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Abstract This paper deals with an inverse problem governed by the Helmholtz equation. It consists in recovering lacking
data on a part of the boundary based on the Cauchy data on the other part. We propose an optimal choice of the relaxation
parameter calculated dynamically at each iteration. This choice of relaxation parameter ensures convergence without prior
determination of the interval of the relaxation factor required in our previous work. The numerous numerical example shows
that the number of iterations is drastically reduced and thus, our new relaxed algorithm guarantees the convergence for all
wavenumber k and gives an automatic acceleration without any intervention of the user.
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1. Introduction

The original linear mathematical formula of the Helmholtz equation reverts to the wave equation with time-
independent vector fields [16, 34].This type of equation has many applications in various fields of physics,
such as optics, acoustics, electrostatics and quantum mechanics. Moreover, solving Helmholtz boundary problem
requires several information, geometry of the domain, initial and boundary conditions, properties for the materials,
influential forces in the domain. Nevertheless, in many engineering and physical problems these parameters are
unknown, inaccessible or not measured. Indeed, it is needful to identify some of these parameters. These kind
of questions belong to a class of problems called inverse problems. There are considerable inverse problems that
appear in enormous number of physical and engineering applications, the usage of these problems varies depending
on the type of the boundary conditions (Dirichlet, Neumann or mixed boundary conditions). For instance, it used
for locating small-size tumors in the body for the human [54], for the discovision of the exporter of acoustical
noise and surface oscillation from the internal acoustical pressure [18, 19], for determining an acoustic cavities
and the radiation area surrounding a source of radiation [53, 14], for identifying the weld pool in process of
welding [11, 9] and so on. In practical situations due to either inaccessibility of geometry, some physical obstacles,
the over-specified or under-specified data will be appear. In particular, for these kind of problems it is possible to
measure both the trace of the solution and the normal component of the field on one part of the boundary of the
domain, while no information is available on the another remaining part. Consequently, determining and handling
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the missing solution and its normal derivative on this remaining part of the boundary is required. These kind of the
problems are called Cauchy problems and it’s a classical type of inverse problems [21, 21, 49, 50]. In the sense
of Hadamard [26] these problems are severe ill posed problems. This means that, it may suffer from lack at least
one of these conditions, existence, uniqueness and stability for numerical solution. The existence of the solution
for the ill-posed Cauchy problem is guaranteed, if the boundary conditions on accessible part satisfy compatibility
condition [28] . While, the uniqueness of the this problem is ensured with no limitation [17], one has to be careful
with the stability since small noise in the data can cause a large variation between the solution obtained by perturbed
data and that corresponding to unperturbed data [27].

To overcome of the ill-posedness nature for the Cauchy problem several performing methods has been
investigated. In the last decades, the most common used method between the authors was regularization technique
introduced by Tikhonov and Lavrentèv [55, 41]. The basic concept of this method consists in transforming the
initial problem to a well-posed one by adding a penalty term that rely on a regularization parameter [52, 51].
For extra knowledge, we also want to recall another more widespread method whose called quasi-reversibility,
which is introduced by Lions and Latts [38, 40, 39] to solve the inverse Cauchy problem with elliptic operator.
The basic idea of this method is to convert the initial problem in to a family of fourth-order well-posed problems
which depends on a tiny parameter ϵ. Some others methods are based on the use optimization tools [1, 12, 35].
The disadvantage for all previous methods goes back to need for prior information on the solution of the inverse
Cauchy problem. In addition to the disruption of the original operator by adding a small parameter.

In last three decades, an alternating iterative algorithm was introduced by the Kozlov et al. [37] (KMF).The
algorithm is based on splitting the original ill-posed boundary problem into the sequence of well-posed boundary
problems. The main advantages of this method consist in: firstly, the computational schemes can be implemented
easily. Secondly, the schemes for the problems with linear and nonlinear operators are similar [47, 23, 22]. Finally,
it does not require any chosen regularization parameter as in the previous methods. In [37, 36], the authors showed
theoretical results concerning convergence, stability and regularization properties of the KMF algorithm but they
gave no numerical results. Jourhmane and Nachaoui [32] used this technique for study inverse problem in bio-
electric field and they found that this method produces a slowly convergent. Later, Nachaoui and his co-authors
solved this problem by introducing a relaxation parameter [33], for which they show the existence of a convergence
interval and another of convergence acceleration [48]. These two intervals are determined from the problem data.

For the Cauchy problem associated with Helmholtz equation, several papers have indicated that the KMF
algorithm loses its efficiency especially for large enough wavenumbers. Either it does not converge or the
convergence becomes so slow that it can be assimilated to non-convergence [4, 7, 8].

In order to be able to solve these problems which cannot be treated by this algorithm, we have suggested
in previous works [4] an iterative relaxation method that can circumvent these obstacles. As for the Poisson
equation [48], convergence and acceleration intervals, depending on the data of the problem, have been found.
Unfortunately, in some cases, the convergence interval becomes very small, making it difficult to define that of the
acceleration in a clear way and the choice of an optimal parameter becomes a complex procedure. Indeed for very
close relaxation parameters one can pass from an acceptable number of iterations to a very slow convergence. In
order to avoid these disadvantages, we propose in this paper a new iterative alternate relaxation method allowing
a certain comfort for the user As the method uses an adaptive dynamical relaxation parameter which is updated
through each iteration operation, we are exempt from the search for the optimal relaxation parameter. This method
guarantees convergence without restriction on the wavenumber k and drastically accelerates convergence.

