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Abstract This paper introduces a new family of multimodal and skew-symmetric circular distributions, namely, the sine-
cosine weighted circular distribution. The fundamental properties of this family are examined in the context of a general
case and three specific examples. Additionally, general solutions for estimating the parameters of any sine-cosine weighted
circular distribution using maximum likelihood are provided. A likelihood-ratio test is performed to check the symmetry of
the data. Some simulations are run to assess the performance of the maximum-likelihood estimators. Lastly, two examples
are presented that illustrate how the proposed model may be utilized to analyze two real-world case studies with asymmetric
datasets.
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1. Introduction

Classical models for circular data are symmetric, including the von Mises, wrapped Cauchy, and cardioid
distributions [21, 14].

Wrapping is a technique that is frequently used to create skew-symmetric circular models. It involves wrapping
a skew-symmetric family, defined on the natural line, around the unit circle. Wrapped stable models [21, 26],
wrapped skew-normal models [25], and wrapped Laplace models [13] are all instances of skew-symmetric models
that may be constructed by this method.

There are two other approaches that result in distributions capable of simulating asymmetry and, presumably,
multimodality. They are both extensions to the von Mises distribution. In the first, additional terms are added to the
von Mises density exponent. [8] and [20] present two examples of this approach in practice (see also, [11]). The
second approach is to employ finite mixtures of von Mises distributions (see,[27]).
Alongside this, perturbation is a frequently used technique for generating skew-symmetric models. Perhaps the
most well-known use of this approach is Azzalini’s ([6],[7]) skew-normal distribution. [28], as well as [1], followed
Azzalini’s lead in establishing a general approach for skewing symmetric circular models. Ameijeiras-Alonso and
[?] introduced the sine-skewed toroidal distributions.

The literature has devoted great attention to the creation of flexible models for circular data. The general
constructions proposed include conditional derivation [16]; Moebius transformation [17]; argument transformation
[16, 2]; Brownian motion [18]; and parametric extension of the characteristic function of an existing circular model
[19].

The von Mises distribution is probably the most well-known unimodal model in circular statistics, owing to its
desirable features and the fact that it may be obtained by a variety of constructions; [22] discuss its genesis and
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identify five such constructions. The von Mises distribution has a symmetric and unimodel density as

fvM (θ; η, κ) =
eκ cos(θ−η)

2πI0(κ)
, (1)

for θ ∈ [−π, π), η ∈ [−π, π), κ ≥ 0 and where Ir(κ) is the modified Bessel function of the first kind of order r,
defined as

Ir(κ) =
1

2π

∫ π

−π

cos rθeκ cos θdθ, r = 0,±1,±2, ....

In order to create multimodal models, two well-known approaches have been used to expand the von Mises
distribution, which are based on the expansion of the exponential function proposed in Equation (1) and on mixing
von Mises distributions. The generalized von Mises distribution can be also constructed using these approaches
[20, 11]. To model bimodal data, the exponent term in the generalized von Mises (GvM2) density can be expanded
as follows:

fGvM2(θ; η1, η2, κ1, κ2) =
exp{κ1 cos(θ − η1) + κ2 cos 2(θ − η2)}

2πG0(δ, κ1, κ2)
,

where η1, η2 ∈ [−π, π), δ = (η1 − η2) (mod 2π), κ1, κ2 > 0 and the normalizing constant is given by

G0(δ, κ1, κ2) =
1

2π

∫ π

−π

exp{κ1 cos θ + κ2 cos 2(θ + δ)}dθ.

Furthermore, the two-component von Mises mixture distribution (vMM ) which can also be used to model bimodal
data, has the following density

fvMM (θ; p, η1, η2, κ1, κ2) = pfvM (θ; η1, κ1) + (1− p)fvM (θ; η2, κ2),

where (0 ≤ p ≤ 1) is the mixing probability.
Weighted sampling occurs when the sampling process converts the proportion of unit samples to a non-negative

function termed the weight function. Weighted sampling is an extension of random sampling in which the recorded
data is a weighted sample rather than the original sample. As a result, conventional statistical approaches provide
invalid results that must be modified. [9] conducted a pioneering study on this biased sampling.

