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Abstract We introduce new nonparametric independence tests based on Rényi and Tsallis divergence measures and copula
density function. These tests reduce the complexity of calculations because they only depend on the copula density. The
copula density estimated using the local likelihood probit-transformation method is appropriate for the identification of
independence. Also, we present the consistency of the copula-based Rényi and Tsallis divergence measures estimators that
are considered as test statistics. A simulation study is provided to compare the empirical power of these new tests with the
independence test based on the empirical copula. The simulation results show that the suggested tests outperform in weak
dependency. Finally, an application in hydrology is presented.
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1. Introduction

One of the most important tasks faced by experimenters is to assert independence in the data. Most of the classical
independence testing was based on a dependence measure, such as the Pearson linear correlation, Kendall’s τ , and
Spearman’s ρ. These tests are usually inconsistent, so Blum et al. [3] used the Cramér-von Mises (CvM) distance
to compare the joint empirical distribution function with the product of its corresponding marginal empirical
distributions. Genest and Remillard [11] presented the test of independence based on the CvM distance and
empirical copula.

Belalia et al. [2] showed that the empirical copula-based independent test fails when the dependency occurs
only at the tails. They suggested that the copula density is appropriate for the detection of independence. So,
they proposed the independence test based on Bernstein copula density and Kullback–Leibler (KL) divergence.
Mohammadi et al. [32] introduced nonparametric tests of independence via copula-based α-divergence. They
showed that the Hellinger distance, as a special case of the α-divergence, outperforms in comparison of the existing
test based on empirical copula.

The idea of divergence measure has been widely employed in probability, statistics, information theory, and
related fields. The KL divergence which is introduced in [25], also regarded as Relative Entropy or Mutual
Information, is a nonsymmetrical measure of the distinction between two probability density functions. Rényi [36]
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introduced a generalized entropy and divergence measure that naturally extend the KL divergence. Tsallis entropy
was firstly described by Havrda and Charvat [15] and unearthed by Tsallis [42]. Generalizations of Shannon’s
entropy have attracted the attention of many researchers. For recent properties of these generalization measures,
we refer to [17, 19, 22, 23, 24, 33, 14, 40]. Also, Tsallis entropy extensions have been performed by some
researchers, among which we can mention [41, 20, 21]. Some of these measures can be considered as a statistic for
the independence test.

Ma and Sun [27] introduced the concept of copula entropy by combining the KL divergence and the copula
density. They demonstrated that the KL divergence is equal to the negative of copula entropy. The copula entropy
was considered as a measure of multivariate association by Blumentritt and Schmid [4]. In this paper, we provide
Rényi and Tsallis divergence measures based on copula density together with their basic properties. We use
these measures to perform two nonparametric tests the independence. These tests are simple to implement and
reduce the complexity because they depend only on the copula density. Also, the copula-based Rényi and Tsallis
divergence measure independence tests provide a bigger power compared to the empirical copula-based test in
weak dependency.

The rest of the paper is arranged as follows. In Section 2, the copula-based Rényi and Tsallis divergence measures
together with their basic properties are provided. Estimators of the copula-based Rényi and Tsallis divergence
measures are considered as test statistics for testing independence, and their consistency is established in Section
3. In Section 4, the simulation results are provided to compare the empirical power of independence tests. Finally,
an application of new methods in hydrology is presented in Section 5.

2. Copula-based Rényi and Tsallis divergence measures

The KL divergence between two density functions f1 and f2 is defined as

KL(f1, f2) =

∫ ∞

−∞
f1(x) log

f1(x)

f2(x)
dx, α > 0, α ̸= 1.

This divergence is nonnegative, and KL(f1, f2) = 0 if and only if f1(x) = f2(x). The Rényi divergence (or relative
Rényi entropy) of order α between two density functions f1 and f2 is defined as

Rα(f1 ∥ f2) =
1

α− 1
log

∫
R
fα
1 (x) f

1−α
2 (x)dx, α > 0, α ̸= 1, (1)

and the Tsallis divergence of order α is defined as

Tα(f1 ∥ f2) =
1

α− 1

(∫
R
fα
1 (x) f

1−α
2 (x)dx− 1

)
, α > 0, α ̸= 1. (2)

The larger α values give the Rényi and Tsallis divergence measures dominated by the greatest ratio between
the two functions. One of the interesting special cases of the Rényi and Tsallis divergence measures occurs for
α → 1, which gives the KL divergence. We also get the well-known Bhattacharyya distance in the special case
where α = 0.5 for the Rényi divergence. On the other hand, it can be noted that the special case α = 0.5 for the
Tsallis divergence is equal to the double Hellinger distance between probability distributions.