We demonstrate that this dynamic relaxation parameter is an optimal parameter at each iteration, i.e. it allows
the stopping criterion to decrease. This shows that it ensures convergence without worrying about finding the
convergence interval. Moreover, this character of optimality makes it possible to obtain a formula allowing its
evaluation at each iteration. This endows the method with a character of automaticity and makes it very attractive.

Note that the idea has been used in [5] for the Cauchy problem governed by the modified Helmholtz equation. But
the dynamic relaxation parameter is used as a convergence accelerator of the KMF algorithm which is convergent
in this case. Its use here makes it possible to obtain a convergent and very fast method not depending on any
particular parameter in the case where the KMF algorithm does not work. It also makes it possible to quickly
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obtain a solution in the case where the relaxation parameter, in the method proposed by the authors previously,
becomes very complicated to find. It therefore presents a very good alternative to the algorithms used in [5, 7, 8].

The framework of the paper is as follows: in Section 2, we take a look at for Mathematical formulation for
Cauchy problem. We devoted Section 3 for the classical iterative method(KMF). We propose in Section 4, two
relaxed algorithms based on fixed and automatics parameter. In Section 5, the numerical results obtained by using
the finite element method are given. For the numerical experiments, we include three different geometry namely
the rectangle, circle and annulus with several choice of wave number k.

2. Mathematical formulation

Let Ω be a bounded domain in Rn, n ≥ 2 with a Lipschitz boundary Γ. Let Γ = Γ0 ∪ Γ1 ∪ Γ2 where Γi ̸= Ø, i =
0, 1, and Γi ∩ Γj = Ø for i ̸= j. If Γ2 ̸= Ø then either Dirichlet, Neumann or Robin condition may be specified on
this part of boundary. In the following, suppose that Γ2 ̸= Ø, denote by ν the outward unite normal to the boundary
Ω and consider the following Cauchy problem for the Helmholtz equation:

∆u+ k2u = 0, in Ω, (1)
u = f1, on Γ1, (2)

∂νu = f2, on Γ1, (3)
u = g1, on Γ2, (4)

where the positive real constant k is the wave number and ∂ν denotes the outward normal derivative of u. The
function g1 is the given data on Γ2, the functions f1 and f2 are the known Cauchy data on Γ1 and for Γ0 all
information are missing and must be determined. Thus problem Eqs. (1) to (4) is an inverse Cauchy problems with
over-specified boundary Γ1.

In the following sections we present the idea on which the KMF algorithm is based. then we present its
modification as it was introduced in [4] and we finish by presenting our algorithm. the objective is to compare
between these three algorithms and understand the contribution that our algorithm brings.

3. The alternating iterative method

The alternating method is an iterative procedure for solving inverse Cauchy problems. It works by repeatedly
changing boundary Dirichlet-Neumann conditions until a stopping criterion is satisfied. This algorithm is based
on solving at each step two well-posed problems for the original differential equation. The regularizing character
of the alternating algorithm is only guaranteed by a suitable choice of boundary Dirichlet-Neumann conditions at
each iteration on the under-specified boundary. In [36] the authors introduced this method as a tool to solve the
Cauchy problem for elliptic equations. They proved the convergence of the algorithm and showed its regularizing
properties. But no numerical result was given. Subsequently, this algorithm was implemented numerically in [31]
and improved by the authors of [32, 33].

Many studies were then conducted using these methods to solve ill-posed problems arising from partial
differential equations; See [2, 6, 10, 13, 15, 20, 22, 5, 46, 45]. To describe this procedure for solving the
problem Eqs. (1) to (4), we start by writing the following two auxiliary problems to be solved at each iteration

∆u+ k2u = 0, in Ω, (5)
u = v, on Γ0, (6)

∂νu = f2, on Γ1, (7)
u = g1, on Γ2, (8)
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and

∆u+ k2u = 0, in Ω, (9)
∂νu = η, on Γ0, (10)

u = f1, on Γ1, (11)
u = g1, on Γ2, (12)

where f1 and f2 are the Cauchy data given in Eqs. (3) to (4), hile v and η are two functions that must be updated at
each iteration

Problems Eqs. (5) to (7) and Eqs. (9) to (11) must be solved alternately until the specified stopping criterion is
satisfied and this action gives rise to classical KMF iterative algorithm that we describe in the following form:

Algorithm 1: Classic Alternating Approach KMF
1: m← 0, select an initial estimate v = v0, then,
2: Find u(2m) by solving the problem Eqs. (5) to (8).
3: Having computing η = ∂νu

(2m), find u(2m+1) by solving the problem Eqs. (9) to (12).
4: If || u(2m+2) − u(2m) ||

L2(Γ0)
< ε then stop.

5: Else, m← m+ 1, then,
6: Compute v = v(m) = u(2m−1) |Γ0 and go to step 2.

