selection methods for the GA, such as tournament
selection, Boltzmann selection, rank selection, and steady-state selection. Tournament selection applies a roulette
wheel approach that places all individuals on the roulette wheel according to their fitness value [43]. Here, the
larger the fitness value, the large the segment of the roulette wheel will be assigned to the individual. Note that
the operation of the roulette wheel is stochastic, and as such, the individuals with the highest probabilities are
more likely to be selected for the next generation. This may lead to a biased selection toward individuals with
high fitness; however, an individual with low probability may still have a chance to be selected for the generation
cycle. Rank selection is another type of parent selection technique that involves sorting the population based on the
individual’s fitness value and assigning them a rank. Parents are selected based on rank rather than fitness. Rank
selection is an explorative selection technique that can prevent quick convergence and can overcome the scaling
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problem. The formula of the rank selection technique is expressed as follows [44]:

rsumi
=

N∑
i=1

ri,j , (2)

PRANKi =
ri,j
rsumi

where rsum represents the sum of ranks for all individuals, and PRANK is the selection probability. In this study,
an existing tournament selection technique [43] was applied as the parent selection method, where the probability
of an individual being selected for mating is based on the individual fitness value over the total fitness value, which
is expressed as follows:

PFPS(i) =
fi∑µ
j=1 fi

(3)

fi = individual fitness;
µ∑

j=1

fi = total fitness (4)

Note that a higher accuracy value indicates that the model exhibits better predictive performance. An individual
with higher accuracy takes a large segment on the roulette wheel, and an individual with lower accuracy takes a
small segment on the roulette wheel. As a result, an individual with higher accuracy will have a high chance of
being selected as a parent. For the survivor selection, the design follows an age-based selection mechanism that
produces the same number of offspring as parents and deletes all parents. Then, the surviving offspring form a new
population in the next generation.

2.2.3. Crossover After the parent selection process, the GA begins the crossover phase, where two parents are
combined to produce new children. Various crossover operations can be employed based on the representation
of the solution, such as single-point, double-point, uniform, and cycle crossovers. Among these operations, the
single-point crossover is the simplest operation in the GA, where a random cutting point is selected for both
parents. Following this, new children are produced by taking the segment of both parents at the cutting point. In
the double-point crossover operation, new children are produced by taking two cutting points on the parent [37].
In the proposed model, the crossover scheme follows the double-point crossover operation. Here, the cutting point
of the chromosome is set as the third and seventh genes, as shown in Figure 6. The new offspring takes these parts
from both parents. As a result, the new offspring has its own new element of information.

Figure 6. Double-point crossover operation

2.2.4. Mutation The mutation scheme follows a one-bit flip mutation operation, where a random point is selected
and flips the individual bit at the random point (Figure 7). Additionally, the mutation probability of the child is set
to 0.03, which means that not all children will proceed through the mutation process.In terms of the crossover and
mutation probabilities, a previous study [45] suggested a range of 0.5–1.0 for the crossover probability and a range
of 0.005–0.05 for the mutation probability. Thus, in this study, the probabilities of crossover and mutation in the
GA were set to 0.8 and 0.03, respectively.
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Figure 7. One-bit flip mutation

2.2.5. Termination Criteria The GA terminates when it reaches the maximum generation. In summary, the
proposed GA–DeepAutoencoder–KNN model is a new architecture that has not been reported previously. The
combination of the DeepAutoencoder and the KNN model solves the high dimensionality and high noise sensitivity
problems of the conventional KNN technique. In addition, the GA is utilized to optimize the hyperparameters
of DeepAutoencoder to increase the performance of employee turnover prediction. Details about the GA are
summarized in Table 5.