The Rényi and Tsallis divergence measures between a joint density function and the product of its corresponding
marginal density functions can be rewritten in terms of the copula density function. The copula function
suggested by Sklar [38] has been implemented in a broad spectrum of scientific fields such as hydrology and
finance. Let random variables X and Y follow arbitrary marginal cumulative distribution functions FX and FY ,
respectively. Then there is a copula function C that combines these marginal distribution functions to give the
joint distribution function F as F (x, y) = C(FX(x), FY (y); θ), where (x, y) ∈ R2 and θ is a copula parameter.
Recently, semiparametric methods for the estimation of copula parameter based on minimum Alpha-Divergence
are presented in [31], which perform well in small sample size and weak dependency. If C is an absolutely
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continuous copula distribution on [0, 1]2, then its density function is c(u, v) = ∂2C(u,v)
∂u∂v where (U, V ) is a random

vector defined in the unit square with uniform marginal distributions as U = F (X) and V = F (Y ). It is obvious
that the relationship between the copula density c and the joint density function f of (X,Y ) can be represented as

f(x, y) = c(FX(x), FY (y))fX(x)fY (y), (x, y) ∈ R2, (3)

where fX and fY are the marginal density function of X and Y , respectively.
The KL divergence based on copula density using equation (3) can be written as

KL(c) ≡ KL(f ∥ fXfY )

=

∫
R2

f(x, y) log
( f(x, y)

fX(x)fY (y)

)
dxdy

=

∫
[0,1]2

c(u, v) log c(u, v) dudv

= E
(
log c(U, V )

)
. (4)

Now, we focus on representing the Rényi and Tsallis divergence measures based on the copula density to separate
the dependence structure of the marginal distributions. Let X and Y be two random variables with density functions
fX and fY , respectively, joint density function f , and copula density function c. Using equations (1) and (3), for
α > 0 and α ̸= 1, the copula-based Rényi divergence measure is defined as

Rα(c) ≡ Rα(f ∥ fXfY )

=
1

α− 1
log

∫
R2

fα(x, y) (fX(x)fY (y))
1−αdxdy

=
1

α− 1
log

∫
[0,1]2

cα(u, v)dudv

=
1

α− 1
logE

(
cα−1(U, V )

)
, α > 0, α ̸= 1. (5)

On the other hand, the copula-based Tsallis divergence measure is given as

Tα(c) ≡ Tα(f ∥ fXfY )

=
1

α− 1

(∫
R2

fα(x, y) (fX(x)fY (y))
1−αdxdy − 1

)
=

1

α− 1

(∫
[0,1]2

cα(u, v)dudv − 1
)

=
1

α− 1
E
(
cα−1(U, V )− 1

)
α > 0, α ̸= 1. (6)

Remark 1
According to equations (5) and (6), it can be easy to conclude that the relationship between the Rényi and Tsallis
divergence is as follows:

Tα(c) =
1

α− 1

(
e(α−1)Rα(c) − 1

)
, α > 0, α ̸= 1. (7)

The measures in equations (5) and (6) only depend on the copula density and are independent from marginal
distributions. Now, we review some theoretical properties of these measures in Proposition 1.

Proposition 1
Let C denote the copula function of random variables (X,Y ) and let c be the corresponding copula density function.
For α > 0 and α ̸= 1, the following statements hold:
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(a) Rα(c) ≥ 0, Tα(c) ≥ 0, and Rα(c) = Tα(c) = 0 if and only if X and Y are independent.
(b) Rα(c) = Rα(c) and Tα(c) = Tα(c).
(c) Rα(c) and Tα(c) are invariant under the strictly increasing and decreasing transformations of one or two

components of (X,Y ).

Proof

(a) Using the Jensen inequality,

Rα(c) =
1

α− 1
log

∫
[0,1]2

cα(u, v)dudv

=
1

α− 1
log E

(
cα−1(U, V )

)
≥ 1

α− 1
log E1−α

( 1

c(U, V )

)
= 0,

and

Tα(c) =
1

α− 1

(∫
[0,1]2

cα(u, v)dudv − 1
)

=
1

α− 1
E
(
cα−1(U, V )− 1

)
≥ 1

α− 1
E1−α

( 1

c(U, V )
− 1

)
= 0,

where (u, v) ∈ [0, 1]2. If X and Y are independent random variables, then c(u, v) = 1. Therefore Rα(c) =
Tα(c) = 0.