The study of Cauchy problem associated to Helmholtz equation has been dealt with the KMF method by
many authors, for instance see to [30, 43, 42, 7, 29]. Some of these authors commented that this algorithm is
not convergent in many cases, especially when the wave number k is large. It has also been reported that even
when convergence is assured, it is achieved at a very high cost, namely a very large number of iterations. A first
modification was done in [7, 8] where the authors proposed new modifications on the KMF algorithms through
adding some regularization parameter resulting from introducing an artificial boundary to original problem. This
approach has a drawback, namely that the nature of the problem is modified with a complexity of application. We
then proposed alternate relaxation algorithms to solve the Cauchy Eqs. (1) to (4) problem, without any modification
of the original domain of the problem and keeping the same principle of the KMF method but which circumvent
the difficulties that she generates [4, 3].

4. The modified alternating iterative algorithm

The principal idea of the relaxation algorithm was initially introduced in [31] to solve the Cauchy problem of the
Poisson equation. The convergence of the relaxation alternating iterative method has been demonstrated in [33].
This modification of the algorithm goes back in to increase the rate convergence for classic alternating algorithm
KMF. This relaxation alternating algorithm was implemented and investigated for solving inverse Cauchy problem
arising in many applications [24, 20, 44, 43, 10]. Hereafter, we will describe this algorithm to solve Cauchy
Helmholtz problem. Particularly, in this study we will describe two relaxation algorithms.
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4.1. The alternating relaxed algorithm with fixed factor

The fixed relaxation algorithm as it was proposed in our previous work [4, 3] to solve the Cauchy problem for
Helmholtz equation Eqs. (1) to (4) is summarized as follows.

Algorithm 2: Fixed relaxed alternating (FRA) approach
1: For m← 0, specify an initial estimate v = v0 of u |Γ0 , and a relaxation parameter 0 < θ < 2, then,
2: Find u(2m) by solving the well posed problem Eqs. (5) to (8), with v(0) = v0 |Γ0 and for m > 0,

v(m) = θu(2m−1) |Γ0 +(1− θ)v(m−1) |Γ0 . (13)

3: Having construct u(2m) for x ∈ Ω and η(m) = ∂νu
(2m) |Γ0

the flux on Γ0, find u(2m+1) by solving the
following well posed problem Eqs. (9) to (12),

4: If || u(2m+2) − u(2m) ||
L2(Γ0)

< ε then stop. Else, m← m+ 1,, then, go to Step 2.

Remark 1
The classical KMF alternating algorithm can be recovered by taking the parameter θ = 1 in Eq. (13). Thus, this
algorithm is a generalization of the KMF algorithm.

4.2. An Alternating relaxed algorithm with dynamic factor

The proposed technique of the dynamic relaxation algorithm is based on an automatic updating of the relaxation
factor. Its strength is to find automatically and at each iteration the best relaxation parameter independently of the
initial estimate. Thus dynamic relaxation, avoids the use of parameters or regularizations which must be selected by
the user.This implicitly guarantees convergence for all values of k and we will see through the numerical results that
this method improves the convergence rate compared to the fixed relaxed alternating algorithm. We circumvented
this constraint by looking for a parameter which depends on the iterations but which ensures a better decrease in
the difference between the successive iterations.

The strategy for obtaining a dynamic relaxation parameter is as follows: We start from the updating of the
boundary condition defined in (13), i.e. v(m) ∈ H1/2|Γ0 such that v(0) = v0 |Γ0 and

v(m) = θu(2m−1) |Γ0 +(1− θ)v(m−1) |Γ0 . (14)

For m > 1, we take θ = θ(m), where θ(m) is unique real minimizing

Ψ(θ) =|| v(m+1) − v(m) ||2Γ0
. (15)

This ensures a reduction of the stopping criterion and therefore leads to a convergence of the sequence u(m).
From Eq. (14) we obtain

v(m+1) − v(m) = θ
(
u(2m+1) |Γ0 −u(2m−1) |Γ0

)
+ (1− θ)

(
v(m) − v(m−1)

)
. (16)

Now, using the fact that on the boundary Γ0 we have v(m) given by v(m) = u(2m) and v(m−1) = u(2(m−1)), see (6),
we can rewrite (Eq. (16)) as

v(m+1) − v(m) = θ
(
u(2m+1) |Γ0 −u(2m−1) |Γ0

)
+ (1− θ)

(
u(2m) |Γ0 −u(2(m−1)) |Γ0

)
. (17)

Let
s(2m+1) = u(2m+1) |Γ0 −u(2m−1) |Γ0 ,

and
s(2m) = u(2m) |Γ0 −u(2(m−1)) |Γ0 ,
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then, the Ψ function takes the form

Ψ(θ) =|| θs(2m+1) − (1− θ)s(2m) ||2Γ0
, (18)

or in a more expanded form:

Ψ(θ) = θ2 || s(2m+1) ||2Γ0
+2θ(1− θ)⟨s(2m+1), s(2m)⟩+ (1− θ)2 || s(2m) ||2Γ0

, (19)

where ⟨·, ·⟩ is inner product in L2(Γ0).
The function Ψ(θ) is minimized when ∂Ψ

∂θ = 0 and this is satisfied if

0 = θ || s(2m+1) ||2Γ0
+(1− 2θ)⟨s(2m+1), s(2m)⟩ − (1− θ) || s(2m) ||2Γ0

, (20)

what is ensured by the dynamic relaxation parameter θ = θ(m) given by:

θ(m) =
⟨s(2m), s(2m) − s(2m+1)⟩
|| s(2m+1) − s(2m) ||2Γ0

, for m > 1. (21)

The introduction of this relaxation parameter in the (RFA) algorithm gives rise to our dynamic relaxation algorithm
for solving the Cauchy problem Eqs. (1) to (4) which we summarize in ?? 3.

