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Abstract The Inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm, which does not require computation
of the exact gradient, can be applied to solving general expectation minimization problems rather than only finite sum
problems. The performance of iSARAH algorithm is frequently affected by the step size selection, and how to choose an
appropriate step size is still a worthwhile problem for study. In this paper, we propose to use the stabilized Barzilai-Borwein
(SBB) method to automatically compute step size for iSARAH algorithm, which leads to a new algorithm called iSARAH-
SBB. By introducing this adaptive step size in the design of the new algorithm, iSARAH-SBB can take better advantages
of both iSARAH and SBB methods. We analyse the convergence rate and complexity of the modified algorithm under the
usual assumptions. Numerical experimental results on standard data sets demonstrate the feasibility and effectiveness of our
proposed algorithm.
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1. Introduction

We consider the following type of stochastic optimization problem in the context of large scale machine learning:

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (1)

where ξ is a random variable, f is a convex function which stands for the loss function, and w ∈ Rd is the
Parameter to be adjusted in machine learning. One of the most popular applications of this problem is expected risk
minimization in supervised learning. In this case, random variable ξ represents a random data sample (x, y), or a
set of such samples {(xi, yi)}i∈I . We consider a set of realizations {ξ[i]}ni=1 of ξ corresponding to a set of random
samples {(xi, yi)}ni=1, and define fi(w) := f(w; ξ[i]). Then the sample average approximation of F (w), known as
the empirical risk in supervised learning, can be written as

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
, (2)
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where n is the sample size and d ≪ n. Throughout this paper, we assume that each fi is convex and differentiable.
For a given training set {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R, the least squares regression model is written as fi(ω) =(
xT
i ω − yi

)2
+ λ

2 ∥ω∥
2, where λ is a regularization parameter and ∥ · ∥ denotes the l2-norm; and the l2-regularized

logistic regression loss for binary classification problems is written as fi(ω) = log
(
1 + exp

[
−yix

T
i ω
])

+ λ
2 ∥ω∥

2

(yi ∈ {−1, 1}).
When n is extremely large, the predominant methodology to solve the above problem advocates the use of

stochastic gradient descent (SGD) methods [1–4]. In the t th iteration, the classical SGD method updates iterates
as follows:

ωt+1 = ωt − ηt∇fit (ωt) , (3)

where ηt > 0 refer to the step size, the index it can be chosen uniformly at random from {1, 2, . . . , n}, and ∇fit (ωt)
denotes the sample gradient. The expectation of the stochastic gradient estimator ∇fit (ωt) is usually regarded
as unbiased estimation for ∇F (ωt),i.e., E [∇fit (ωt)] = ∇F (ωt). Unfortunately, the randomness may introduce
variance in practice, which is caused by the fact that stochastic gradient ∇fit (ωt) equals the full gradient ∇F (ωt)
in expectation, but each ∇fit (ωt) is different. In fact, the performance of SGD method is often too sensitive to the
variance in the sample gradients ∇fit (ωt), even if the objective function is strongly convex and smooth, it only
converges sub-linearly [5].

In recent years, a surge of methods to improve the performance of SGD have been developed. The stochastic
average gradient(SAG) method [6] and the SAGA method [7] computed a stochastic gradient as an average of
stochastic gradients evaluated at previous iterates and then store previous stochastic gradients at the expense of
memory. However, both SAG and SAGA are expensive when n is extremely large. The stochastic variance reduced
gradient (SVRG) method [8] selected a stochastic gradient with low variance as an unbiased estimate of the full
gradient. Nguyen et al. [10, 11] presented the stochastic recursive gradient algorithm(SARAH) with one-loop or
multiple-loop, which has an additional practical advantage of being able to use an adaptive inner loop size, and
their convergence rates matches that of SVRG in the strongly convex case. In a recent paper [12], Nguyen et al.
made further improvement for SARAH by replacing the exact gradient computation with a stochastic gradient
based on a sufficiently large mini-batch, which can be regarded as an inexact version of SARAH (iSARAH), the
iSARAH performs variance reduction by computing a sufficiently accurate gradient estimate in the outer loop and
performs the stochastic gradient updates in the inner loop. It is shown that the multiple-loop iSARAH achieves the
best convergence rate under an additional assumption among the compared stochastic methods.