(b) By applying Fubini’s theorem, this property holds.
(c) The copula function is invariant under strictly increasing transformations of the random variables underlying

(see [35]), so the copula-based Rényi and Tsallis divergence measures are invariant under strictly increasing
transformations. Now, let δ and η be strictly decreasing transformations. Then relations Cδ(X),Y (u, v) =
v − CX,Y (1− u, v) and Cδ(X),η(Y )(u, v) = u+ v − 1− CX,Y (1− u, 1− v) are established; see [35]. Thus,
we are able to write cδ(X),Y (u, v) = cX,Y (1− u, v) and cδ(X),η(Y )(u, v) = cX,Y (1− u, 1− v). Hence, for a
strictly decreasing transformation on X , we have

Rα,(δ(X),Y )(c(U, V )) =
1

α− 1
log

∫
[0,1]2

cα(1− u, v)dudv

=
1

α− 1
log

∫
[0,1]2

cα(z, v)dzdv (substituting 1-u=z)

= Rα,(X,Y )(c).

Likewise, the result of copula-based Tsallis divergence can be proved under a strictly decreasing
transformation on X or Y . In the same way, for strictly decreasing transformations on X and Y , for copula-
based Rényi divergence, we can write

Rα,(δ(X),η(Y ))(c) =
1

α− 1
log

∫
[0,1]2

cα(1− u, 1− v)dudv.
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By replacing 1− u = z and 1− v = w, we get

Rα,(δ(X),η(Y ))(c) =
1

α− 1
log

∫
[0,1]2

cα(z, w)dzdw

= Rα,(X,Y )(c).

Similarly, the result can be proved for the copula-based Tsallis divergence under strictly decreasing
transformation on X and Y .

In Example 1, the copula-based Rényi and Tsallis divergence measures for the Gaussian (Normal) copula will
be considered, and its properties will be illustrated.

Example 1
Let (U, V ) be a random vector from the bivariate Gaussian copula with parameter ρ (see [35]) as

C(u, v; ρ) = Φ2(Φ
−1(u),Φ−1(v); ρ), (u, v) ∈ [0, 1]2, ρ ∈ [−1, 1],

where Φ2 is the bivariate normal distribution function with zero means, variances one, and the correlation matrix

R =

[
1 ρ
ρ 1

]
. Moreover Φ−1 denotes the univariate standard normal distribution quantile function. The density of

the Gaussian copula is determined by

c(u, v; ρ) =
1√

1− ρ2
exp

{2ρΦ−1(u)Φ−1(v)− ρ2(Φ−1(u)2 +Φ−1(v)2)

2(1− ρ2)

}
, (u, v) ∈ [0, 1]2.

Gil et al. [12] demonstrated the general form of the Rényi divergence for the multivariate Gaussian distribution.
Now by using part (c) of Proposition 1 and equation (5), we can show that

Rα(c) = Rc
α(Φ

−1(u),Φ−1(v))

= −1

2
log(1− ρ2)− 1

2(α− 1)
log(1− (1− α)2ρ2), α > 0, α ̸= 1, ρ ∈ [−1, 1].

By using equation (7), we can write

Tα(c) =
1

α− 1

(
(1− ρ2)

1−α
2 (1− (1− α)2ρ2)−

1
2 − 1

)
, α > 0, α ̸= 1, ρ ∈ [−1, 1].

By using the relationship between Kendall’s τ and Spearman’s ρ for the bivariate Gaussian copula, τ =
2
π arcsin(ρ), the behavior of the Rényi and Tsallis divergence measures for different values of Kendall’s τ are
given in Figure 1. Note that the Rényi and Tsallis divergence measures for all values considered for α take their
minimum value if τ = 0. The values of Rα(c) and Tα(c) increase by increasing the absolute value of the Kendall’s
τ . According to Figure 1 and the study of [29], we can give the result that among the Rényi and Tsallis divergence
measures, R0.1(c) and T0.1(c) are outperforming, respectively, because they have a smaller value than the other
measures for different values of α. Also, it is observed that the maximum value of T0.1(c) is bounded, and this is a
reason for its superiority, too.