Algorithm 3: Dynamic relaxed Alternating (DRA) Approach
1: For m← 0, specify an initial estimate v = v0 of u |Γ0 , and an initial factor θ0, then,
2: Find u(2m) by solving the well posed problem Eqs. (5) to (8), with v(0) = v0 |Γ0

and for m > 0,

v(m) = θmu(2m−1) |Γ0 +(1− θm)v(m−1) |Γ0 . (22)

3: Having construct u(2m) for x ∈ Ω and η(m) = ∂νu
(2m) |Γ0 the flux on Γ0, find u(2m+1) by solving the

following well posed problem Eqs. (9) to (12),
4: Compute s(2m) = u(2m) |Γ0 −u(2(m−1)) |Γ0 and s(2m+1) = u(2m+1) |Γ0 −u(2(m−1)) |Γ0 .

5: Compute θ(m) = ⟨s(2m),s(2m)−s(2m+1)⟩
||s(2m+1)−s(2m)||

L2(Γ0)

.

6: If || u(2m+1) − u(2m) ||
L2(Γ0)

< ε, then stop. Else, m← m+ 1, then, go to Step 2.

In order to compare the different algorithms presented in this paper, we will discuss the way to achieve
convergence, namely the stopping criterion. It has been shown in several works, see for example [22, 45], that
numerically the real error caused by the use of the relaxation alternation algorithm decreases very rapidly during
the first iterations then this error grows to become stationary or continues to decrease but at a much slower rate.
Thus, providing a stopping criterion allowing the execution of the algorithm to be terminated around the iteration
where the algorithm becomes stationary would save time. we modify the usual stopping criterion to take account
of this remark.

We are therefore going to compare the results obtained with two stopping criteria, the classic one and the one
that we note modified criterion. The commonly used classical stopping criterion is the difference on Γ0 between
the solutions of two successive iterations u(2m) and u(2m+2) given by:

|| u(2m) − u(2m+2) ||
L2(Γ0)

< ϵ. (23)

The stopping criterion (modified criterion) as it was suggested in [45] is based on the difference between the
approximate solutions produced in two successive iterations, but this time these solutions are taken on the whole
boundary Γ, i.e.

|| u(2m) − u(2m+1) ||
L2(Γ)

< ϵ. (24)
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5. Numerical experiments

In this section, we present several numerical experiments with different given data. In order to solve the two well-
posed boundary values problems that appear through all the iterative alternating procedures, we choose the finite
element method which is more suitable for the study domain with complicated geometry.

We check also the numerical convergence with respect to concerning the nodes number on the boundary of the
domain and we sudy the influence of fixed and dynamic relaxation parameters on the convergence and its speed.

We use the two stopping criteria described above, in order to prove the efficiency of the modified stopping
criterion. We will subsequently adopt this last criterion for the rest of the experiments.

5.1. Example 1

We consider Ω =]0, 1[×]0, b[ with b > 0. We shall solve the following Cauchy problem for Helmholtz equation

∆u+ k2u = 0, in ]0, 1[×]0, b[, (25)
u(x, 0) = f1, on 0 ≤ x ≤ 1, (26)

∂yu(x, 0) = f2, on 0 ≤ x ≤ 1, (27)
u(0, y) = u(1, y) = 0, on 0 ≤ y ≤ b. (28)

We take for more details Γ1 =]0, 1[×{0}, Γ0 =]0, 1[×{b} and Γ2 = {0}×]0, b[∪{1}×]0, b[. For the numerical
computations, we particularly choose b = 0.2 and select the boundary data f1(x) = u(x, 0) on Γ1 as

u(x, 0) =

(
3 sin(πx) +

sin(3πx)

19
+ 9 exp(−30(x− b)2

)
x2(1− x)2. (29)

The exact boundary data on Γ0, used to test the performance of the algorithm, is given by

ue(x, b) = 2

(
8 sin(πx) +

sin(3πx)

17
+ 20 exp(−50(x− b)2

)
x2(1− x)2. (30)

Note that the exact solution u is unknown, thus, we first construct it by solving the direct problem for the Helmholtz
equation Eq. (25) with boundary data Eq. (28), Eq. (29) and Eq. (30).

Remark 2
Note that an appropriate initial estimate u0 ∈ H1/2(Γ0) for the different numerical algorithms described above,
must respect the compatibility conditions [25].

We choose u0 = 0 as an initial estimate which satisfies the compatibility condition at the corner Γ̄0 ∩ Γ̄2 and
continuity of the first derivative at the corner Γ̄0 ∩ Γ̄2. Note that this initial estimate is very far from the exact
solution on Γ0 (see Fig. 1).

For the following numerical experiment study, we will investigate convergence with respect to the numbers of
nodes N on Γ0 and M on {0}×]0, b[ using finite element discretization. In Fig. 2 and Fig. 3 we ploted the classic
and modified stopping criterion in 23 and 24 respectively as a function of the number iterations m.

By taking respectively the number of nodes N ∈ {100, 200, 400} and M ∈ {20, 40, 80}, we see that the DRA
algorithm converges with respect to the step of discretization.

