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Abstract We introduce a new primal-dual interior-point algorithm with a full-Newton step for solving linear optimization
problems. The newly proposed approach is based on applying a new function on a simple equivalent form of the centering
equation of the system which defines the central path. Thus, we get a new efficient search direction for the considered
algorithm. Moreover, we prove that the method solves the studied problems in polynomial time and that the algorithm
obtained has the best known complexity bound for linear optimization. Finally, a comparative numerical study is reported to
show the efficiency of the proposed algorithm.
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1. Introduction

Linear programming (LP) consists of optimizing a linear function subject to linear constraints on real variables. In
this paper, we consider the LP in its standard form:{

min cTx
subject to Ax = b, x ≥ 0,

(P)

and it’s dual problem: {
max bT y
subject to AT y + s = c, s ≥ 0.

(D)

Where A is a m× n given matrix, b, y ∈ Rm and c, x, s ∈ Rn.
LP is a classic topic in optimization with a large number of application areas. Among the important applications

of the LP are in economics and industry.
There are many approaches to solving LP problems, the most important is the interior point method, which was

first proposed by Karmarkar [10]. This method and its variants that were developed subsequently are now called
interior-point methods IPMs. For a survey, we refer to [3, 8, 18, 19, 26]. Megiddo [16] and Sonnevend [21] were
the first to recognize the relevance of the central path for LP. The authors in [20] investigated the first primal-dual
path-following IPM for LP problems with full Newton step. This technique has been extensively extended to other
optimization problems (e.g., [11, 15, 25]).

∗Correspondence to: Billel Zaoui (Email: billel.zaoui@univ-setif.dz). Laboratory of Fundamental and Numerical Mathematics, Department
of Mathematics, Faculty of Sciences, University of Ferhat Abbas Setif-1, 19000, Algeria.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2024 International Academic Press



B. ZAOUI, D. BENTERKI AND S. KHELLADI 1099

In IPMs, the determination of search directions plays a key role. In fact, Darvay [4] introduces a new method
for finding search directions. He applied the square root function on both sides of an algebraic equivalent
transformation (AET) on the centering equation of the system which defines the central path. Then he used
the Newton method to the resulting system. This method is extended to other optimization problems such as:
convex quadratic optimization (CQO)[1], semidefinite optimization (SDO)[22], second-order cone optimization
(SOCO)[23] and symmetric optimization (SO)[24]. Moreover, Kheirfam and Nasrollahi in [13] extended this
technique which is based on the square root function to the integer powers of this function. Furthermore, Based on
the AET strategy, Darvay et al. in [5] considered a new function to present a new primal-dual IPM for LP. In the
same way, Kheirfam and Haghighi in [12] presented a new primal-dual IPM for P ∗(k)-linear complementarity. For
more related papers, we refer to [2, 7, 17]

Currently, the AET technique has become a wide research interest, and the search for a new AET to describe a
new primal-dual IPM has become an important motivation for researchers. In 2011, Zhang and Xu [27] proposed
a specific search direction for LP. They considered the equivalent form v2 = v of the centering equation and
transformed it into the form xs = µv. After that, they assumed that the variance vector is fixed and they applied
Newton’s method. Based on this new AET, Darvay and Takàcs [6] proposed another technique to obtain a new
descent direction for solving LP. They applied the function ψ(t) = t2 on both sides of the nonlinear equation
v2 = v. Next, they used Newton’s method to get the new search direction. The authors proved the theoretical and
numerical effectiveness of this new approach compared to other approaches. Furthermore, this technique has been
extensively extended to other optimization problems (e.g., [9, 14]...).

Inspired by the papers mentioned earlier, our primary objective is to reevaluate the method proposed in [6]
by incorporating a new function ψ(t) = t

3
2 . This results in the introduction of a novel primal-dual interior point

method for linear programming that offers improved computational efficiency. Furthermore, we develop some new

results and prove that the complexity is O
(
log

(n+ 3√4)
ϵ

)
iterations.