We adapted [24] weighting approach to creating a new flexible family of circular distributions for the symmetric,
asymmetric, unimodal, and multimodal cases. The study is divided into six sections. Section 2 demonstrates how to
develop a generic structure for constructing the weighted circular density. Section 3 discusses the general features of
the sine-cosine weighted circular distribution. In Section 4, we offer results for three specific cases: the sine-cosine
weighted von Mises, cardioid, and wrapped Cauchy distributions, all of which are members of the sine-cosine
weighted circular family. In Section 5, we consider the maximum likelihood and moments estimation methods for
the sine-cosine weighted circular distribution parameters and use a likelihood-ratio test to check the symmetry. A
simulation study is presented in Section 6 to assess performance of the maximum-likelihood estimators. Finally,
Section 7 employs inferential methods to analyze two data sets.

2. General method

Suppose X is a continuous random variable with the probability density function, pdf, f(x). The pdf of the
weighted random variable Xw is given by

fw(x) =
w(x)f(x)

E[w(X)]
,
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938 SINE-COSINE WEIGHTED CIRCULAR DISTRIBUTIONS

where w(x) is a non-negative weight function and

E[w(X)] =

∫
w(x)f(x)dx < ∞.

Theorem 1 adapts this idea to the circular case, resulting in a weighted circular distribution. Remember that a
circular pdf is a non-negative periodic function with the period 2π, which integrates to one over intervals of length
2π. For specificity, we will consider the distribution in this discussion as being specified over the interval [−π, π).
Theorem 1. Suppose that θ is a circular random variable with pdf f(θ). The pdf of the weighted circular random
variable Θw is given by

fw(θ) =
w(θ)f(θ)

E[w(Θ)]
,

where w(θ) is non-negative and periodic, i.e. w(θ) = w(θ + 2kπ) for all integers k.
Proof. fw(θ) is a density on [−π, π) because f(θ) is a density on [−π, π) and w(θ) > 0 for θ ∈ [−π, π). However
fw(θ) is also a circular density because

fw(θ + 2kπ) =
w(θ + 2kπ)f(θ + 2kπ)

E[w(Θ + 2kπ)]
=

w(θ)f(θ)

E[w(Θ)]
= fw(θ)

for all integers k.
Let sine-cosine weight function, w(θ) = 1 + λ1 sin jθ + λ2 cos jθ for λ1, λ2 ∈ [−1, 1], with |λ1|+ |λ2| ≤ 1, θ ∈
[−π, π) and an integer j. Accordingly, we define the density of a weighted family of symmetric circular
distributions by

fw(θ) =
(1 + λ1 sin jθ + λ2 cos jθ)f(θ)

1 + λ1βj + λ2αj
, (2)

where f(θ) is the density function of the base distribution and αj = E(cos jΘ), βj = E(sin jΘ) are the cosine and
sine moments of the base distribution.
f(θ)

w belongs to the new flexible family of circular distributions for the symmetric, asymmetric, unimodal and
multimodal cases.

This family includes the original distribution (λ1 = λ2 = 0), Sine-skewed circular distribution (λ2 = 0) and
cosine weighted circular distribution (λ1 = 0), otherwise it is skewed to the left (λ1 > 0) or the right (λ1 < 0) and
symmetric (λ1 = 0). If j ≥ 2, fw will be multimodal.

3. General properties of sine-cosine weighted circular distribution

This section considers the properties of any given sine-cosine weighted circular distribution functions with density,
trigonometric moment, and other circular measures.
The distribution function Fw(θ) of any distribution with the density (2) is given by

Fw(θ) =

∫ θ

−π

(1 + λ1 sin jϕ+ λ2 cos jϕ)f(ϕ)

E[1 + λ1 sin jΦ+ λ2 cos jΦ]
dϕ

=
F (θ) + λ1

∫ θ

−π
sin jϕf(ϕ)dϕ+ λ2

∫ θ

−π
cos jϕf(ϕ)dϕ

1 + λ1βj + λ2αj
.

Assume f(θ) (−π ≤ θ < π) is a unimodal circular density that is symmetric about zero distribution. Then, for
p = 0,±1,±2, ..., the trigonometric moments of fw(θ) are given by

αw
p =

λ2

2 (αp−j + αp+j) + αp

1 + λ2αj
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and

βw
p =

λ1

2 (αp−j − αp+j)

1 + λ2αj
.

Therefore, the pth mean resultant length and the pth mean direction can be obtained, respectively, by

ρwp =
1

1 + λ2αj

√
(
λ2

2
(αp−j + αp+j) + αp)2 +

λ2
1

4
(αp−j − αp+j)2

and

µw
p = arg{λ2(αp−j + αp+j) + 2αp + iλ1(αp−j − αp+j)}.