What they have in common is that in the process of solving practical problems, they usually use a fixed step size.
A large number of numerical experiments show that the performance of SGD type methods are greatly affected by
the step size selection. One common strategy is using a constant step size, but it usually needs to be hand-picked,
which is time consuming in practice. Another common approach is to adopt diminishing step sizes that requires to
satisfy

∞∑
t=1

ηt = ∞ and
∞∑
t=1

η2t < ∞. (4)

However, it often leads to SGD with a severe slow convergence rate [13]. There are some related works about the
choice of step size in SGD type methods. AdaGrad [14] and Adam [15] adaptively selected the step size for every
component based on the sum of the squares of the past gradients. Recently, due to the BB approach [16–18] can
adaptively update the step size and has good numerical performance, many researchers try to incorporate it into
SGD type algorithms. For instance, Sopya et al. [19] presented several variants of the BB method for SGD to train
the linear SVM, Tan et al. [20] used the BB method to calculate the step size for SGD and SVRG, and put forward
two approaches, named as SGD-BB and SVRG-BB, respectively, Li et al. [21] used the BB method to calculate
the step size for SARAH, Liu et al. [22] and Yang et al. [23, 24] also incorporated the BB method to compute step
size for the variants of SGD type algorithms, all of them have good numerical performance. In fact, it can not avoid
the denominator being close to zero or even negative when using the BB or RBB formulas to compute step size.
To overcome this shortcoming, Ma et al. [25] incorporated the stabilized Barzilai-Borwein(SBB) step size into the
SVRG method and generated a new method called SVRG-SBB for the ordinal embedding problem. Motivated by
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above articles, we consider using the stabilized BB method(SBB) to automatically compute step size for iSARAH
algorithm and then propose a new algorithm called iSARAH-SBB.

The primary contributions of our work in this paper can be summarized as follows:

1) We incorporate stabilized BB method [25] into iSARAH [10], which leads to a modified stochastic
recursive gradient methods called iSARAH-SBB.
2) We establish the convergence and complexity analysis of iSARAH-SBB method for strongly convex
optimization problem.
3) We conduct extensive experiments for iSARAH-SBB method on solving logistic regression problem.
Numerical experimental results on standard data sets show the effectiveness of our proposed method.

This paper is organized as follows. Section 2 briefly introduces the background and motivation; Section
3 analyzes the convergence and the complexity of our proposed iSARAH-SBB; Section 4 demonstrates the
experimental results; Section 5 concludes this paper.

2. The Algorithms

In this section, we first introduce the stabilized BB method and the iSARAH method in Section 2.1 and Section
2.2, respectively, and then put forward our modified method iSARAH-SBB in Section 2.3. The BB step size can
be described as follows.

2.1. Barzilai-Borwein step zize

The well-known Barzilai-Borwein(BB) step size, originally proposed by Barzilai and Borwein in [16] , [17],
which tries to fit the objective by a quadratic model in each iteration and find the optimal step size. It is widely
used to solve the generic unconstrained optimization problem:

min
ω∈Rd

f(ω), (5)

when minimizing a first-order continuously differentiable function f(ω), the standard BB method updates the
iterates through

ωk+1 = ωk − η−1
k ∇f(ωk), (6)

where ∇f(ωk) denotes the gradient of f(ω) at ωk and ηk is introduced such that ηI is an approximation to the
Hessian matrix of f(ω) at ωk, so it usually follows some properties of quasi-Newton method and by solving the
following problem:

min
η

∥η−1sk − yk∥2 or min
η

∥sk − ηyk∥2, (7)

where sk = ωk − ωk−1 and yk = ∇f (ωk)−∇f (ωk−1), it can yield that

ηBB1
k =

sTk sk
sTk yk

or ηBB2
k =

sTk yk
yTk yk

. (8)