The paper is organized as follows. The concept of the central path is introduced in Section 2. Section 3 discusses
the novel search direction and outlines the algorithm associated with it. The convergence of the algorithm towards
an optimal solution is demonstrated in Section 4, along with an analysis of the maximum number of iterations
required to meet optimality conditions. Section 5 presents comparative numerical experiments and accompanying
remarks. The paper concludes with a summary and suggestions for future research in Section 6.

2. Position of the problem

Without loss of generality, throughout the paper, we assume that the pair (P) and (D) satisfy the conditions belows

• The matrix A is a full rank row, i.e., Rank(A) = m (m < n).
• There exists (x0, y0, s0) such that:

Ax0 = b, AT y0 + s0 = c, x0 > 0, s0 > 0. (1)

This last condition (1) is named the interior point condition (IPC).
We note that under the previous assumptions, the optimal solution of the primal-dual pair (P) and (D) can be

given with the following nonlinear system  Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,
xs = 0.

(2)

Where xs denotes the coordinatewise product of the vectors x and s, hence xs = (x1s1, x2s2, ..., xnsn)
T ≥ 0.

The two first equations of the system (2) are named respectively primal feasibility and dual feasibility. The last
one is called the complementarity condition.
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The basic idea of the primal-dual interior-point algorithm is to replace the complementarity condition xs = 0 in
(2), by the parameterized equation xs = µe, with µ > 0 and e is the all-one vector of length n. Thusly, we consider
the following system  Ax = b, x > 0,

AT y + s = c, s > 0,
xs = µe, µ > 0.

(3)

Without a doubt, under our assumptions, the system (3) has a unique solution, for each µ > 0 (see [21]). It is
denoted as (x(µ), y(µ), s(µ)), and we call x(µ) the µ-center of (P) and (y(µ), s(µ)) the µ-center of (D). The set
of µ-centers gives a homotopy, which is named the central path of (P) and (D). If µ goes to zero, then the limit of
the central path exists and since the limit point satisfies the complementarity condition, the limit yields an optimal
solution for the pair (P) and (D).

3. New search direction

In this section, we reconsider the technique introduced by Darvay and Takàcs [6] with a new function ψ(t) = t
3
2 to

get new efficient search direction for LP. Note that for x, s > 0 and µ > 0, from the third equation of system (3),
we deduce that

xs = µe⇔ xs

µ
= e⇔

√
xs

µ
= e⇔ xs

µ
=

√
xs

µ
.

Where, xsµ denotes the coordinatewise product of the vectors x and s divided by µ > 0, hence

xs
µ =

(
x1s1
µ , x2s2

µ , ..., xnsn
µ

)T
> 0 and

√
xs
µ is the vector obtained by taking the square roots of the components of

xs
µ .

Now, the perturbed central path can be equivalently stated as follows
Ax = b,
AT y + s = c,
xs
µ =

√
xs
µ .

(4)

Let us consider the function ψ defined and continuously differentiable on the interval
(
k2,∞

)
, where 0 ≤ k < 1,

such that 2tψ′ (t2)− ψ′ (t) > 0, ∀t > k2. Using this, system (4) can be written in the following equivalent form
Ax = b,
AT y + s = c,

ψ
(
xs
µ

)
= ψ

(√
xs
µ

)
.

(5)

This last system (5) can be written in the form f(x, y, s) = 0, where

f(x, y, s) =

 Ax− b
AT y + s−Qx− c

ψ(xsµ )− ψ
(√

xs
µ

)
 (6)

Applying Newton’s method to this system, we get: x+ = x+∆x, y+ = y +∆y and s+ = s+∆s, where
(∆x,∆y,∆s) is the solution of the linear system

A∆x = 0,
AT∆y +∆s = 0,

1
µ (s∆x+ x∆s) =

−ψ( xs
µ )+ψ

(√
xs
µ

)
ψ′( xs

µ )− 1

2
√

xs
µ

ψ′(
√

xs
µ )
.

(7)
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For the analysis of IPMs, it is convenient to associate any triple (x, s, µ) > 0, and introduce the scaled vector v
and the scaled search directions dx and ds according to

v =

√
xs

µ
, dx =

v∆x

x
and ds =

v∆s

s
.