The approximate solution gets closer and closer to the exact solution when the number of nodes increases. This
is illustrated in Fig. 4, in which we represent the evolution of the numerical solution obtained through increasing
nodes number N and M .

We notice from Fig. 2 that the classic stopping criterion has a strong oscillation. It is not completely stable and
it does not follow the real error behavior on Γ0 for both cases k =

√
15 and k =

√
52.

On the other hand, for both wave numbers, we can observe from Fig. 3 that the modified stopping criterion has
some oscillations for some first iterations, but it becomes stationary afterward. For k =

√
15 and k =

√
52, we can

conclude according to Fig. 3 and Fig. 4 that, despite some oscillations, the modified stopping criterion imitates the
behavior of the real error on Γ0.
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Figure 1. Initial estimate data and exact solution on Γ0

(a) (b)

Figure 2. Classical stopping criterion produced by the DRA algorithm, (a) k =
√
15 and (b) k =

√
52.

(a) (b)

Figure 3. Modified stopping criterion produced by the DRA algorithm, (a) k =
√
15 and (b) k =

√
52.

Therefore, by the indicator of stopping criterion, we can cancel all iterations which have no impact on decreasing
real error.

We also notice that at some first iterations, the stopping criterion decreases very rapidly and it stops decreasing
afterward, even though a large number of iterations are performed.

We observe from the representation of the relaxation parameter θm a strong oscillation corresponding to the
automatic search for the most appropriate parameter at each iteration (see Fig. 6 for both cases k =

√
15 and

k =
√
52).
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(a) (b)

Figure 4. Accuracy error as a function of the number of nodes for the DRA (a)k =
√
15, (b)k =

√
52.

(a) (b)

Figure 5. Exact and reconstructed solutions on Γ0, using DRA algorithm, k =
√
15 (a) , k =

√
52 (b).

(a) (b)

Figure 6. Variation of θm for DRA algorithm, (a) k =
√
15, (b) k =

√
52.

This oscillation of the values of θ has direct impact on oscillation of the classic stopping criterion (see Fig. 2
for both k =

√
15 and k =

√
52 ) while it has not the same impact on modified stopping criterion (see Fig. 3 for

both cases k =
√
15 and k =

√
52 ). Nevertheless, this strong or weak instability in the classic or modified stoping

criterion with respect to different numbers N and M does not have any impacts on the behavior of the real error
for both wave number k =

√
15 and k =

√
52 as it’s shown in Fig. 3.

Always for cases k =
√
15 and

√
52, we observed through figures Fig. 3 and Fig. 5 that the accuracy errors

decrease dramatically all at once in conjunction with the increase in value of dynamical θ. We observe, from
figures Fig. 8 and Fig. 10 corresponding respectively to k =

√
15 and k =

√
52, that the dynamic relaxation θm

depends on k and is not in ]0, 2[ as required for the fixed parameter θ. Both figures exhibit an oscillatory behavior
of the relaxation factor θm which shows its dynamic variation in order to respond to the character of optimality at
each iteration.
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(a) (b)

Figure 7. DRA algorithm results for Example 1 with k =
√
15 , (a): Stopping criterion, (b) : Real error.

Figure 8. Evolution of θ(m), using data on Example 1, for k =
√
15, with N=400 and M=80.

(a) (b)

Figure 9. DRA algorithm results for Example 1 with k =
√
52, (a) : Stopping criterion, (b): Real error.

We also used a projection of θm in the convergence interval ]0, 2[ in order to respect the same conditions as for
fixed θ in the RFA algorithm.

Through figures Fig. 7 and Fig. 9, we can see that the DRA algorithm converges in both cases k =
√
52 and

k =
√
52 respectively. Furthermore, we observe from these figures that DRA remains faster than DRA with
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Figure 10. Evolution of θ(m), using data on Example 1, for k =
√
52, with N=400 and M=80 .

projection of θm, which proves that the character of optimality of the parameter obtained dynamically has its
importance in the acceleration of convergence even if the θm are not in ]0, 2[.

5.2. Numerical comparisons between the algorithms

In order to show the performances of our dynamic relaxation algorithm DRA we compare its results with those
produced by the fixed relaxation algorithm FRA knowing that the classical algorithm KMF corresponds to the case
θ = 1 in the FRA algorithm. We are interested in the comparison of the speed of the algorithms represented by
the number of iterations and the quality of the approximate solution evaluated by the convergence error. These
results are presented for different values of wavenumber k. The first results correspond to solving the Cauchy

(a) (b)

Figure 11. Results for k =
√
15, (a): exact and reconstructed solutions on Γ0 , (b): convergence history

problem Eq. (1)-Eq. (4) using data in Example 1 for three values of wave number k = {
√
15,
√
52,
√
100}. In all

these examples, we take in the stopping criterion a tolerance ϵ = 10−4

It is clear from Fig. 11 that all algorithms give a good approximation with the same order of accuracy (for
k =
√
15). We also observe that the DRA algorithm is faster than both KMF and FRA algorithms. More precisely,

the DRA algorithm needed only 158 iterations to reach the specified precision based on the proposed stopping
criterion when the FRA algorithm required more than 2500 and while it took 4000 iterations to the KMF algorithm.
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Figure 12. Divergence aspect of the KMF algorithm, using the data from Example 1 and k =
√
52.