In fact, when sTk yk > 0, it is easy to obtain that ηBB1
k ≥ ηBB2

k . [18] has proved that ηBB1
k is superior to ηBB2

k , which
means ηBB1

k is a more aggressive step size to decrease the objective function. As the aforementioned description in
Section 1, Tan et al. and Yang et al. directly introduced the BB method into SGD and its variant for solving problem
(2). Ma et al.(2018) incorporated the SBB step size into the SVRG method for solving the ordinal embedding
problem, where the updating scheme of the step size can be formulated as:

ηk =
sTk sk

|sTk yk|+△
, (9)
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where △ = σsTk sk (σ > 0). In fact, when σ = 0, the SBB method may always exist instability. To avoid the
denominator of the SBB step size tending to zero, we choose σ > 0 in numerical experiments. A large number
of numerical experiments have verified the advantages of the SBB step size, inspired by these related works, we
propose to use the SBB step size to automatically compute the step size for iSARAH.

2.2. The iSARAH Algorithm

As a variant of SARAH methods, iSARAH consists of the outer loop and the inner loop. The outer loop performs
variance reduction by computing sufficiently accurate gradient estimate and the inner loop performs recursive
stochastic gradient updates. Specifically, when given an iterate ω0 at the beginning of each outer loop, iSARAH
replaces the exact gradient computation by a gradient estimate based on a sample set of size b. For general empirical
risk minimization problem (2), v0 is computed as

v0 =
1

b

∑
ξ∈S

∇fξ(w0), (10)

where ω0 is the initial iteration point , S is a subset of {1, 2, . . . , n} with size b.
The key step of the algorithm is a recursive update of the stochastic gradient estimate that we call SARAH update

vt = ∇fit(wt)−∇fit(wt−1) + vt−1, (11)

followed by the iterate update
wt+1 = wt − ηvt. (12)

Let Ft = σ(w0, w1, . . . , wt) be the σ-algebra generated by w0, w1, . . . , wt. We note that it is independent of Ft,
and vt is a biased estimator of the gradient ∇F (wt), thus

E[vt|Ft] = ∇F (wt)−∇F (wt−1) + vt−1, (13)

and since E[∇fξ(w0)|ω0] = ∇F (w0), we have

E[v0|ω0] =
1

b

∑
ξ∈S

∇F (w0) = ∇F (w0). (14)

.
The iSARAH algorithm in [12] can be described as follows:

Algorithm 1 (iSARAH)
Parameters: initial point ω̃0, fixed step size η > 0, the inner loop size m, the sample set size b

1: for k = {1, 2, . . .} do
2: ω0 = ω̃k−1

3: Randomly choose a subset S ⊂ {1, . . . , n} of size b
4: Compute v0 = 1

b

∑
ξ∈S ∇fξ(w0).

5: ω1 = ω0 − ηv0
6: for t = 1, . . . m− 1 do
7: Randomly pick it ∈ {1, 2, . . . , n}
8: Update the stochastic recursive gradient:
9: vt = ∇fit (wt)−∇fit (wt−1) + vt−1.

10: Update the iterate:
11: ωt+1 = ωt − ηvt
12: end for
13: Set ω̃k = ωt with t chosen uniformly at random from {0, 1, . . . ,m}
14: end for
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2.3. The iSARAH-SBB Algorithm

In this subsection, we propose the iSARAH-SBB algorithm, which uses the SBB method to automatically
compute the step size ηk in iSARAH. In addition, we set ω̃k = ωm rather than use ω̃ = ωt with t chosen uniformly
at random from {0, 1, . . . ,m}. Now we are ready to describe our iSARAH-SBB method in the following Algorithm
2.