Hence, we obtain
1

µ
(s∆x+ x∆s) = v(dx + ds), (8)

and
dxds =

∆x∆s

µ
. (9)

Obviously, with these notations, the scaled feasible Newton system of (7) can be expressed as
Adx = 0,

A
T
∆y + ds = 0,

dx + ds = pv.

(10)

Where

pv =
2ψ(v)− 2ψ(v2)

2vψ′(v2)− ψ′(v)
and A =

1

µ
Adiag

(x
v

)
.

Here, diag(xv ) is a diagonal matrix, which contains on its main diagonal the elements of the vector x
v respectively

in the original order.
It is worth noting that different choices of ψ will lead to different values of pv and hence new search directions.

The case ψ (t) = t implies that pv = 2v−2v2

2v−e , and we obtain that this direction is similar to the algorithm defined in
[5]. The case where ψ (t) = t2 yields pv = v−v3

2v2−e which is studied by Darvay and Takàcs in [6] for LP.

In this paper, we restrict our analysis to the case ψ :
(

1
3√4
,∞
)
→ R, such that ψ (t) = t

3
2 . This yields

pv =
4v − 4v

5
2

6v
3
2 − 3e

, (11)

The condition 2tψ′ (t2)− ψ′ (t) > 0,∀t > k2 is satisfied in this case, where k2 = 1
3√4

. For the analysis of the
algorithm, we define a norm-based proximity measure δ(xs, µ) as follows:

δ(v) = δ(xs, µ) =
∥pv∥
2

=
2

3

∥∥∥∥∥ v − v
5
2

2v
3
2 − e

∥∥∥∥∥ , (12)

where ∥.∥ denotes the Euclidean norm.
Also, let us define qv = dx − ds.
Then, using the above equation and the third equation of (10) we have

dx =
1

2
(pv + qv) and ds =

1

2
(pv − qv).

This implies

dxds =
p2v − q2v

4
. (13)

Since dTx ds = dTx

(
−AT∆y

)
= −

(
Adx

)T
∆y = 0, then

∥q
v
∥ = ∥p

v
∥ . (14)

Now, a framework of the algorithm is described in Figure 1 as follows
In the next section, we present some results related to algorithm complexity analysis.
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Generic Primal-dual IPM for LP
Input:
a proximity parameter 0 < τ < 1 (default τ = 1

6 );
an accuracy parameter ε > 0;
an update parameter θ, 0 < θ < 1 (default θ = 1

7
√
n
);

a strictly feasible point
(
x0, y0, s0

)
; µ0 =

(x0)
T
s0

n ; such that v0 =
√

x0s0

µ0 > 1
3√4
e;

begin
x = x0; y = y0; s = s0;
while xT s ≥ ε do
µ = (1− θ)µ;
solve the system (10) via (7) to obtain (∆x,∆y,∆s);
x = x+∆x; y = y +∆y; s = s+∆s;

end.

Figure 1. Generic algorithm

4. Complexity Analysis

The following lemma shows the feasibility of the full-Newton step under the conditions δ(xs, µ) < 1 and v > 1
3√4
e.

Lemma 4.1
Suppose that δ(xs, µ) < 1 and v > 1

3√4
e. Then the full-Newton step is strictly feasible, hence x+ > 0 and s+ > 0.

Proof
For each 0 ≤ α ≤ 1 denote x+(α) = x+ α∆x and s+(α) = s+ α∆s. Hence,

x+(α)s+(α) = xs+ α(s∆x+ x∆s) + α2∆x∆s.

Now, in view of (8) and (9) we have

1

µ
x+(α)s+(α) =

xs

µ
+ αv(dx + ds) + α2dxds. (15)

Also from (10) and (13), we can write

1

µ
x+(α)s+(α) = v2 + αvpv + α2

(
p2v − q2v

4

)
,

so
1

µ
x+(α)s+(α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2v − q2v

4

)
. (16)

In addition, from (11) we obtain

v2 + vpv =
2v

7
2 + v2

6v
3
2 − 3e

. (17)

Now, let’s consider the function f(x) = 2x
7
2 +x2

6x
3
2 −3

, with x > 1
3√4

. We have f(x) ≥ f(1), so f(x) ≥ 1.