Table 5. Summary of GA

Symbolic Parameters
Representation Bit-string
Survivor selection Age-based
Parent selection Tournament wheel selection
Mutation One-bit flip
Crossover Double-point crossover

Numeric Parameters
Population size 10
Mutation probability 0.03
Crossover probability 0.80

The proposed GA–DeepAutoencoder –KNN model was compared to the single KNN model and the
DeepAutoencoder–KNN model. Here, the DeepAutoencoder–KNN model included two hidden layers with five
nodes in each layer. The output layer was set to 30 , which is the same as the input layer. The learning rate and
batch size follow the default settings, i.e., 0.001 and 32, respectively. For the single KNN model, the GridsearchCV
function was employed to select the best hyperparameters for the KNN model (Table 3).

2.3. Data Collection

The dataset used in this study was the IBM dataset [46], a medium-sized dataset comprising 1,500 observations
and 35 features. The dataset contains a wide range of features, such as age, education, job role, monthly income,
and others. In addition, the dataset includes a target feature called “attrition,” where the value “No” indicates
an employee who has remained with the company, and “Yes” indicates that the employee has left the company.
Other features in the dataset include business travel, daily rate, department, distance from home, employee count,
employee number, satisfaction with the work environment, gender, hourly rate, job involvement, job level, job
satisfaction, marital status, monthly rate, number of companies worked for, over 18 status, extent of overtime,
percentage of salary hikes, performance rating, relationship satisfaction, standard hours, stock option level, total
working years, and training time. Note that the feature variables vary between continuous, nominal, dichotomous,
constant, and discrete.

2.4. Data Preprocessing

To enhance the accuracy and computation time of the proposed model, several preprocessing steps were applied
to the dataset to eliminate noise, such as missing values, empty columns, and meaningless constant features. Here,
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each column of the dataset was examined thoroughly for empty values, and no empty values were detected.
Then, irrelevant features, such as ID number, constant features, and features with unclear descriptions, were
removed from the dataset because they do not provide useful information to a predictive model. Additionally, the
numeric variables underwent standardization, and categorical features were transformed into model-understandable
numerical data using a label encoder. After completing the removal of features with constant values, the resulting
dataset comprised a total of 31 features. However, the dataset was found to be imbalanced, with only 237
observations in the “Yes” class and a significantly higher number of observations (1233) in the “No” class. To
address this data imbalance problem, the dataset was resampled to ensure an equal number of observations in both
classes, with each class having 1233 observations. Then, the entire dataset was partitioned randomly into training
and testing sets at a ratio of 80:20, respectively. The training set was used to train the model, and the testing set was
used to evaluate the model’s performance in predicting the employee turnover status. Consequently, the training
set comprised a total of 1726 observations, and the testing set comprised a total of 740 observations.

2.5. Performance Measurement

A confusion matrix was used to evaluate the performance of the classification model. The confusion matrix is
structured as a table and contains values representing the true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) results produced by the model. The results are shown in Table 6.

Table 6. Confusion matrix

Actual positive (1) Actual negative (0)

Predicted positive (1) True positives (TPs) False positives (FPs)
Predicted negative (0) False negatives (FNs) True negatives (TNs)

where:
• TP: The actual class of the data point is true, and the predicted class is also true (positive class).
• TN: The actual class of the data point is false, and the predicted class is also false (negative class).
• FP: The actual class of the data point is false, and the predicted class is true.
• FN: The actual class of the data point is true, and the predicted class is false.

Actual positive ad actual negative refer to the real data in the test set whereas predicted positive and predicted
negative denote the predicted results computed from the machine learning model. In addition, various performance
evaluation metrics, such as accuracy, recall, and precision has been employed. Accuracy is calculated as the ratio
of correct predictions to the total number of predictions, and recall measures the ability of the model to identify
positive cases correctly. Precision is the measurement of how good the model is at whatever it predicts. The
descriptions and corresponding formulas for these metrics are given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