(a) (b)

Figure 13. Results for k =
√
52, (a): exact and reconstructed solutions on Γ0 , (b): convergence history

In the Fig. 12 we display the divergence of the KMF algorithm for k =
√
52 by plotting the real error for 10

iterations. As we can see in Fig. 13 (a) the quality of the approximations obtained by both algorithms FRA and

(a) (b)

Figure 14. Results for k =
√
100, (a): exact and reconstructed solutions on Γ0 , (b): convergence history

DRA is good and the two approximate solutions are in perfect agreement with the exact solution. From Fig. 13 (b)
it is clear that FRA algorithm with optimum θ is very slow, compared to DRA algorithm.Tthe first one needed more
than 5000 iterations to reach the convergence when the second required just 202 iterations. We present in Fig. 14
the results corresponding to a large value of the wave number (k =

√
100). This is a case where the KMF algorithm
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does not converge and for which the convergence interval required for the RFA algorithm is very small, which
makes the isolation of an optimal parameter very complicated. This optimal parameter corresponds to θ = 0.001.
As can be seen in figure Fig. 14 (b), the convergence of the RFA algorithm is very slow. Figure Fig. 14 (a) shows
that the quality of the approximate solution produced by this algorithm is poor, while the DRA algorithm produces
a very good approximation for a reasonable number of iterations (260 iterations).

(a) (b)

Figure 15. Example 2 with k =
√
15, (a): exact and reconstructed solutions on Γ0 , (b): convergence history

After having studied the quality of the algorithms proposed to solve the Cauchy problem Eq. (1)-Eq. (2) in the
domain of the rectangle, we applied, in the second part of the numerical experiments, all the previous algorithms
to this problem inverse with the data of example 1, posed in a disc. The finite element discretization is done for
a fixed number of nodes equal to 200. The wavenumbers considered are k =

√
15 and k =

√
52. We only present

results corresponding to the data of example 1, but other similar results were obtained for the other two examples.
We present a numerical comparison between all the algorithms based on the accuracy and the computational cost.
This shows the superiority of the DRA algorithm over the two algorithms.

5.3. Example 2

Consider the Cauchy problem in a circular domain Ω = {(x, y) ∈ R2 / x2 + y2 < r2}. Suppose that the boundary
∂Ω := Γ1 ∪ Γ0, with

Γ1 = {(x, y) ∈ ∂Ω / 0 < ϑ(x, y) < Θ}, and Γ0 = {(x, y) ∈ ∂Ω / Θ < ϑ(x, y) < 2π},

where ϑ(x, y) is the polar angle of (x, y) and Θ is a given angle in ]0, 2π[. In this example we consider that Γ2 = Ø.
For numerical test, we select the radius r = 0.2 and Θ = π. After solving numerically the direct Helmholtz

equation problem with Dirichlet data

f1 = sin(x+ 1)cosh(
√

1− k2(y + 2))

on the entire boundary Γ, the obtained solution is denoted ue. We calculate the normal derivative of this solution
on Γ1, which we denote f2 and then reconstruct the trace of ue on Γ0 as a solution of the Cauchy problem with
data f1 and f2.

It can be seen from Fig. 15 , that here also all algorithms give a good approximation with the same order of
accuracy (for k =

√
15). One can also observe that the number of iterations is reduced form 500 iterations for KMF

algorithm (130 for RFA) into 113 iterations for DRA algorithm which confirm again its superiority over the two
algorithms.

Here too, we observe (see Fig. 16) that for a large wave number k =
√
52 the KMF algorithm diverges, while the

FRA algorithm with the optimal parameter θ = 0.25 and DRA algorithm converge with good precision. We also
note that the DRA algorithm is much faster than the FRA algorithm. The first requires 306 iterations to reach the
convergence while more than 1000 iterations are necessary for the second, see Fig. 17.

For the next part, as in the previous Examples, we investigated the comparison between algorithms based on
on the speed of convergence and the precision of the produced numerical solutions using different values of the
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Figure 16. Divergence aspect of the KMF algorithm, using the data from Example 2 and k =
√
52.

(a) (b)

Figure 17. Example 2 with k =
√
52, (a): exact and reconstructed solutions on Γ0 , (b): convergence history

wavenumber k. The domain being the annular domain with the same conditions as for the previous numerical tests,
but this time on example 3.

5.4. Example 3

Consider the Cauchy problem on the annular domain, defined by the circles of radii r0 = 0.75 and r1 = 1,
Ω = {(x, y) ∈ R2 / r20 < x2 + y2 < r21}. The boundary is assumed to be composed of two part ∂Ω := Γ1 ∪ Γ2,

(a) (b)

Figure 18. Example 3 with k =
√
5, (a): exact and reconstructed solutions on Γ0 , (b): convergence history.
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with
Γ1 = {(x, y) ∈ ∂Ω / x2 + y2 = r20}, Γ2 = {(x, y) ∈ ∂Ω / x2 + y2 = r21}.

All data for this problem are taken as in Example 2.

Figure 19. Divergence aspect of the KMF algorithm, using the data from Example 3 and k =
√
35.

First of all, in the case of the wavenumber k =
√
5, all algorithms are convergent, but the DRA algorithm is

much faster see Fig. 18.

(a) (b)

Figure 20. Example 3 with k =
√
35, (a): exact and reconstructed solutions on Γ0 , (b): convergence history.