Algorithm 2 (iSARAH-SBB)
Parameters: σ > 0, initial point ω̃0, initial step size η1 > 0, the inner loop size m, the sample set size b

1: for k = {1, 2, . . .} do
2: ω0 = ω̃k−1

3: Randomly choose a subset S ⊂ {1, . . . , n} of size b
4: Compute vk0 = 1

b

∑
ξ∈S ∇fξ(w0).

5: if k > 1 then
6: ηk = 1

m

∥ω̃k−ω̃k−1∥22
(ω̃k−ω̃k−1)

T
(
vk
0−vk−1

0

)
+σ∥ω̃k−ω̃k−1∥22

7: end if
8: ω1 = ω0 − ηkv

k
0

9: for t = 1 to m− 1 do
10: Randomly pick it ∈ {1, 2, . . . , n}
11: Update the stochastic recursive gradient:
12: vt = ∇fit (wt)−∇fit (wt−1) + vt−1.
13: Update the iterate:
14: ωt+1 = ωt − ηkv

k
t

15: end for
16: ω̃k = ωm

17: end for

Remark 1. It can be seen from Algorithm 2 that if we set ηk = η instead of using the BB step size, the iSARAH-
SBB reduces to the original iSARAH method.

Remark 2. In the step size update rule, the reason for dividing ηk by m is that in order to update ωt in the inner
loop, m gradient estimates need to be added to ω0 in turn.

3. Convergence analysis

In this section,we prove the convergence of iSARAH-SBB for solving problem (2) with the strongly convex
objective function F (ω), our analysis is conducted based on the following key assumptions.

3.1. The Key Assumptions

Assumption 1 (L-smooth)
fξ(w) is L-smooth for every realization of ξ, i.e., there exists a constant L > 0 such that

∥∇fξ(w)−∇fξ(w
′)∥ ≤ L∥w − w′∥, ∀ w,w′ ∈ Rd. (15)

Assumption 2 (µ-strongly convex)
The function
F (ω) : Rd → R is µ-strongly convex, i.e., there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

(∇F (w)−∇F (w′))
T
(w − w′) ≥ µ∥w − w′∥2, (16)

or equivalently
F (w) ≥ F (w′) +∇F (w′)⊤(w − w′) + µ

2 ∥w − w′∥2. (17)
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Under Assumption 2, then there exists an unique optimal solution of problem (2), which is denoted by w∗. Thus
the strong convexity of F implies that

2µ[F (w)− F (w∗)] ≤ ∥∇F (w)∥2, ∀w ∈ Rd. (18)

Assumption 3 (Convex)
fξ(w) is convex for every realization of ξ, i.e., ∀w,w′ ∈ Rd,

fξ(w) ≥ fξ(w
′) +∇fξ(w

′)⊤(w − w′). (19)

Assumption 4
There exists some τ∗ > 0 such that

E[∥∇fξ(w∗)∥2] ≤ σ2
∗, (20)

where w∗ is any optimal solution of F (w); and ξ is some random variable.

3.2. Existing Results

In this subsection, we review some well-known results from the past literature that can support our theoretical
analysis.

Lemma 1 (Lemma 3.6 in [12])
Suppose that Assumption 1 holds. Consider iSARAH (Algorithm 1). Then

m∑
t=0

E[∥∇F (wt)∥2] ≤
2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[∥∇F (wt)

− vt∥2]− (1− Lη)

m∑
t=0

E[∥vt∥2],

where w∗ = argminw F (w).

Lemma 2 (Lemma 3.8 in [12])
Suppose that Assumptions 1 and 3 hold. Consider vt defined as (11) in SARAH (Algorithm 1) with η < 2/L. Then
for any t ≥ 1,

E[∥∇F (wt)− vt∥2] ≤
ηL

2− ηL

[
E[∥v0∥2]− E[∥vt∥2]

]
+ E[∥∇F (w0)− v0∥2].