Thus,

ρw ≡ ρw1 =
1

1 + λ2αj

√
(
λ2

2
(α1−j + α1+j) + α1)2 +

λ2
1

4
(α1−j − α1+j)2

and

µw ≡ µw
1 = arg{λ2(α1−j + α1+j) + 2α1 + iλ1(α1−j − α1+j)}.

Hence, the circular variance and circular standard deviation are given by

V w = 1− ρw = 1− 1

1 + λ2αj

√
(
λ2

2
(α1−j + α1+j) + α1)2 +

λ2
1

4
(α1−j − α1+j)2,

σw = {−2 log(1− V w)} 1
2

=
{
− log{ 1

(1 + λ2αj)2
[(
λ2

2
(α1−j + α1+j) + α1)

2 +
λ2
1

4
(α1−j − α1+j)

2]
} 1

2 .

The second cosine and sine moments about the mean direction µ, ᾱ2 = E[cos 2(Θ− µ)] and β̄2 = E[sin 2(Θ− µ)],
can be represented as

ᾱ2 =
1

1 + λ2αj

{
cos 2µ[α2 +

λ2

2
(α2+j + α2−j)] + sin 2µ

λ1

2
(α2+j − α2−j)

}
and

β̄2 =
1

1 + λ2αj

{λ1

2
cos 2µ(α2−j − α2+j) + sin 2µ[α2 +

λ2

2
(α2+j + α2−j)]

}
where,

cos 2µ =
1

ρw2(1 + λ2αj)2
{[α1 +

λ2

2
(α1−j + α1+j)]

2 − λ2
1

4
(α1−j − α1+j)

2}

and

sin 2µ =
1

ρw2(1 + λ2αj)2
λ1(α1−j + α1+j)(α1 +

λ2

2
(α1−j + α1+j)).
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Therefore, the measure of circular skewness and kurtosis, γw
1 =

β̄w
2

V w
3
2

and γw
2 =

(ᾱw
2 −ρw4)

V w2 , are given by

γw
1 =

1

ρw2(1− ρw)
3
2

[
λ1

2
(α2−j − αj+2){(α1 +

λ2

2
(α1−j + α1+j))

2

− λ2
1

4
(α1−j − α1+j)

2)}

+ λ1(α1−j − α1+j)(α1 +
λ2

2
(α1−j + α1+j))(α2 +

λ2

2
(α2+j − α2−j))]

and

γw
2 =

1

ρw2(1− ρw)2
[(α2 +

λ2

2
(α2−j + α2+j)){(α1 +

λ2

2
(α1−j + α1+j))

2

− λ2
1

4
(α1−j − α1+j)

2)}

+
λ2
1

2
(α1−j − α1+j)(α1 +

λ2

2
(α1−j + α1+j))(α2−j − α2+j)− ρw6],

respectively.

4. Special cases of sine-cosine weighted circular distributions

This section discusses the weighted equivalents of some of these well-known distributions.

4.1. Sine-cosine weighted von Mises distribution

Substituting (1), with η = 0, for f in (2), the density of the sine-cosine weighted von Mises, SCWvM , family of
distributions is given by

fw(θ) =
(1 + λ1 sin jθ + λ2 cos jθ)e

κ cos θ

2π(I0(κ) + λ2Ij(κ))
, −π ≤ θ < π. (3)

Figures 1 and 2 depict the family’s flexibility.
For θ ∈ [−π, π), the distribution function is determined by

Fw(θ) =
1

1 + λ2Aj(κ)
(F (θ) + λ2Aj(κ)),

where F (θ) is the distribution function of the base von Mises distribution.
The pth moment of the von Mises distribution is αp = Ap(κ) =

Ip(κ)
I0(κ)

for p = 0,±1,±2, .... Using the results
obtained in Section 2 and the following relationship [3]

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z),

the pth cosine and sine moments belonging to sine-cosine weighted von Mises distribution are, respectively,
obtained as

αp
w =

Ip(κ) +
λ2

2 (Ip+j(κ) + Ip−j(κ))

I0(κ) + λ2Ij(κ)

and

βp
w =

λ1(Ip+j(κ)− Ip−j(κ))

2(I0(κ) + λ2Ij(κ))
.
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Figure 1. Sine-cosine weighted von Mises densities with j = 1 and κ = 1.
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Figure 2. Sine-cosine weighted von Mises densities with j = 2 and κ = 1.