3. Test of independence using copula density

The null hypothesis of copula-based independence test can be expressed as

H0 : C(u, v) = uv, (u, v) ∈ [0, 1]2.
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Figure 1. Copula-based Rényi and Tsallis divergence measures for the bivariate Gaussian copula

For the test of independence, Genest and Remillard [11] suggested a test statistics based on the CvM distance as
follows:

Sn = n

∫
[0,1]2

(Cn(u, v)− uv)2dudv, (8)

where Cn(u, v) is the empirical copula, which was initially introduced by Deheuvels [7]. The empirical copula was
defined as Cn(u, v) =

1
n

∑n
i=1 I{Ûi ≤ u, V̂i ≤ v}, where Ûi =

Ri

n+1 and V̂i =
Si

n+1 , i = 1, . . . , n, are the pseudo
observations and Ri and Si are the ranks of the observation, respectively.

It is obvious that the null hypothesis of independence test based on copula density is equivalent to

H0 : c(u, v) = 1, (u, v) ∈ [0, 1]2. (9)

In order to test this null hypothesis, we define nonparametric estimators of the Rényi and Tsallis divergence
measures, which will be used as the test statistics.

3.1. Estimators as test statistics

We consider plug-in estimators of the copula-based Rényi and Tsallis divergence measures as test statistics for the
test of independence. For this purpose, the copula density must be estimated. A specific class of nonparametric
copula density estimators is kernel estimators. Charpentier et al. [5] presented different methods for kernel-based
estimation of the copula density, such as the mirror-reflection, beta kernel, and probit-transformation. In this paper,
the modified probit-transformation method known as the local likelihood probit-transformation (LLPT ) method,
suggested by Geenens et al. [9], will be used to estimate the copula density. This method is easy to implement
estimators, fix boundary problems, and able to cope with unbounded copula density functions. In the LLPT
method, a polynomial locally fits the log-density of the transformed sample. A comprehensive simulation study
by Nagler [34] showed that the LLPT method yields very good performance among different copula density
estimation methods.

Let (Uj , Vj)j=1,...,n be independent and identically distributed (iid) observations from the bivariate copula C.
Then the purpose is to estimate the corresponding copula density function. The probit-transformation vector
(Xi, Yi) = (Φ−1(Ui),Φ

−1(Vi)) is a random vector with Gaussian margins and copula C, where Φ is the standard
Gaussian distribution. According to equation (3), the joint density function f of the transformed sample (Xi, Yi)
should be estimated for copula density estimation. For this aim, a local log-quadratic estimation of log f around
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(x, y) ∈ R2 and (x′, y′) close to (x, y) is considered as follows:

log f(x′, y′) =a2,0(x, y) + a2,1(x, y)(x
′ − x) + a2,2(x, y)(y

′ − y)

+ a2,3(x, y)(x
′ − x)2 + a2,4(x, y)(y

′ − y)2 + a2,5(x, y)(x
′ − x)(y′ − y)

≡Pa2
(x′ − x, y′ − y),

where the vector a2(x, y) ≡ (a2,0(x, y), . . . , a2,5(x, y)) is estimated by solving a weighted maximum likelihood
problem. So, the estimation of f(x, y) is f̃p(x, y) = exp{â2(x, y)} and using equation (3), the LLPT estimation
of the copula density is

ĉ(LLPT )
n (u, v) =

f̃p(Φ−1(u),Φ−1(v))

ϕ(Φ−1(u))ϕ(Φ−1(v))
, (u, v) ∈ [0, 1]2, (10)

where the nearest-neighbor method is used for the bandwidth selection; see [9],.
Thus, the plug-in estimators of the copula-based Rényi and Tsallis divergence measures as follows:

R̂α(c) =
1

α− 1
log

( 1

n

n∑
i=1

ĉ(LLPT )
n (Ui, Vi)

α−1
)
, α > 0, α ̸= 1, (11)

and

T̂α(c) =
1

α− 1

( 1

n

n∑
i=1

ĉ(LLPT )
n (Ui, Vi)

α−1 − 1
)
, α > 0, α ̸= 1, (12)

where ĉ
(LLPT )
n is the LLPT estimation of the copula density as in equation (10).

3.2. Asymptotically consistent

Two different approaches were proposed in [1, 18] to prove the consistency of the entropy estimation. By taking
ideas from these approaches, we prove the asymptotic second-order consistency of Rényi and Tsallis divergence
measures estimators in equations (11) and (12) in Proposition 2.

Proposition 2
Suppose that (Uj , Vj)j=1,...,n is an iid sample from copula C and that the corresponding copula density c is twice

continuously differentiable. Let E (c(U, V )) < ∞, E
(
c(U, V )2

)
< ∞, (u, v) ∈ (0, 1)2, bn2 → 0, and nbn

2 → ∞.
Then

(i) E
[
T̂α(c)− Tα(c)

]2
−→ 0, n → ∞;

(ii) E
[
R̂α(c)−Rα(c)

]2
−→ 0, n → ∞.