3.3. Strongly Convex Case Results

Lemma 3
Suppose that Assumptions 1 and 3 hold. Consider iSARAH (Algorithm 1) with η ≤ 1/L. Then

E[∥∇F (wm)∥2] ≤ 2

η(m+ 1)
E[F (w0)− F (w∗)] +

ηL

2− ηL
E[∥∇F (w0)∥2]

+
2

2− ηL

(
4LE[F (w0)− F (w∗)]

b

)
+

2

2− ηL

(
2E
[
∥∇f(w∗; ξ)∥2

]
− E[∥∇F (w0)∥2]

b

)
,

where w∗ is any optimal solution of F (w) and ξ is the random variable.
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Proof
By Lemma 2, we have

m∑
t=0

E[∥∇F (wt)− vt∥2] ≤
mηL

2− ηL
E[∥v0∥2] + (m+ 1)E[∥∇F (w0)− v0∥2]. (21)

Hence, by Lemma 1 with η ≤ 1/L,

m∑
t=0

E[∥∇F (wt)∥2] ≤
2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[∥∇F (wt)− vt∥2]

≤2

η
E[F (w0)− F (w∗)] +

mηL

2− ηL
E[∥v0∥2]

+ (m+ 1)E[∥∇F (w0)− v0∥2].

Since w̃k = wm, the following holds,

E[∥∇F (wm)∥2] = 1

m+ 1

m∑
t=0

E[∥∇F (wt)∥2]

≤ 2

η(m+ 1)
E[F (w0)− F (w∗)] +

ηL

2− ηL
E[∥v0∥2] + E[∥∇F (w0)− v0∥2]

≤ 2

η(m+ 1)
E[F (w0)− F (w∗)] +

ηL

2− ηL
E[∥∇F (w0)∥2]

+
2

2− ηL

(
4LE[F (w0)− F (w∗)]

b

)
+

2

2− ηL

(
2E
[
∥∇f(w∗; ξ)∥2

]
− E[∥∇F (w0)∥2]

b

)
.

Lemma 4 (The bound of SBB step size)
Suppose that Assumption 1 and 2 hold. We have that

1

m(L+ σ)
≤ ηk ≤ 1

mσ
. (22)

Proof

ηk =
1

m

∥ω̃k − ω̃k−1∥22
(ω̃k − ω̃k−1)

T (
vk0 − vk−1

0

)
+ σ∥ω̃k − ω̃k−1∥22

≥ 1

m

∥ω̃k − ω̃k−1∥22
∥ω̃k − ω̃k−1∥

∥∥vk0 − vk−1
0

∥∥+ σ ∥ω̃k − ω̃k−1∥22

≥ 1

m

∥ω̃k − ω̃k−1∥22
(L+ σ)∥ω̃k − ω̃k−1∥22

=
1

m(L+ σ)

(23)

In addition, we can easily obtain that

ηk ≤ 1

m

∥ω̃k − ω̃k−1∥22
σ∥ω̃k − ω̃k−1∥22

=
1

mσ
, (24)
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Thus
1

m(L+ σ)
≤ ηk ≤ 1

mσ
. (25)

We now turn to the discussion on the convergence of iSARAH under the strong convexity assumption on F .

Theorem 1
Suppose that Assumptions 1, 2, 3,and 4 hold.Consider iSARAH-SBB (Algorithm 2) with the choice of σ,m,and b
such that

α =
σm

µ(m+ 1)
+

1

2mσ − L

{
L+

mσ

b
(4κ− 2)

}
< 1.

(where κ = L/µ.) Then

E[∥∇F (w̃k)∥2]−∆ ≤ αk(∥∇F (w̃0)∥2 −∆), (26)

where

∆ =
δ

1− α
and δ =

4

b(2− L
mσ )

τ2∗ . (27)

Proof
By Lemma 3, with wm = w̃k and w0 = w̃k−1, we have

E[∥∇F (w̃k)∥2] ≤
2

η(m+ 1)
E[F (w̃k−1)− F (w∗)]

+
ηL

2− ηL
E[∥∇F (w̃k−1)∥2] +

2

2− ηL

(
4LE[F (w̃k−1)− F (w∗)]

b

)
+

2

2− ηL

(
2E
[
∥∇f(w∗; ξ)∥2

]
− E[∥∇F (w̃k−1)∥2]
b

)