The mean resultant length and mean direction are given by

ρp
w =

1

I0(κ) + λ2Ij(κ)

√[
IP (κ) +

λ2

2
(Ip+j(κ) + Ip−j(κ))

]2
+

λ1
2

4
(Ip+j(κ)− Ip−j(κ))2

and

µp
w = arg{Ip(κ) +

λ2

2
(Ip+j(κ) + Ip−j(κ)) + i

λ1

2
(Ip−j(κ)− Ip+j(κ)),

respectively. In particular,

ρw ≡ ρw1 =
1

I0(κ) + λ2Ij(κ)

√
[I1(κ) +

λ2

2
(Ij+1(κ) + Ij−1(κ))]2 +

λ1
2j2

κ
Ij(κ)2,
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µw ≡ µw
1 = arg{I1(κ) +

λ2

2
(Ij+1(κ) + Ij−1(κ)) + i

λ1j

κ
Ij(κ)}.

Using the general results from Section 3, the second-order central moments, ᾱ2 and β̄2, are obtained as

ᾱ2 =
1

1 + λ2αj

{
cos 2µ(A2(κ) +

λ2

2
(A2+j(κ) +A2−j(κ)))

+ sin 2µ(A2(κ) +
λ1

2
(A2+j(κ)−A2−j(κ)))

}
and

β̄2 =
1

1 + λ2αj

{λ1

2
cos 2µ(A2−j(κ)−A2+j(κ)) + sin 2µ(A2(κ)

+
λ2

2
(A2+j(κ) +A2−j(κ)))

}
where,

cos 2µ =
1

ρw2(1 + λ2Aj(κ))2
{
[A1(κ)

+
λ2

2
(A1−j(κ) +A1+j(κ))]

2 − λ2
1

4
(A1−j(κ)−A1+j(κ))

2
}
,

and

sin 2µ =
1

ρw2(1 + λ2Aj(κ))2
λ1

[
A1−j(κ) +A1+j(κ)

][
A1(κ)

+
λ2

2

(
A1−j(κ) +A1+j(κ))

]
.

It follows that

γw
1 =

1

ρw2(1− ρw)
3
2

[
λ1

2
(A2−j(κ)−A2+j(κ)){(A1(κ) +

λ2

2
(A1−j(κ) +A1+j(κ)))

2

− λ2
1

4
(A1−j(κ)−A1+j(κ))

2)}+ λ1(A1−j(κ)−A1+j(κ))(A1(κ)

+
λ2

2
(A1−j(κ) +A1+j(κ))(A2(κ) +

λ2

2
(A2+j(κ)−A2−j(κ)))]

and

γw
2 =

1

ρw2(1− ρw)2
[
(A2(κ)

+
λ2

2

(
A2−j(κ) +A2+j(κ)

)
)
{
(A1(κ) +

λ2

2
(A1−j(κ) +A1+j(κ)))

2

− λ2
1

4
(A1−j(κ)−A1+j(κ))

2
}
+

λ2
1

2
(A1−j(κ)−A1+j(κ))(A1(κ)

+
λ2

2
(A1−j(κ) +A1+j(κ)))(A2−j(κ)−A2+j(κ))− ρw6

]
.

4.2. Sine-cosine weighted wrapped Cauchy distribution

By replacing f in (2) with the density of a wrapped Cauchy distribution, one can obtain the density of a sine cosine
weighted wrapped Cauchy, SCWWC, distribution as

fw(θ) =
1 + λ1 sin jθ + λ2 cos jθ

2π(1 + λ2ρ|j|)

1− ρ2

1 + ρ2 − 2ρ cos θ
, (4)
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Figure 3. Sine-cosine weighted wrapped Cauchy densities with j = 1 and ρ = 0.5.

where θ ∈ [−π, π), ρ ∈ [0, 1].
The flexibility of this family is clarified in Figure 3. For θ ∈ [−π, π) and j = 1, the distribution function is derived

Fw(θ) =
1

1 + λ2ρ

{
(1 +

λ2(1 + ρ2)

2ρ
)F (θ)− 1− ρ2

4πρ

[
λ2(θ + π)− λ1 log{

1 + ρ2 − 2ρ cos θ

(1 + ρ2)
}
]}

,

where F (θ) denotes the distribution function of the wrapped Cauchy distribution, as obtained by[21] and
Thus,

ρw =
1

1 + λ2ρ

√
(
λ2

2
+ ρ)2 +

λ2
1

4
, ρw2 =

1

1 + λ2ρ

√
ρ2

4
(λ2

1 + λ2
2), ρwp = 0 (p ≥ 3)

and

µw = arg{λ2 + 2ρ+ iλ1}, µw
2 = arg{λ2ρ+ iλ1ρ}, µw

p = 0 (p ≥ 3).