Proof
The asymptotic normality of the LLPT estimator was demonstrated in [9] as

ĉ(LLPT )
n (u, v) is AN

(
µ(u, v),

σ2(u, v)

nb2n

)
,

where

σ2(u, v) =
5c(u, v)

8πϕ(Φ−1(u))ϕ(Φ−1(v))
, (13)

µ(u, v) = c(u, v)− b4n
8

c(u, v)

ϕ(Φ−1(u))ϕ(Φ−1(v))

{∂4g

∂x4
+

∂4g

∂y4
+ 2

∂4g

∂x2∂y2

+ 4
(∂3g

∂x3

∂g

∂x
+

∂3g

∂y3
∂g

∂y
+

∂3g

∂x2∂y

∂g

∂y
+

∂3g

∂x∂y2
∂g

∂x

)}
(x, y), (14)
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and g(x, y) = log c(Φ(x),Φ(y)) + log ϕ(x) + log ϕ(y) in x = Φ−1(u), y = Φ−1(v). Bias and variance of the
copula density estimation using LLPT method will be used to prove the consistency of estimators.

(i) We write Tα for (α− 1)Tα(c) + 1 and T̂α for (α− 1)T̂α(c)− 1 on I = [0, 1]. Define

Tα =

∫
I2

cα−1(u, v)dC(u, v) = E(cα−1(U, V )), (15)

T̂α =

∫
I2

ĉα−1(u, v)dCn(u, v) =
1

n

n∑
i=1

ĉα−1(Ui, Vi), (16)

θα =

∫
I2

cα−1(u, v)dCn(u, v) =
1

n

n∑
i=1

cα−1(Ui, Vi). (17)

By using the Minkowski inequality, we have

E
[
T̂α(c)− Tα(c)

]2
=

1

(α− 1)2
E[T̂α − Tα]

2

=
1

(α− 1)2
E[(T̂α − θα) + (θα − Tα)]

2

≤ 1

(α− 1)2

(
E1/2(T̂α − θα)

2 + E1/2(θα − Tα)
2
)2

=
1

(α− 1)2
(I

1/2
1 + I

1/2
2 )2.

To prove part (i) of the proposition, it suffices to show that Ij → 0 as n → ∞ for j = 1, 2.
By substituting (16) and (17) into I1, the Taylor expansion of function ĉα−1(u, v) about c(u, v) can be written as

I1 = E
[ ∫

I2

(ĉα−1(u, v)− cα−1(u, v))dCn(u, v)
]2

= E
[ ∫

I2

(
(α− 1)cα−2(u, v)(ĉ(u, v)− c(u, v))

)
dCn(u, v) +O(

b8n
n
)
]2

= E
[ 1
n

n∑
i=1

(α− 1)cα−2(Ui, Vi)(ĉ(Ui, Vi)− c(Ui, Vi)) +O(
b8n
n
)
]2

=
1

n2
E
[ n∑

i=1

(α− 1)2c2(α−2)(Ui, Vi)
(
ĉ(Ui, Vi)− c(Ui, Vi)

)2]
+

1

n2
E
[ n∑

i ̸=j

(α− 1)2cα−2(Ui, Vi)
(
ĉ(Ui, Vi)− c(Ui, Vi)

)
cα−2(Uj , Vj)

(
ĉ(Uj , Vj)− c(Uj , Vj)

)]
+O(

b16n
n2

)

= A1 +A2 +O(
b16n
n2

).

Now, we evaluate expression A1 and A2. From the fact that ĉ(ui, vi) for i = 1, . . . , n are identically distributed,
we can write

A1 =
1

n
E(U,V )

{
Eĉ

[
(α− 1)2c2(α−2)(U, V )

(
ĉ(U, V )− c(U, V )

)2]
|U, V

}
=

1

n

∫
I2

Eĉ

[
(α− 1)2c2(α−2)(U, V )

(
ĉ(U, V )− c(U, V )

)2

|U = u, V = v
]
c(u, v)dudv.
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From equations (13) and (14) for all (u, v) ∈ I2, we have

Eĉ

[
(α− 1)2c2(α−2)(u, v)

(
ĉ(u, v)− c(u, v)

)2]
= (α− 1)2c2(α−2)(u, v)Eĉ

(
ĉ(u, v)− c(u, v)

)2

= (α− 1)2c2(α−2)(u, v)
(
V arĉ(ĉ(u, v)) +Bias2ĉ(ĉ(u, v))

)
= (α− 1)2c2(α−2)(u, v)

(
O(

1

nb2n
) +O(b8n)

)
−→ 0, n → ∞.