For k =
√
35, the FRA algorithm with the optimum θ = 0.0005 converges slowly (after 1,000 iterations) with

low precision while the DRA algorithm, just after 103 iterations, achieved good accuracy. This is again explained
by the convergence interval, which is very small and induces a low optimal value θ for the RFA algorithm see
Fig. 20. Note that here again the KMF algorithm diverges see Fig. 19.

Finally, in the case where k =
√
52, the optimal value of θ allowing the best acceleration for the fixed relaxation

algorithm (FRA) becomes close to zero, and consequently, its effect on convergence is negligible. While, the DRA
algorithm shows its efficiency whether at the level of the speed of convergence or at the level of the quality of the
numerical solution Fig. 21 .

5.5. Impact of the inaccessible boundary part on the convergence

In this section, We seek to clarify the impact of increasing or decreasing length scale for inaccessible boundary
(Γ0) on the convergence and the approximation accuracy obtained by the DRA algorithm using data on Examples
2 and 3.
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(a) (b)

Figure 21. DRA results for data in Example 3 and k =
√
52, (a): exact and reconstructed solutions on Γ0, (b): convergence

history.

mes(Γ1) ≥ mes(Γ0)

Angle Node numbers on boundary ∥u− ue∥L2(Ω) Number of iterations
Θ = 3π

2 N|Γ1
= 100 and M|Γ0

= 100 0.00661591 91
Θ = π N|Γ1

= 100 and M|Γ0
= 100 0.0147404 186

mes(Γ1) < mes(Γ0)

Θ = π
2 N|Γ1

= 300 and M|Γ0
= 900 0.0690919 388

Table 1. Example 2 with k =
√
52, illustration the effects the length of Γ0

In fact, Table 1 presents the DRA algorithm results for the circular domain of example 2, with k =
√
52. The

tolerance used for the modified stopping criterion is ε = 10−04.
We observe from this table that in the case where my(Γ1) > my(Γ0), the DRA algorithm converges quickly

towards a very accurate solution. This quality of precision and speed deteriorates more and more as the length of
the inaccessible part becomes greater and greater. But it still remains correct even when mes(Γ1) is three times
smaller than mes(Γ0).

mes(Γ1) > mes(Γ0)

Radius Numbers of nodes ∥u− ue∥L2(Ω) Number of iterations
r1 = 1.0, r0 = 0.75 N = 400, M = 300 0.00540837 197
r1 = 1.0, r0 = 0.50 N = 400, M = 200 0.004019 221
r1 = 1.0, r0 = 0.25 N = 400, M = 100 0.00904027 216

mes(Γ1) < mes(Γ0)

r1 = 0.75, r0 = 1.0 N = 300, M = 400 0.0445471 264
r1 = 0.50, r0 = 1.0 N = 750, M = 1500 0.0975133 849

Table 2. Example 3 with k =
√
52, effects of the length of radius defining Γ0

Table 2 illustrates the effect of the length of the radius of the inaccessible part in the case where the domain is
an annular one. From this table we draw the same conclusions as those retained from the previous tables.

In accordance with the numerical comparisons previously studied, the superiority of our new DRA algorithm
over the old ones in solving the inverse Cauchy problem has been proven. In the next section, we will therefore
study the numerical stability only for the DRA algorithm applied to the various examples previously presented.
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5.6. Numerical stability

The solution of the inverse Cauchy problem not being continuously dependent on the data, which justifies that this
problem is badly posed in the sense of Hadamard [26], without regularizing character, a method such as the one
we have developed would not be relevant. We therefore present a study on the numerical stability of this algorithm
in order to show its regularizing character.

We limit ourselves to examining the numerical stability for the wavenumber k =
√
52, which is considered

to be a rather high wavenumber. In order to simulate measurement errors, the Dirichlet and Neumann boundary
conditions in Eq. (2)-Eq. (3) on Γ1 are perturbed by adding noise to the Cauchy data, in the form

fδ
1 = f1 + δf1, fδ

2 = f2 + δf2, (31)

where δf1 = f1 ∗ δ ∗ (2 ∗ rand− 1) and δf2 = f2 ∗ δ ∗ (2 ∗ rand− 1) are Gaussian noises with a mean zero,
generated by an appropriate rand function. While the δ is the level of the noise. The Cauchy problem in Eq. (1)-
Eq. (4) with respect to noise data is described by

∆uδ + k2uδ = 0, in Ω, (32)

uδ(x, 0) = fδ
1 , on Γ1, (33)

∂yu
δ(x, 0) = fδ

2 , on Γ1, (34)

uδ(0, y) = uδ(1, y) = 0, on Γ2. (35)

Four different noise levels δ ∈ [2.5 ∗ 10−2, 2 ∗ 10−1] were used. A comparison of the exact solution ue , the
noiseless approximate solution and the one approximated with noise of order δ, uδ is discussed in the following.

(a) (b)

Figure 22. Results for Example 1 with k =
√
52, (a): Noisy data on Γ1 , (b): Corresponding solutions on Γ0.

(a) (b)

Figure 23. Results for Example 2 with k =
√
52, (a): Noisy data on Γ1 , (b): Corresponding solutions on Γ0.
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(a) (b)

Figure 24. Results for Example 3 with k =
√
52, (a): Noisy data on Γ1 , (b): Corresponding solutions on Γ0.