The circular variance and circular standard deviation are expressed by

V w = 1− ρw = 1− 1

1 + λ2ρ

√
(
λ2

2
+ ρ)2 +

λ2
1

4
,

σw = {−2 log(1− V w)} 1
2

=
{
− 2 log{ 1

1 + λ2ρ

√
(
λ2

2
+ ρ)2 +

λ2
1

4
}
} 1

2 .

The second cosine and sine moments about the mean direction µ, ᾱ2 = E[cos 2(Θ− µ)] and β̄2 = E[sin 2(Θ− µ)],
can be expressed as

ᾱ2 =
ρ

2(1 + λ2ρ)
(λ2 cos 2µ+ λ1 sin 2µ), β̄2 =

ρ

2(1 + λ2ρ)
(λ1 cos 2µ+ λ2 sin 2µ)

where,

cos 2µ =
1

ρw2(1 + λ2ρ)2
{
(ρ+

λ2

2
)2 − λ2

1

4

}
, sin 2µ =

1

ρw2(1 + λ2ρ)2
λ1(ρ+

λ2

2
).
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Hence the measure of circular skewness and kurtosis are given by

γw
1 =

1

ρw2(1− ρw)
3
2

[
λ1

2
ρ{(ρ+ λ2

2
)2 − λ2

1

4
− λ2(ρ+

λ2

2
))}]

and

γw
2 =

1

ρw2(1− ρw)2
[
λ2

2
ρ{(ρ+ λ2

2
)2 − λ2

1

4
)}+ λ2

1

2
ρ(ρ+

λ2

2
)− ρw6].

5. Parameter estimation

This section discusses parameter estimation for a random sample of size n, θ1, θ2, ..., θn, draown from a sine-
cosine weighted circular distribution with density (2). General results are presented for the maximum likelihood
point estimates. Finally, we use a likelihood-ratio test to check the symmetry.

5.1. Maximum likelihood estimation

Suppose that the density f(θ − η;βββ) depends on the vector-valued parameter βββ = (β1, β2, ..., βl) as well as the
location parameter. Accordingly, the log-likelihood function can be expressed as

ℓ(λ1, λ2, η,βββ) =

n∑
i=1

log{1 + λ1 sin j(θi − η) + λ2 cos j(θi − η)}+ ℓ(0, 0, η,βββ)

−n log(1 + λ1ᾱj + λ2β̄j)

=

n∑
i=1

log{1 + λ1 sin j(θi − η) + λ2 cos j(θi − η)}

+

n∑
i=1

log f(θi − η,βββ)− n log(1 + λ1ᾱj + λ2β̄j).

Maximizing ℓ(λ1, λ2, η,βββ) with respect to the parameters yields the maximum likelihood estimates (MLEs).
MLEs lack closed-form expressions, and one must thus employ numerical methods capable of solving nonlinear
optimization problems in order to meet the constraint, |λ1|+ |λ2| ≤ 1. Our result is based on the solver proposed
by Ye (1987), implemented in the Rsolnp package [12] of the statistical software R.

5.2. Testing for symmetry

One of the questions that naturally arise in our study is whether or not the sine-cosine weighted models improve
significantly on their symmetric antecedents for a given sample θθθ. The answer to this question involves testing
whether a sine-cosine weighted circular distribution is symmetric or not, which can be formulated as the hypothesis
testing problem H0 : λ1 = 0 versus H1 : λ1 ̸= 0. Here, we consider a likelihood-ratio test based on the test statistics

D = −2
{
max ℓ(0, λ2, η,βββ)−max ℓ(λ1, λ2, η,βββ)

}
.