3. RESULTS AND DISCUSSION

We proposed a hybrid GA–DeepAutoencoder–KNN model for employee turnover prediction. In the proposed
method, the KNN classifier is initially utilized to predict the attrition status of employees owing to its high accuracy
and low computational cost, which is evident from the results shown in Table 2 and Figure 1. The results of the
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following experiment indicated that the single KNN model achieves 88.37% accuracy with 304 TPs and 350 TNs,
which is slightly lower in performance compared to the proposed GA–DeepAutoencoder–KNN model, as shown
in Table 7 and Figures 8 - 10. This difference in performance is likely due to the KNN model’s limited ability
to handle high-dimensional data and noise. To enhance the KNN model’s classification performance by reducing
the dimensionality, the DeepAutoencoder was utilized before the KNN model. However, inaccurate selection of
hyperparameters in the DeepAutoencoder can reduce performance, as shown in Table 7 and Figures 8 - 10. The
accuracy of the DeepAutoencoder–KNN model was 86.48%, which is less than that of the KNN model. Finally,
the GA was implemented to optimize the autoencoder’s hyperparameters.

Table 7. Predictive performance of the models

Models TP TN FP FN Accuracy Recall Precision
GA-DeepAutoencoder-KNN 319 354 63 4 90.95 98.76 83.51
KNN 304 350 78 8 88.37 97.44 79.58
DeepAutoencoder-KNN 290 350 92 8 86.48 97.32 75.92
DeepAutoencoder-RF 299 306 83 52 81.76 85.19 78.27
DeepAutoencoder-DT 267 326 115 32 80.14 89.30 69.90
DeepAutoencoder-SVM 284 281 98 77 76.35 78.67 74.35
DeepAutoencoder-NB 251 211 131 147 62.43 63.07 65.71

Figure 8. Comparison of Models in Accuracy

The performance of the proposed GA–DeepAutoencoder–KNN was compared to that of the DeepAutoen-
coder–KNN and single KNN models. The results show that the proposed GA–DeepAutoencoder–KNN model
obtained the highest accuracy of 90.95% with 319 TPs and 354 TNs. The 90.95% accuracy result demonstrates
the high effectiveness of the proposed model on correct prediction over total observation. Similarly, the proposed
GA–DeepAutoencoder–KNN model demonstrated the highest precision of 83.51% with 319 TPs and 63 FPs. This
demonstrates that the proposed model can correctly predict employee turnover. In addition, the 98.76% recall with
319 TPs and 4 FNs demonstrates the effectiveness of the proposed model at labeling actual positive samples.
Compared to the DeepAutoencoder–KNN model, the proposed model proves that optimizing the hyperparameters
using the GA can improve the baseline DeepAutoencoder–KNN model. Table 8 shows the optimal hyperparameters
obtained by the GA with an accuracy score of 90.95%. This model comprised one input hidden layer, three hidden
layers, and one output layer. The input and output layers follow the number of features in the training set, i.e., 25.
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Figure 9. Comparison of Models in Recall

Figure 10. Comparison of Models in Precision

In addition, the number of nodes in the three hidden layers was 20, 5, and 20 nodes. The ideal learning rate was
0.001, and the number of epochs was 20. Finally, the batch size was set to 60.

In addition, the GA–DeepAutoencoder model was combined with various other ML models, such as
the RF, DT, SVM, and NB models, to evaluate and compare their effectiveness. When comparing the
GA–DeepAutoencoder-based ML models, we found that the DeepAutoencoder–KNN model achieved the
highest accuracy score of 90.95%. The second and third highest models in terms of accuracy were
the GA–DeepAutoencoder–RF and GA–DeepAutoencoder–DT models with 81.76% and 80.14% accuracy,
respectively. However, a reduction in the accuracy performance was observed in tree hybrid models
(GA–DeepAutoencoder–RF and GA–DeepAutoencoder–DT) compared to the single RF and single DT models.
This proves that the single RF and DT models are less affected by the high dimensionality problem. Additionally,
the GA–DeepAutoencoder–SVM models showed a 6.35% accuracy improvement compared to the single SVM
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Table 8. Optimized hyperparameters