Using this result, we get
v2 + vpv ≥ e. (18)
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Then

1

µ
x+(α)s+(α) ≥ (1− α)v2 + αe+ α2

(
p2v
4

− q2v
4

)
≥ (1− α)v2 + αe+ α2

(
p2v
4

− q2v
4

)
− α

p2v
4

≥ (1− α)v2 + αe+ α(α− 1)
p2v
4

− α2 q
2
v

4
,

so
1

µ
x+(α)s+(α) ≥ (1− α)v2 + α

(
e−

(
(1− α)

p2v
4

+ α
q2v
4

))
. (19)

If
∥∥∥(1− α)

p2v
4 + α

q2v
4

∥∥∥
∞
< 1, then the inequality x+(α)s+(α) > 0 holds, where ∥.∥∞ marks the Chebychev

norm (or l∞ norm). In this way∥∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥∥
∞

≤ (1− α)

∥∥p2v∥∥∞
4

+ α

∥∥q2v∥∥∞
4

≤ (1− α)
∥pv∥2

4
+ α

∥qv∥2

4
,

from (14), we get ∥∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥∥
∞

≤ (1− α)
∥pv∥2

4
+ α

∥pv∥2

4

≤ ∥pv∥2

4
= δ2 < 1.

Hence, x+(α)s+(α) > 0 for each 0 ≤ α ≤ 1, which means that the linear functions of α, x+(α) and s+(α)
do not change sign on the interval [0, 1] and for α = 0 we have x+(0) = x > 0 and s+(0) = s > 0. This leads to
x+(1) = x+ > 0 and s+(1) = s+ > 0. This means that the full-Newton step is strictly feasible.

We state the following lemma [5, Lemma 5.2] which will be useful in the next part of the analysis.

Lemma 4.2
Let f : [d, 1) → (0, 1) be a decreasing function with d > 0. Furthermore, let us consider the positive vector v of
length n such that min(v) > d. Then∥∥f(v) (e− v2

)∥∥ ≤ f(min(v))
∥∥e− v2

∥∥ ≤ f(d)
∥∥e− v2

∥∥ .
The local quadratic convergence of the full-Newton step is proved in the following lemma.

Lemma 4.3
Let δ = δ(xs, µ) < 1

3√4
and v > 1

3√4
e. Then v+ =

√
x+s+
µ > 1

3√4
e and

δ(x+s+, µ) < 8δ2,

which means local quadratic convergence of the full Newton step.

Proof
We know from Lemma 4.1 that x+ > 0 and s+ > 0, then v+ =

√
x+s+
µ is well defined.

Let α = 1. Then from (16) it follows that

v2+ = v2 + vpv +
p2v
4

− q2v
4
. (20)
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Using (20) and the inequality (18), we obtain

v2+ ≥ e+
p2v
4

− q2v
4
,

but p
2
v

4 ≥ 0, this imply that

v2+ ≥ e− q2v
4
,

hence

min(v2+) ≥ 1−
∥∥q2v∥∥∞

4
≥ 1− ∥qv∥2

4
≥ 1− δ2,

and this relation yields
min(v+) ≥

√
1− δ2. (21)

We have δ < 1
3√4
, then √

1− δ2 >

√
1− 1

3
√
16

>
1
3
√
4
,

using this last inequality and (21) we get

v+ >
1
3
√
4
e.

This completes the first part of the proof.
Now, from (20) and (17) we have

∥∥e− v2+
∥∥ =

∥∥∥∥e−((v2 + vpv
)
+
p2v
4

− q2v
4

)∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+ ∥∥∥∥e− (v2 + vpv

)
− p2v

4

∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥e− 2v
7
2 + v2

6v
3
2 − 3e

− p2v
4

∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥6v
3
2 − 3e− 2v

7
2 − v2

6v
3
2 − 3e

− p2v
4

∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥∥
4×

(
6v

3
2 − 3e− 2v

7
2 − v2

)
(
6v

3
2 − 3e

)
× p2v

− e

 p2v
4

∥∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥∥∥
−16v5 + v2 − 8v

7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2
 p2v

4

∥∥∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥∥∥
16v5 + v2 − 8v

7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2
 p2v

4

∥∥∥∥∥∥∥ .
On one hand, we have

16v5 + v2 − 8v
7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 ≥ 0,∀v > 1
3
√
4
e.
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In the other hand, we have