≤
(

1

µη(m+ 1)
+

ηL

2− ηL
+

4κ− 2

b(2− ηL)

)
E[∥∇F (w̃k−1)∥2]

+
4

b(2− ηL)
E
[
∥∇f(w∗; ξ)∥2

]
≤
(

1

µη(m+ 1)
+

ηL

2− ηL
+

4κ− 2

b(2− ηL)

)
E[∥∇F (w̃k−1)∥2]

+
4

b(2− ηL)
τ2∗

≤
(

σm

µ(m+ 1)
+

L

2mσ − L
+

4κ− 2

b(2− L
mσ )

)
E[∥∇F (w̃k−1)∥2]

+
4

b(2− L
mσ )

τ2∗

= αE[∥∇F (w̃k−1)∥2] + δ

≤ αk∥∇F (w̃0)∥2 + αk−1δ + · · ·+ αδ + δ

≤ αk∥∇F (w̃0)∥2 + δ
1− αk

1− α

= αk∥∇F (w̃0)∥2 +∆(1− αk)
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= αk(∥∇F (w̃0)∥2 −∆) +∆.

By adding −∆ to both sides, we achieve the desired result.

Corollary 1
Let m = 20κ− 1, σ = 5L

40κ−2 and b = max
{
20κ− 10,

20τ2
∗

ϵ

}
in Theorem1. Then, the total work complexity to

achieve E[∥∇F (w̃k)∥2] ≤ ϵ is O
(
max

{
τ2
∗
ϵ , κ

}
log
(
1
ϵ

))
.

Proof
With m = 20κ− 1, σ = 5L

40κ−2 and b = max
{
20κ− 10,

20τ2
∗

ϵ

}
,

E[∥∇F (w̃k)∥2] ≤
(
1

8
+

1

4
+

1

8

)
E[∥∇F (w̃k−1)∥2] +

ϵ

8

≤ 1

2
E[∥∇F (w̃k−1)∥2] +

ϵ

8

≤
(
1

2

)k

∥∇F (w̃0)∥2 +
ϵ

4
.

Since E[∥∇f(w∗; ξ)∥2 is finite, to guarantee that E[∥∇F (w̃k)∥2] ≤ ϵ, it is sufficient to make
(
1
2

)k ∥∇F (w̃0)∥2 = 3ϵ
4

or equivalently k = τ ∗ log(∥∇F (w̃0)∥2

3ϵ
4

), where τ is a constant. This implies that the total complexity to achieve an
ϵ-accuracy solution is

(b+m)k = O
(
max

{
σ2
∗
ϵ
, κ+ κ

}
log

(
1

ϵ

))
= O

(
max

{
σ2
∗
ϵ
, κ

}
log

(
1

ϵ

))
.

4. Numerical experiments

In this section, we present our numerical experiments. All the tests have been performed on an Intel Core i7
processor with 10GB RAM under the Python computing environment. We study the binary classification problem
with fi being l2-regularized logistic regression on data sets heart, splice, a9a and w8a as Table 1 which can be
downloaded from the LIBSVM website (www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/).

The l2-regularized logistic regression problem can be described as follows:

min
w∈Rd

F (w) :=
1

n

n∑
i=1

log(1 + exp(−yix
T
i w)) +

λ

2
∥w∥2, (28)

where {(xi, yi)}ni=1 ⊂ Rd × {+1,−1}n is a collection of training examples.

Table 1. Data information of experiments.

Dataset n d λ
heart 270 13 10−4

splice 1000 60 10−4

a9a 22,696 123 10−4

w8a 49,749 300 10−4
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Figure 1. Comparison of iSARAH-SBB and iSARAH with fixed step sizes on residual loss and test accuracy rate using heart.
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(b) Test accuracy rate on splice

Figure 2. Comparison of iSARAH-SBB and iSARAH with fixed step sizes on residual loss and test accuracy rate using
splice.