Furthermore,

Eĉ

[
(α− 1)2c2(α−2)(u, v)

(
ĉ(u, v)− c(u, v)

)2]
c(u, v)

≤ (α− 1)2c2(α−2)(u, v)
(
V arĉ(ĉ(u, v)) + E2

ĉ (ĉ(u, v)) + c2(u, v)
)
c(u, v)

≤ (α− 1)2c2(α−2)(u, v)
(
O(

1

nb2n
) + c2(u, v) +O(b8n) + c2(u, v)

)
c(u, v)

−→ 2(α− 1)2c2α−1(u, v), n → ∞.

Thus, for all (u, v), the integrand of expression A1 is bounded above by 2(α− 1)2c2α−1(u, v) as n → ∞, which is
integrable. Then by the Lebesgue dominated convergence theorem, A1 −→ 0 as n → ∞. On the other hands, from
the Cauchy–Schwarz inequality, the expression A2 can be evaluated as follows:

A2 ≤ 1

n2
n(n− 1)(

√
A1)

2 (18)

=
n− 1

n
A1 −→ 0, n → ∞. (19)

Therefore, A2 −→ 0 and so I1 −→ 0.
As for I2, by substituting (15) and (17), we have

I2 = E
[ 1
n

n∑
i=1

cα−1(Ui, Vi)−
∫
I2

cα−1(u, v)dC(u, v)
]2

=
1

n
V ar(cα−1(U, V )) = O(

1

n
).

Then, I2 −→ 0 as n → ∞, and this completes the proof of the part (i).
(ii) The proof of this part can be easily completed in the same way as part (i) by using the Taylor expansion of

the logarithm function.

4. Simulation study

A simulation study was performed to evaluate the finite sample properties of the suggested tests of independence.
The Clayton, Gumbel, and Frank copulas from the Archimedean class and Gaussian and T copulas from
the Elliptical class are considered under the alternative hypothesis. These copulas cover different degrees of
dependency as measured by Kendall’s τ . The copula package provided by Hofert et al. [16] is used to simulate the
copula functions. We use a procedure proposed in [10] to calculate the critical value (CV), p-value, and empirical
power (EP) of the suggested test statistics at a 5% significance level. This procedure was also used in [32].

The empirical size and power of the suggested test statistics are compared with the classical test based on
the empirical copula (Sn) considered in [11]. A Monte Carlo experiment with 1000 replications is performed
on test statistics Sn, K̂L(c), R̂α(c), and T̂α(c) for special value of α (α = 0.1, 0.5, 2), various sample sizes
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(n = 50, 100, 200), and different degrees of dependency based on Kendall’s τ coefficient (τ = 0, 0.1, 0.175, 0.25).
We assume that the marginal distributions have standard uniform distributions. For Kendall’s τ coefficient greater
than 0.5, all tests provide very good performance. Simulation results for considered test statistics are reported in
Table ?? for Archimedean copulas and Table 1 for Elliptical copulas.

The empirical size of all tests is obtained when Kendall’s τ is equal to zero. Indeed, in T copula with a small
degree of freedom (df = 2), dependency occurs in the tail areas when τ = 0; see [8]. Consequently, independence
does not exist in this case. However, by increasing the degree of freedom in the T copula, dependency is less in tail
areas. Results in Tables ?? and 1 show that all tests generally control the size.

As seen in Tables ?? and 1, the empirical power of all tests increases by increasing the sample size or Kendall’s
τ . The empirical powers of T̂α(c) increase by decreasing alpha values. Indeed, the empirical powers of R̂α(c) do
not show a monotone behavior with respect to alpha values. In both tables, it can be seen that T̂0.1(c) has a better
performance than T̂0.5(c) and T̂2(c). Also, we know that T̂0.5(c) is equal to double Hellinger distance (Ĥe(c))
proposed in [32] as a good test statistic in weak dependency or small sample size. Simulation results show that
T̂0.1(c) has the best performance among all the considered statistics in weak dependency (τ = 0.1, 0.175). It can
be seen in Table 1 that the suggested independence tests based on Rényi and Tsallis divergence measures do much
better than the empirical copula-based test Sn for T copula with a small degree of freedom (df = 2) in terms of
power. For example, the empirical power of R̂0.1(c) and T̂0.1(c) for T copula with 2 degrees of freedom in n = 200
and τ = 0 are equal to 0.841 and 0.942, respectively, whereas the empirical power of Sn is equal to 0.165.