16v5 + v2 − 8v
7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 = 5e+K(v),

where

K(v) =
36v

3
2 − 36v3 − 9e+ 32v

7
2 − 4v5 − 19v2

4
(
v − v

5
2

)2 ,

since K(v) ≤ 0,∀v > 1
3√4
e, then, we conclude that

0 ≤ 16v5 + v2 − 8v
7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 ≤ 5e,

which implies that

∥e− v2+∥ ≤
∥∥∥∥q2v4

∥∥∥∥+ 5

∥∥∥∥p2v4
∥∥∥∥ = 6δ2. (22)

Now, By the definition of δ we have

δ(v+) = δ(x+s+, µ) =
∥pv+∥

2
=

2

3

∥∥∥∥∥∥
(
v+ − v

5
2
+

)
(
2v

3
2
+ − e

)
(e− v2+)

(e− v2+)

∥∥∥∥∥∥ .
Let’s consider the function: f(t) =

(
t−t

5
2

)
(
2t

3
2 −1

)
(1−t2)

, for all t > 1
3√4
, t ̸= 1. Since f ′(t) < 0, so f is decreasing.

Hence, in view of Lemma 4.2, we obtain

δ(x+s+, µ) ≤
2

3

((
1− δ2

) 1
2 −

(
1− δ2

) 5
4

)
δ2
(
2 (1− δ2)

3
4 − 1

) ∥e− v2+∥.

Then, from this last inequality and (22) we deduce

δ(x+s+, µ) ≤
4
((

1− δ2
) 1

2 −
(
1− δ2

) 5
4

)
δ2
(
2 (1− δ2)

3
4 − 1

) δ2. (23)

Now, if we take g(δ) =
4

(
(1−δ2)

1
2 −(1−δ2)

5
4

)
δ2

(
2(1−δ2)

3
4 −1

) for δ < 1
3√4

, then we obtain that g(δ) ≤ g( 1
3√4

) < 8, and we conclude

that
δ(x+s+, µ) < 8δ2.

This completes the proof.

The next lemma examines what is the effect of the full-Newton step on the duality gap.

Lemma 4.4
Let δ = δ(xs, µ). Then, the duality gap satisfies

(x+)
T s+ ≤ µ(n+ 4δ2).
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Proof
From (17) we have

v2 + vpv =
2v

7
2 + v2

6v
3
2 − 3e

= e+
2v

7
2 + v2 − 6v

3
2 + 3e

6v
3
2 − 3e

= e+
4
(
2v

7
2 + v2 − 6v

3
2 + 3e

)
(
6v

3
2 − 3e

)
p2v

× p2v
4

= e+
12v5 − 3v2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 × p2v
4

= e+

4e+ 36v
3
2 − 36v3 − 9e+ 32v

7
2 − 4v5 − 19v2

4
(
v − v

5
2

)2
× p2v

4

≤ e+ 4
p2v
4
,

because
36v

3
2 − 36v3 − 9e+ 32v

7
2 − 4v5 − 19v2

4
(
v − v

5
2

)2 ≤ 0,∀v > 1
3
√
4
e.

Then (x+)
T (s+) ≤ µ(n+ 4δ2), which completes the proof.

The following lemma investigates the effect on the proximity measure after a main iteration of the algorithm.

Lemma 4.5
Let δ = δ(xs, µ) < 1

3√4
, v > 1

3√4
e and µ+ = (1− θ)µ, where 0 < θ < 1. In addition, let v++ =

√
x+s+
µ+

. Then

v++ > 1

2
4
7
e, and

δ(x+s+, µ+) <
2

3
√
1− θ


((

1− δ2
) 1

2 (1− θ)
3
4 − (1− δ2)

5
4

) (
6δ2 + θ

√
n
)

2(1− θ)(1− δ2)
3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

 .
Moreover, if δ < 1

6 and θ = 1
7
√
n
, then δ(x+s+, µ+) <

1
6 .