Hence, the likelihood ratio test rejects the null hypothesis at asymptotic level α whenever the test statistic D exceeds
χ2
1(α) where χ2

m(α) denotes the α-upper quantile of a chi-square distribution with m degrees of freedom.
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6. Simulation study

Here, we assess the performance of the maximum-likelihood estimates for the sine-cosine weighted von Mises
distribution with respect to sample size n. The assessment is based on a simulation study:
(1) Generate 10,000 samples of size n from Equation (3). the acceptance-rejection method of simulation is used to
generate samples.
(2) Compute the maximum-likelihood estimates for the 10,000 samples, say (µ̂i, κ̂i, λ̂1i, λ̂2i) for i = 1, 2, ..., 10000.
(3) Compute the biases and mean squared errors given by

biasβ(n) =
1

10000

10000∑
i=1

(β̂i − β), MSEβ(n) =
1

10000

10000∑
i=1

(β̂i − β)2,

for β = µ, κ, λ1, λ2.
We repeat these steps for n = 10, 20, ..., 1000 with µ = 2, κ = 1, λ1 = 0.04, λ2 = 0.5 and j = 2, so computing
biasβ(n) and MSEβ(n) for β = µ, κ, λ1, λ2 and n = 10, 20, ..., 1000.

Figures 5 and 6 show how the four biases and the four mean squared errors vary with respect to n. The broken
line in Figure 5 corresponds to the biases being zero. The following observations can be made: the bias for κ is
positive; the bias for λ2 is negative; the biases for each parameter either decrease or increase to zero as n → ∞;
the mean squared errors for each parameter decrease to zero as n → ∞; the mean squared errors appear smallest
for the parameters κ and λ2.

7. Applications

In this section two circular data sets are analyzed based on the inferential methods described in the preceding
sections in R software.

Ant data

In our first example, we analyze the ant data in Appendix B.7 of [10]. The sample of 100 observations was drawn
randomly from the original data collected during the animal orientation experiment described in [15]. The data
consist of the directions chosen by the ants in response to an unevenly illuminated black target located at a position
of 180◦ from the zero direction.

Table 1 presents the MLEs and maximum log-likelihood (MLL), Akaike information criterion (AIC), and
Bayesian information criterion (BIC) values from fitting sine-cosine weighted von Mises, cardioid and Cauchy
distributions with j = 1, and the sine-skew von Mises and von Mises distributions.

The fitted sine-cosine weighted, the sine-skewed von Mises and von Mises densities are superimposed on a
histogram of the data in Figures 5 and 6.

When the MLL values for the sine-cosine weighted von Mises, sine-skewed von Mises, and von Mises
distributions are considered, the test statistics for the typical likelihood-ratio test are 4.48 and 7.96. When these
values are compared to the quantiles of the χ2

1 and χ2
2 distributions, the test’s p-values become 0.034 and 0.0186.

Thus, the fit for the sine-cosine weighted von Mises distribution improves more significantly than for the sine-
skewed von Mises and von Mises distributions.

The sine-cosine weighted wrapped Cauchy distribution has the greatest MLL value, as seen in Table 1. AIC and
BIC criteria are used to confirm it. The p-values for Rayleigh goodness-of-fit test indicate that these are the only
two viable models, sine-cosine weighted wrapped Cauchy and sine-cosine weighted von Mises, among the five
considered.
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Table 1. MLEs, MLL, AIC and BIC values for three sine-cosine weighted (SCW ) models and sine-skewed (SS) von Mises
and von Mises fitted to the ant data. The final column contains the p-values for the Rayleigh goodness-of-fit test.

Model η̂ κ̂ or ρ̂ λ̂1 λ̂2 MLL AIC BIC p-value
SCW wrapped Cauchy 3.30 0.50 −0.25 0.26 −134.81 277.62 288.04 0.121
SCW cardioid 2.35 0.45 0.70 −0.30 −142.65 293.31 303.72 0.0014
SCW von Mises 3.70 1.72 −0.59 −0.40 −138.38 284.76 295.18 0.064
SS von Mises 3.614 1.36 −0.66 −140.62 287.24 295.05 0.037
von Mises 3.20 1.56 −142.36 288.72 293.45 0.022

Wind direction

We consider a data set taken from [4] as our second example. A place named ”Col de la Roa” in the Italian Alps, a
meteorological station records via data-logger several parameters. Measurements are taken every 15 minutes. We
report the wind direction recorded daily from January 29, 2001, to March 31, 2001, for the hours of 3.00 am to
4.00 am. This implies that observations are made for 310 measurements taken daily. This data frame contains one
variable (wind direction) in radians.