5. Application in hydrology

In this section, an application of suggested independence tests on a real dataset is presented for analysis of
hydrological drought. McKee et al. [28] proposed the concept of standardized precipitation index (SPI) based
on the long-term precipitation record for a specific period. Guttman [13] recommended using the SPI as a primary
drought index because it is simple, spatially invariant in its interpretation, and probabilistic. The SPI series is used
for this paper. Fitting this long-term precipitation record to a probability distribution is the first step in calculating
the SPI series. Once the probability distribution is determined, the cumulative probability of observed precipitation
is computed and then inverse transformed by a standard normal distribution with mean 0 and variance 1. The
resulting quantile is SPI. A drought event is thus defined as a continuous period in which the SPI is below 0.

Drought characteristics (events) based on SPI include drought duration (Dd), drought severity (Sd), and drought
interval time (Ld). Drought duration Dd is defined as the number of consecutive intervals (months) where SPI
remains below the threshold value of 0; see [37]. Drought severity Sd is defined as a cumulative SPI value during a
drought period, Sd =

∑Dd

i=1 SPIi, where SPIi means the SPI value in the ith month; see [30]. The drought interval
time Ld is defined as the period elapsing from the initiation of drought to the beginning of the next drought; see
[39].

The objective of this section is to test of independence between drought characteristics. Wong et al. [43]
established a joint distribution function of drought intensity, duration, and severity using Gaussian and Gumbel
copulas. Ma et al. [26] investigated the drought events in the Weihe river basin and selected the Gaussian and
T copulas to model the joint distribution among drought duration, severity, and peaks. Recently, a comprehensive
book on the application of copula in hydrology was published by Chen and Guo [6], and the concepts in this section
are taken from this book.

The monthly precipitation data of Mashhad station, located in Iran, from 1951 to 2017
(http://www.irimo.ir/eng/index.php) are used as real data to illustrate the proposed methodology. The monthly
precipitation can be fitted as a gamma distribution. The monthly SPI series is then calculated and demonstrated in
Figure 2 for this 67-year period.

The spearman’s ρ and Kendall’s τ coefficients for pairs of drought variables are given in Table 2. Results confirm
that the pairs (Sd, Dd) and (Ld, Dd) show positive and significant (at 5% level) correlations. The pair (Sd, Ld) has
a positive and weak dependency.
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Table 1. Empirical size and power of the test statistics for Elliptical copulas

Copula Sample Size Kendall’s τ Sn K̂L(c) R̂0.1(c) R̂0.5(c) R̂2(c) T̂0.1(c) T̂0.5(c) T̂2(c)
Gaussian 50 τ=0 0.045 0.047 0.052 0.044 0.062 0.048 0.049 0.040

τ=0.1 0.180 0.185 0.136 0.134 0.124 0.198 0.191 0.150
τ=0.175 0.441 0.453 0.376 0.371 0.354 0.484 0.474 0.354
τ=0.25 0.695 0.711 0.658 0.634 0.630 0.737 0.723 0.624

100 τ=0 0.060 0.052 0.044 0.052 0.044 0.048 0.051 0.040
τ=0.1 0.261 0.269 0.218 0.200 0.184 0.298 0.274 0.200
τ=0.175 0.480 0.461 0.428 0.459 0.460 0.550 0.484 0.409
τ=0.25 0.960 0.972 0.880 0.874 0.828 0.983 0.978 0.862

200 τ=0 0.050 0.053 0.048 0.053 0.054 0.049 0.050 0.041
τ=0.1 0.463 0.456 0.341 0.330 0.258 0.486 0.471 0.292
τ=0.175 0.679 0.673 0.601 0.535 0.520 0.699 0.687 0.504
τ=0.25 1.000 0.998 0.991 0.983 0.971 1.000 1.000 0.990

T (df = 2) 50 τ=0 0.120 0.291 0.324 0.272 0.258 0.361 0.296 0.263
τ=0.1 0.215 0.338 0.337 0.318 0.318 0.367 0.345 0.321
τ=0.175 0.424 0.568 0.571 0.562 0.553 0.595 0.572 0.512
τ=0.25 0.730 0.782 0.794 0.751 0.732 0.816 0.797 0.718

100 τ=0 0.132 0.551 0.586 0.598 0.604 0.636 0.598 0.602
τ=0.1 0.410 0.791 0.786 0.770 0.712 0.818 0.813 0.698
τ=0.175 0.686 0.912 0.935 0.923 0.911 0.976 0.951 0.903
τ=0.25 0.945 0.975 0.964 0.952 0.938 0.989 0.979 0.964