Proof
Using Lemma 4.3 we have v+ > 1

3√4
e. From v++ =

√
x+s+
µ+

it follows that

v++ =

√
x+s+
µ+

=

√
x+s+

(1− θ)µ
=

1√
1− θ

v+ >
1
3
√
4
e. (24)

This last inequality follows from 0 < θ < 1 ⇒ 1√
1−θ > 1.

Now, from the definition of δ, we write

δ(v+) = δ(x+s+, µ+) =
∥pv++

∥
2

=
2

3

∥∥∥∥∥∥
(
v++ − v

5
2
++

)
(
2v

3
2
++ − e

)
(e− v2++)

(e− v2++)

∥∥∥∥∥∥ .
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Let us compute the three expressions of the previous norm. From (24) we obtain

v++ − v
5
2
++ =

1√
1− θ

v+ −
(

1√
1− θ

v+

) 5
2

=
1

(1− θ)
5
4

[
(1− θ)

3
4 v+ − v

5
2
+

]
,

and

2v
3
2
++ − e =

2v
3
2
+

(1− θ)
3
4

− e,

also
e− v2++ =

1

(1− θ)

[
(1− θ)e− v2+

]
.

Then (
2v

3
2
++ − e

)
(e− v2++) =

[
2 (1− θ) v

3
2
+ − 2v

7
2
+ + (1− θ)

3
4 v2+ − (1− θ)

7
4

]
(1− θ)

7
4

. (25)

And (
v++ − v

5
2
++

)
(e− v2++) =

(1− θ)
3
4 v+ − v

5
2
+

(1− θ)
9
4

[
(1− θ)e− v2+

]
. (26)

These two last equalities give

δ(v+) =
2

3

∥∥∥∥∥∥
(
(1− θ)

3
4 v+ − v

5
2
+

) [
(1− θ)e− v2+

]
2 (1− θ)

3
2 v

3
2
+ − 2(1− θ)

1
2 v

7
2
+ + (1− θ)

5
4 v2+ − (1− θ)

9
4

∥∥∥∥∥∥ . (27)

Let us consider the function

f(t) =
(1− θ)

3
4 t− t

5
2

2 (1− θ)
3
2 t

3
2 − 2(1− θ)

1
2 t

7
2 + (1− θ)

5
4 t2 − (1− θ)

9
4

,∀t > 1
3
√
4
.

After some calculation we obtain f ′(t) < 0 for all n ∈ N∗and t > 1
3√4

, then the function f is decreasing. From
lemma 4.2 and (27) we deduce that

δ(x+s+, µ+) <
2
[
(1− θ)

3
4
(
1− δ2

) 1
2 −

(
1− δ2

) 5
4

] ∥∥[(1− θ)e− v2+
]∥∥

3
√
1− θ

[
2(1− θ)(1− δ2)

3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

] . (28)

According to (22), we get
∥(1− θ)e− v2+∥ ≤ ∥e− v2+∥+ ∥θe∥ ≤ 6δ2 + θ

√
n.

Hence, by using this last inequality in (28) we get

δ(x+s+, µ+) <
2

3
√
1− θ


((

1− δ2
) 1

2 (1− θ)
3
4 − (1− δ2)

5
4

) (
6δ2 + θ

√
n
)

2(1− θ)(1− δ2)
3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

 .
which proves the first part of the lemma.

Now, suppose that δ < 1
6 and θ = 1

7
√
n
. Let’s consider the function

f(δ) =

(
1− δ2

) 1
2 (1− θ)

3
4 − (1− δ2)

5
4

2(1− θ)(1− δ2)
3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

,
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we obtain f ′(δ) > 0, so f is increasing for each δ < 1
6 , then

f(δ) ≤ f

(
1

6

)
, (29)

where

f

(
1

6

)
=

(
35
36

) 1
2 (1− θ)

3
4 − ( 3536 )

5
4

2(1− θ)( 3536 )
3
4 − 2( 3536 )

7
4 + (1− θ)

3
4 ( 3536 )− (1− θ)

7
4

.