As can be seen in these figures, 22, 23 and 24, the solutions obtained with the different noise levels in the
Cauchy data are not so far from the solution exact. In addition, the error verifies the following inequality

∥ue− uδ∥L2(Γ0) ≤ δ

This shows that the DRA algorithm is stable because the noise and the error obtained are of the same order. In
addition, we note that the oscillations present in the data, see part (a) of Fig. 22, Fig. 23 and Fig. 24, have been
absorbed. This proves the regularizing character of our DRA algorithm.

6. Conclusion

It was noted from from the numerical discussion that the dynamical relaxation factor has many advantages:

• The algorithm developed is one of the most effective techniques for studying the inverse problems of the
Helmholtz equation, capable of ensuring convergence in the case where the wavenumber is large without
prior determination of the interval of convergence for the relaxation factor θ.
• It improves the rate of convergence significantly compared to the algorithm with fixed relaxation, especially

when the interval of fixed relaxed factor becomes tight.
• The algorithm is very fast and produces a fairly accurate solution regardless of the geometry or regularity of

the data.
• The dynamical selection for θm is a successful strategy in order to avoid using any regularization or selection

parameter.
• The algorithm presents a strong numerical stability even for data with a very high degree of noise in the

Cauchy data.

In conclusion, a dynamic choice of the relaxed alternative algorithm relaxation factor to solve the Cauchy
problem associated with the Helmholtz equation proposed in [4] has been developed. This avoids the prior search
for an optimal relaxation parameter depending on k to ensure convergence. This also avoids the slowness of
this algorithm when the fixed relaxation effect becomes weak. Our algorithm, noted DRA, therefore creates an
automicity character which ensures the user a very rapid convergence without any prior intervention on his part.
The different numerical results show its superiority over the other iterative or non-dependent methods depending
on the search for an optimal parameter.
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Mathéematiques des Pays de Loire-FR CNRS 2962”.

Stat., Optim. Inf. Comput. Vol. 11, January 2023



20 AN ACCELERATED ALTERNATING ITERATIVE ALGORITHM FOR DATA COMPLETION PROBLEMS

REFERENCES

1. S. Andrieux, T. Baranger, and A.B. Abda, Solving cauchy problems by minimizing an energy-like functional, Inverse problems 22
(2006), p. 115.

2. S. Avdonin, V. Kozlov, D. Maxwell, and M. Truffer, Iterative methods for solving a nonlinear boundary inverse problem in glaciology,
J. Inverse Ill-Posed Probl. 17 (2009), pp. 239–258. MR 2527428

3. K. Berdawood, A. Nachaoui, R. Saeed, M. Nachaoui, and F. Aboud, An efficient dn alternating algorithm for solving an inverse
problem for helmholtz equation, Discrete & Continuous Dynamical Systems-S 15 (2022), p. 57.

4. K.A. Berdawood, A. Nachaoui, M. Nachaoui, and F. Aboud, An effective relaxed alternating procedure for cauchy
problem connected with helmholtz equation, Numerical Methods for Partial Differential Equations n/a. Available at
https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22793.

5. K.A. Berdawood, A. Nachaoui, R. Saeed, M. Nachaoui, and F. Aboud, An alternating procedure with dynamic relaxation for cauchy
problems governed by the modified helmholtz equation, Advanced Mathematical Models & Applications 5 (2020), pp. 131–139.

6. A. Bergam, A. Chakib, A. Nachaoui, and M. Nachaoui, Adaptive mesh techniques based on a posteriori error estimates for an inverse
cauchy problem, Applied Mathematics and Computation 346 (2019), pp. 865–878.

7. F. Berntsson, V.A. Kozlov, L. Mpinganzima, and B.O. Turesson, An alternating iterative procedure for the Cauchy problem for the
Helmholtz equation, Inverse Probl. Sci. Eng. 22 (2014), pp. 45–62. MR 3173606

8. F. Berntsson, V. Kozlov, L. Mpinganzima, and B.O. Turesson, Robin-Dirichlet algorithms for the Cauchy problem for the Helmholtz
equation, Inverse Probl. Sci. Eng. 26 (2018), pp. 1062–1078. MR 3781581

9. A. Chakib, A. Nachaoui, and M. Nachaoui, Existence analysis of an optimal shape design problem with non coercive state equation,
Nonlinear Analysis: Real World Applications 28 (2016), pp. 171–183.

10. A. Chakib, A. Nachaoui, M. Nachaoui, and H. Ouaissa, On a fixed point study of an inverse problem governed by stokes equation,
Inverse Problems 35 (2018), p. 015008.

11. A. Chakib, A. Ellabib, A. Nachaoui, and M. Nachaoui, A shape optimization formulation of weld pool determination, Applied
Mathematics Letters 25 (2012), pp. 374–379.

12. L. Chang, W. Gong, G. Sun, and N. Yan, Pde-constrained optimal control approach for the approximation of an inverse cauchy
problem, Inverse Problems and Imaging 9 (2015), pp. 791–814.

13. R. Chapko and B.T. Johansson, An alternating potential-based approach to the Cauchy problem for the Laplace equation in a planar
domain with a cut, Comput. Methods Appl. Math. 8 (2008), pp. 315–335. MR 2604745

14. J.T. Chen and F. Wong, Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition, Journal
of Sound and Vibration 217 (1998), pp. 75–95.
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