0 3 6 9 12 15 18 21 24 27
Epochs(k)

10−12

10−10

10−8

10−6

10−4

10−2

100

Re
sid

ua
l l

os
s

iSARAH-SBB η0 = 0.01
iSARAH-SBB η0 = 0.1
iSARAH-SBB η0 = 0.7
iSARAH η= 0.01
iSARAH η= 0.1
iSARAH η= 0.7
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Figure 3. Comparison of iSARAH-SBB and iSARAH with fixed step sizes on residual loss and test accuracy rate using a9a.

Our experiments include three parts. In the first part, we compare the performance of iSARAH-SBB and
iSARAH for solving problem (28) in Fig.1 to Fig.4. We compare the residual loss and test accuracy rate of them,
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Figure 4. Comparison of iSARAH-SBB and iSARAH with fixed step sizes on residual loss and test accuracy rate using w8a.
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(c) Residual loss on a9a
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(d) Residual loss on w8a

Figure 5. The performance of iSARAH-SBB with different σ on different datasets.

respectively. In the second part, we analyze the influence of the parameter σ on the iSARAH-SBB in Fig.5. Finally,
we compare the residual loss of SVRG-SBB [25], STSG [26] and SARAH [11]with the iSARAH-SBB method in
Fig.6 and we also compare the test accuracy rate of them in Fig.7.

Fig.2 to Fig.4 show the comparison results on residual loss and test accuracy of iSARAH-SBB and iSARAH on
datasets heart, splice, a9a and w8a. We use three different fixed step sizes for iSARAH and three different initial
step sizes for iSARAH-SBB. The y-axis represents the residual loss in the left subfigures and the test accuracy rate
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0 3 6 9 12 15 18
Epochs(k)

10−12

10−10

10−8

10−6

10−4

10−2

100

Re
sid

ua
l l

os
s

iSARAH-SBB
SVRG-SBB
STSG
SARAH
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Figure 6. Comparison of iSARAH-SBB, SVRG-SBB, STSG, SARAH on residual loss on different datasets.

in the right subfigures. In all the subfigures, the dashed lines correspond to iSARAH with fixed step sizes η, and
the solid lines correspond to iSARAH-SBB with different initial step sizes η0. Fig.5 show the influence of σ on the
performance of iSARAH-SBB.

From the left subfigures in Fig.2 to Fig.4, it can be seen that iSARAH-SBB always outperforms iSARAH with
the three choices of step sizes. In addition, from the right subfigures in Fig.2 to Fig.4, it can be seen that iSARAH-
SBB can improve the test accuracy rate when choose different datasets.

Fig.5 shows that different σ have little effect on the performance of iSARAH-SBB method, which indicate that
iSARAH-SBB method is not sensitive to the parameter σ. To present this case,we set σ = 0.0001, 0.001, 0.01, 0.1
and 1 in heart, splice, a9a and w8a.

From the Fig.6 to Fig.7, it can be seen that iSARAH-SBB always performs better than SVRG-SBB, STSG and
SARAH, and iSARAH can achieve the same level of the test accuracy rate as SVRG-SBB, STSG and SARAH.

5. Conclusion

In this paper, we have proposed a modified algorithm iSARAH-SBB, which used the SBB method to dynamically
solve the step size and can take better advantages of both iSARAH and SBB methods. Under the usual assumptions,
we establish the convergence and complexity analysis of our proposed iSARAH-SBB algorithm. Compared with
the existing algorithms, the new algorithm is simple and with good theoretical properties. We also discussed the
effect of different σ on the performances of iSARAH-SBB. Numerical experiment results on standard datasets
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(b) Test accuracy rate on splice
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(c) Test accuracy rate on a9a

Figure 7. Comparison of iSARAH-SBB, SVRG-SBB, STSG, SARAH on test accuracy rate on different datasets.

demonstrate that the new algorithm is robust to the selection of the initial step size, and it is effective and more
competitive.
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