Also we have for all n ∈ N∗, 3
√
1− θ > 0 and 2

(
6δ2 + θ

√
n
)
= 2

(
6δ2 + 1

7

)
< 2

(
1
6 + 1

7

)
, then

2
(
6δ2 + θ

√
n
)

3
√
1− θ

<
2
(
1
6 + 1

7

)
3
√
1− θ

=
13

63
√
1− θ

. (30)

According to (29) and (30) we obtain

δ(x+s+, µ+) <
13

63
g(θ), (31)

with

g(θ) =

(
35
36

) 1
2 (1− θ)

3
4 − ( 3536 )

5
4

2(1− θ)
3
2 ( 3536 )

3
4 − 2(1− θ)

1
2 ( 3536 )

7
4 + (1− θ)

5
4 ( 3536 )− (1− θ)

9
4

,

if n ≥ 1 then 0 < θ ≤ 1
7 . The function g is continuous and monotonic decreasing on 0 < θ ≤ 1

7 , consequently

g(θ) < g(0) =

(
35
36

) 1
2 − ( 3536 )

5
4

2 (3536 )
3
4 − 2( 3536 )

7
4 + ( 3536 )− 1

, (32)

Finally, using (31) and (32), we get

δ(x+s+, µ+) <
13

63
×

(
35
36

) 1
2 − ( 3536 )

5
4

2 ( 3536 )
3
4 − 2( 3536 )

7
4 + ( 3536 )− 1

= 0.1598 <
1

6
.

Which completes the second part of the proof.

The next result yields an upper bound on the duality gap after a full-Newton step.

Lemma 4.6
Suppose that the pair

(
x0, s0

)
is strictly feasible, µ0 =

(x0)
T
s0

n and δ(x0s0, µ0) < 1
3√4

. Moreover, let xk and sk be

the vectors obtained after k iterations. Then the inequality
(
xk
)T
sk < ε is satisfied when

k ≥ 1

θ
log

[
µ0(n+ 3

√
4)

ε

]
.

Proof
After k iterations, we have µk = (1− θ)kµ0. From Lemma 4.4 and δ(xs, µ) < 1

3√4
, we get

(xk)T sk < µk

(
n+ 4

(
1
3
√
4

)2
)

= µ0(1− θ)k
(
n+

3
√
4
)
.

Hence, the inequality
(
xk
)T
sk < ε holds if

µ0(1− θ)k
(
n+

3
√
4
)
≤ ε

⇐⇒ log(1− θ)k + log µ0
(
n+

3
√
4
)
≤ log ε

⇐⇒ −k log(1− θ) ≥ log
µ0
(
n+ 3

√
4
)

ε
.
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As θ ≤ − log(1− θ), then the last inequality is valid only if

k ≥ 1

θ
log

µ0
(
n+ 3

√
4
)

ε
.

This completes the proof.

Theorem 4.1
Suppose that x0 = s0 = e. If we consider the default values for θ and τ , we obtain that the algorithm represented
in Figure 1 requires no more than

7
√
n log

(
n+ 3

√
4
)

ε

iterations. The resulting vectors satisfy
(
xk
)T
sk < ε.

Proof

Since x0 = s0 = e, we replace µ0 =
(x0)

T
s0

n by 1 and θ by 1
7
√
n

in Lemma 4.6, the result holds.

5. Numerical experiments

To prove the effectiveness of our new function and evaluate its effect on the behavior of the algorithm, we offer a
comparative study based essentially on the two following functions.

• The first function, given by Darvay and Takàcs [6] defined by ψ(t) = t2.
• Our new function defined by ψ(t) = t

3
2 .

Let us consider the linear problem (P ) and its dual (D), where:

n = 2m, A(i, j) =

{
1 If i = j or j = i+m
0 If i ̸= j or j ̸= i+m

,

c(i) = −1, c(i+m) = 0, b(i) = 2, for i = 1, ..,m.

The starting points are:
x0 (i) = x0 (i+m) = 1, y0(i) = −2, z0(i) = 1, z0(i+m) = 2 for i = 1, ...,m.
The algorithm was implemented using MATLAB. We considered the following different values for the update

parameter θ : 0.1, 0.2, 0.4, 0.5, 0.7, 0.9. We set the value for the accuracy parameter ε = 10−4.
In the table of results, (m,n) represent respectively the number of constraints and the number of variables, Iter

represents the number of iterations necessary for optimality and T (s) is the execution time in seconds.
For different values of θ, we summarize the obtained results in Tables 1, 2, 3, 4, 5 and 6.