200 τ=0 0.165 0.891 0.926 0.921 0.894 0.942 0.909 0.912
τ=0.1 0.480 0.976 0.981 0.968 0.963 0.987 0.982 0.966
τ=0.175 0.700 0.988 0.986 0.977 0.969 0.991 0.988 0.981
τ=0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T (df = 10) 50 τ=0 0.061 0.052 0.067 0.059 0.054 0.059 0.052 0.059
τ=0.1 0.171 0.212 0.181 0.158 0.151 0.229 0.221 0.156
τ=0.175 0.402 0.425 0.410 0.364 0.408 0.480 0.472 0.413
τ=0.25 0.686 0.706 0.662 0.648 0.626 0.718 0.713 0.661

100 τ=0 0.055 0.056 0.078 0.070 0.070 0.148 0.051 0.088
τ=0.1 0.365 0.383 0.266 0.270 0.216 0.399 0.395 0.227
τ=0.175 0.598 0.604 0.565 0.545 0.443 0.665 0.623 0.505
τ=0.25 0.960 0.975 0.920 0.898 0.820 0.984 0.979 0.868

200 τ=0 0.055 0.053 0.064 0.075 0.062 0.057 0.050 0.068
τ=0.1 0.521 0.509 0.521 0.505 0.443 0.619 0.526 0.469
τ=0.175 0.721 0.799 0.807 0.744 0.688 0.910 0.809 0.710
τ=0.25 1.000 1.000 0.992 0.984 0.980 1.000 1.000 0.991

Table 2. Kendall’s τ and Spearman’s ρ coefficients for drought variables

pairs Kendall’s τ Spearman’s ρ
tau p-value rho p-value

(Sd, Dd) 0.4747 <2.2E-16 0.6611 <2.2E-16
(Sd, Ld) 0.1569 0.0034 0.2265 0.0041
(Ld, Dd) 0.2170 4.97E-05 0.3075 8.07E-05

The test statistics Sn, K̂L(c), R̂α(c), and T̂α(c) (α = 0.5, 2, 3) are computed to test independence between
drought events, and the results are shown in Table 3. The empirical marginal distributions are considered for
observed drought events. The results show that the independence hypothesis is rejected based on all considered
tests for pairs (Sd, Dd) and (Ld, Dd). Furthermore, the independence hypothesis for pair (Sd, Ld) is rejected based
on all tests except test statistics T̂0.1(c). For this pair, the value of test statistics T̂0.1(c) = 0.0514 is less than its
critical value (0.0523), and p− value = 0.0602 ≥ 0.05. This result shows that the proposed test statistics T̂0.1(c)
has a good ability to detect weak dependency.
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Figure 2. The monthly SPI time series for the Mashhad station

Table 3. Results of the independence tests for the SPI of Mashhad

Test C.V. 95 % (Sd,Dd) (Sd,Ld) (Ld,Dd)
statistics value of statistics p-value value of statistics p-value value of statistics p-value

Sn 0.1212 1.8940 <0.001 0.2549 0.0010 0.4874 <0.001
K̂L(c) 0.0775 0.3756 <0.001 0.0830 0.0413 0.2467 <0.001
R̂0.1(c) 0.0552 0.2417 <0.001 0.0558 0.0486 0.1696 <0.001
R̂0.5(c) 0.0634 0.2985 <0.001 0.0672 0.0441 0.2035 <0.001
R̂2(c) 0.1149 0.5914 <0.001 0.1251 0.0282 0.3453 <0.001
T̂0.1(c) 0.0523 0.2173 <0.001 0.0514 0.0602 0.1573 <0.001
T̂0.5(c) 0.0629 0.2773 <0.001 0.0662 0.0491 0.1935 <0.001
T̂2(c) 0.1204 0.8066 <0.001 0.1332 0.0334 0.4124 <0.001

Conclusion

Nonparametric independence tests between continuous random variables were proposed based on the copula
density estimator and Rényi and Tsallis divergence measures. These tests were able to look at the weak dependency.
The comparison of empirical powers in a simulation study showed that the suggested test T̂0.1(c) performs better
than the test based on the empirical copula in weak dependency. In particular, the independent tests based on
Rényi and Tsallis divergence measures have a greater ability than the empirical copula-based test for T copula
with a small degree of freedom. Finally, a real example was performed in hydrology to show the usefulness of the
proposed tests. Multivariate independence tests via copula-based divergence measures will be investigated in the
future.
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