The maximum likelihood fits of three sine-cosine weighted distributions with j = 1 are presented in Table 2.
Each fit also includes the MLE, MLL, AIC and BIC. In light of these findings, the SCW wrapped Cauchy model is
determined to be the best fitting model. The three fitted densities appear superimposed on the histogram in Figure
7.

Table 3 presents all diagnostics as the ones displayed in Table 2 for the fits of three extensions of the von Mises
distribution, namely, the four-parameter GvM2 distribution, the five-parameter vMM distribution, and the four-
parameter SCWvM distribution. with j = 2. Although the AIC and BIC rank the five-parameter vMM fit as the
best, the four-parameter SCWvM and GvM2 fits have AIC and BIC values that are only slightly greater. The
p-values for the Watson goodness-of-fit test indicate that vMM model provides adequate fit to the data.

Table 2. MLEs, MLL, AIC and BIC values for the fits to the wind direction data of three sine-cosine weighted (SCW )
models. The final column contains the p-values for the Watson goodness-of-fit test.

Model η̂ κ̂ or ρ̂ λ̂1 λ̂2 MLL AIC BIC p-value
SCW wrapped Cauchy 6.23 0.5 0.77 0.22 −386.04 780.08 795.02 ¡0.01
SCW cardioid 5.74 0.363 1.00 0.00 −416.82 841.64 856.58 ¡0.01
SCW von Mises 5.98 1.39 0.91 −0.08 −400.68 809.36 824.30 ¡0.01

Table 3. MLEs, MLL, AIC and BIC values for the fits to the wind direction data of the sine-cosine weighted von Mises
(SCWvM ), generalized von Mises (GvM ), and von Mises mixture (vMM ) models. The final column contains the p-values
for the Watson goodness-of-fit test.

Model η̂1 η̂2 κ̂1 κ̂2 p̂ λ̂1 λ̂2 MLL AIC BIC p-value
SCWvM 0.64 1.82 -0.74 -0.25 -377.42 762.84 777.78 ¡0.01
GvM2 0.60 0.00 1.39 0.94 -380.33 768.66 783.60 ¡0.01
vMM 0.08 0.73 18.20 0.94 0.47 -370.51 751.02 769.70 ¿0.1
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8. Conclusion

We proposed a new general method to obtain more flexible circular distributions. The obtained distributions may
have an asymmetric property with multimodal. We have also focused our attention primarily on the sine-cosin
weighted von Mises, cardioid and wrapped cauchy models. The examples presented illustrate the potential of sine-
cosin weighted distributions as models for real circular data. It would, nevertheless, be of interest to investigate
other combinations of the components within the general construction with the intention of obtaining families of
distributions which were both mathematically tractable as well as highly flexible.
Finally, whilst (2) provides one means of modeling multimodality. It is conceivable that there will be situations in
which the latter approach will provide circular data analysts with greater insight into the mechanisms generating
their data.
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fig5.jpg

Figure 4. biasµ(n) (top left), biasκ(n) (top right), biasλ1(n) (bottom left) and biasλ2(n) (bottom right) versus n = 10, 20, . .
. , 1000.

fig6.jpg

Figure 5. MSEµ(n) (top left), MSEκ(n) (top right), MSEλ1(n) (bottom left) and MSEλ2(n) (bottom right) versus n = 10,
20, . . . , 1000.
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Figure 6. Histogram of the Ant data (in radians), together with the fitted densities for the sine-cosine weighted von Mises
(solid), sine-cosine weighted wrapped Cauchy (long dashed), and sine-cosine weighted cardioid (dotted) distributions. The
data are plotted over [0, 2π).
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Figure 7. Histogram of the ant data (in radians), together with the fitted densities for the sine-cosine weighted von Mises
(solid), sine-skew von Mises (long dashed), and von Mises (dotted) distributions. The data are plotted over [0, 2π).
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Figure 8. Histogram of the wind direction data (in radians), together with the fitted densities for the sine-cosine weighted von
Mises (solid), sine-cosine weighted wrapped Cauchy (long dashed), and sine-cosine weighted cardioid (dotted) distributions.
The data are plotted over [0, 2π).
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Figure 9. Histogram of the wind direction data (in radians), together with the fitted densities for the sine-cosine weighted
von Mises (solid), generalized von Mises (long dashed), and von Mises mixture (dotted) distributions. The data are plotted
over [0, 2π).
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