Hyperparameter Value
Learning rate 0.001
Number of nodes in hidden layer 3
Number of nodes in hidden layer 1 20
Number of nodes in hidden layer 2 5
Number of nodes in hidden layer 3 20
Number of epochs 20
Batch size 60

model. For the NB combination, the accuracy decreased from 68.24% to 62.23% compared to the single NB
model. In summary, the combination of the DeepAutoencoder, KNN, and SVM obtained accuracy improvement in
employee turnover prediction because the KNN and SVM models are limited by the high dimensionality problem
and noise in the dataset. In this study, an initial population of 10 was selected for the genetic algorithm. While
a smaller population size can result in rapid convergence, it is important to note that the model may potentially
be confined to local optima within the search space. Thus, the number of generations versus the average accuracy
graph is plotted to observe the performance of the GA. Here, the number of generations was set between 1 and 50,
as shown in Figure 11. The average fitness of the population increased as the number of generations increased. The
increment in accuracy by increasing the number of generations explains the increasing fitness of the population in
each generation because the GA utilizes the tournament selection technique, which favors individuals with higher
fitness to be selected as the parent for the next generation. In addition, the one-bit flip mutation operation in the
GA increases the variance of the population, which speeds up the search process.

Figure 11. Number of generations vs. computation time

Moreover, a low crossover rate of 0.1 is compared to the 0.8 crossover rate in Figure 9. In 50 generations, the
average speed of discovering a higher optimum solution at a 0.1 crossover rate is low, with a success rate of only
87.98%. This can be attributed to the decrease in the number of chromosome crossovers when the crossover rate
is reduced. If an individual does not undergo crossover, it will have the same chromosomes in the next generation.
These results demonstrate that the selection of an appropriate crossover rate is vital to avoid falling into the local
optima. Figure 12 shows that the computational time of the proposed model increased as the number of generations
increased. This is because more fitness function evaluations occurred in the population as the number of generations
increased. For example, if the GA starts with an initial population of 10 individuals and runs for 20 generations,
it will perform a total of 200 fitness evaluations. The quality of the epoch solutions generated for each individual
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can also impact the computational time. If the GA generates a low epoch number of 10 for a solution, the fitness
evaluation process will be faster due to the reduced number of epochs required for training the solution. The
execution time of the GA was very high ( 2 h or (7005 s) to complete the entire execution of 50 generations.

Figure 12. Accuracy vs. number of generations

4. Conclusion

The impact of employee turnover on businesses is significant and multifaceted, resulting in reduced productivity,
performance, and revenue, along with increased costs associated with the recruitment, training, and replacement
of employees, both in terms of time and money. In addition, finding a replacement employee with similar
knowledge and expertise can be difficult and expensive. Thus, to address a research gap in the field, we proposed
a GA–DeepAutoencoder–KNN model to predict employee turnover status. We realized two primary contributions.
The novel GA–DeepAutoencoder–KNN model was developed to theoretically contribute on realizing effective
employee turnover prediction. The proposed model’s performance was evaluated and compared to the single KNN
and DeepAutoencoder–KNN models. We found that the proposed model obtained promising results, practically
demonstrating its ability to overcome the single KNN model’s limitations in terms of high-dimensional and noisy
data. In addition, integrating a GA into the DeepAutoencoder–KNN model enhanced its performance by identifying
optimal hyperparameter values. The proposed model was evaluated and compared experimentally, and the results
demonstrate its effectiveness for employee turnover prediction, thereby meeting the research objectives.

However, two limitations should be acknowledged. The first limitation is the experimental sample size. In this
study, a low sample size was utilized because the proposed model is a proof-of-concept architecture. Thus, in the
future, more data will be required for real-world implementation. In n the future, we plan to investigate various
algorithms, including extreme gradient boosting and adaptive boosting, as well as use different methods, such as
reinforcement learning.
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