Comments
The numerical results show that the number of iterations and the execution time necessary for the optimality of

the algorithm depends on the values of the parameter θ. It is quite surprising that θ = 0.9 gives the smallest number
of iterations and minimal time. Moreover, the realized numerical experiments prove the effectiveness of our new
function on all tested instances. We note that when the dimension of the problem becomes large and θ = 0.9, the
difference between our new function and that of Darvay and Takàcs [6] becomes large in terms of the number of
iterations. These numerical results consolidate and confirm our theoretical results.
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Table 1. comparative results for θ = 0.1.

ψ(t) = t2 ψ(t) = t
3
2

(m,n) Iter T (s) Iter T (s)

(25, 50) 129 0.3204 129 0.3087
(50, 100) 136 1.4265 136 1.4346
(100, 200) 142 8.0714 142 7.8226
(250, 500) 151 97.0597 151 89.6265
(500, 1000) 157 593.3854 157 585.5760
(750, 1500) 161 2234.7482 161 1933.9494

Table 2. comparative results for θ = 0.2.

ψ(t) = t2 ψ(t) = t
3
2

(m,n) Iter T (s) Iter T (s)

(25, 50) 61 0.1756 61 0.1743
(50, 100) 65 0.6439 64 0.6325
(100, 200) 68 4.0990 67 4.0664
(250, 500) 72 42.0901 72 41.7091
(500, 1000) 75 282.4912 75 280.5850
(750, 1500) 77 1162.5452 77 933.3365

Table 3. comparative results for θ = 0.4.

ψ(t) = t2 ψ(t) = t
3
2

(m,n) Iter T (s) Iter T (s)

(25, 50) 28 0.0959 27 0.0984
(50, 100) 29 0.3025 29 0.2783
(100, 200) 31 1.9525 30 1.8170
(250, 500) 33 21.5579 32 19.7897
(500, 1000) 34 139.1897 33 124.8724
(750, 1500) 35 448.7335 34 417.4751

6. Conclusion

We have reconsidered the technique presented by Darvay et al. in [6] by using a new function. With this technique,
we proposed a new primal-dual IPM for solving linear optimization problems and proved that the obtained
algorithm solves the problem in polynomial time and has the best-known complexity bound for LP. Moreover, we
provided some numerical experiments to show the efficiency of the proposed algorithm. Future research would be to
extend this technique to other important optimization problems such as convex quadratic optimization, semidefinite
optimization, second-order cone optimization and symmetric optimization.
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Table 4. comparative results for θ = 0.5.

ψ(t) = t2 ψ(t) = t
3
2

(m,n) Iter T (s) Iter T (s)

(25, 50) 23 0.0861 21 0.0854
(50, 100) 24 0.3034 22 0.2271
(100, 200) 25 1.4499 23 1.3457
(250, 500) 26 16.4222 24 14.6800
(500, 1000) 27 101.6608 25 94.8041
(750, 1500) 28 345.8178 26 307.0373

Table 5. comparative results for θ = 0.7.

ψ(t) = t2 ψ(t) = t
3
2

(m,n) Iter T (s) Iter T (s)

(25, 50) 21 0.0876 14 0.0701
(50, 100) 22 0.2788 15 0.1845
(100, 200) 23 1.5355 16 0.9504
(250, 500) 24 14.4541 17 10.7135
(500, 1000) 25 93.3130 17 64.9954
(750, 1500) 25 297.3467 18 224.1331

Table 6. comparative results for θ = 0.9.

ψ(t) = t2 ψ(t) = t
3
2

(m,n) Iter T (s) Iter T (s)

(25, 50) 20 0.0743 13 0.0708
(50, 100) 21 0.2286 14 0.2143
(100, 200) 22 1.3844 14 0.8667
(250, 500) 23 14.5164 15 9.7474
(500, 1000) 24 90.6246 16 64.7198
(750, 1500) 25 294.2109 16 193.1574
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