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Abstract The focus of any portfolio optimization problem is to imitate the stock markets and propose the optimal solutions
to dealing with diverse investor expectations. In this paper, we propose new multi-period portfolio optimization problems
when security returns are uncertain variables, given by experts’ estimations, and take the Tail value at risk (TVaR) as a
coherent risk measure of investment in the framework of uncertainty theory. Real- constraints, in which transaction costs,
liquidity of securities, and portfolio diversification, are taken into account. Equivalent deterministic forms of mean–TVaR
models are proposed under the assumption that returns and liquidity of the securities obey some types of uncertainty
distributions. We adapted the Delphi method in order to evaluate the expected, the standard deviation and the turnover
rates values of returns of the given securities. Finally, numerical examples are given to illustrate the effectiveness of the
proposed models.
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1. Introduction

The portfolio optimization problem has always been an interesting topic that is concerned with the optimal
allocation of capital to several securities. The Mean-Variance (MV) models proposed by Markowitz (1952, 1959)
[1, 2] have been the most popular way to determine the optimal portfolio. It amalgamates optimization techniques
with probability theory in which investment return and portfolio risk are quantified as the mean and the variance
of security returns respectively. The Mean-Variance model is formally presented in two manners: maximizing
expected return for a given level of variance or, minimizing portfolio variance for a given expected return level
that the investor feels satisfactory.

These works and other, assume that security returns are estimated from analysis of past data and modeled by
random variables. However, in many cases, unexpected events occur in the financial market such as interest rate
drop by the central bank or unexpected events of companies push investors not to believe that the past data of
security returns can well reflect their future returns. These complex factors make the probabilistic approaches
difficult to apply.
For this reason, Liu (2007) [3] proposed a self-dual measure called uncertain measure, which can be used to
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measure subjective estimation. It is the core of uncertainty theory, refined by Liu [4] in 2010, which is a branch of
mathematics for modeling subjective uncertain phenomena. The introduction of uncertain theory has contributed,
without doubt, to overcoming several limitations and proposing other solutions to portfolio selection, which has
been the main reason for the increasing number of studies on portfolio optimization in recent decennia. Huang
(2012) [5] proposed two uncertain mean-variance and mean-semi-variance models subject to experts’ estimations.
Liu and Qin (2012) [6] presented an uncertain mean-semi-absolute deviation model. Mean-VaR Model for
Portfolio Selection with Uncertain Returns was discussed by Ning et al. (2012) [7]. Qin et al. (2014) [8] proposed
an uncertain portfolio adjusting model using semi-absolute deviation. In 2016, Qian et al. [9] presented portfolio
selection models based on the Cross-entropy of uncertain variables. Huang and Zhao (2014) [10] discuss the
Mean-chance model for portfolio selection based on the uncertain measure. Recently, the Mean-variance model
for portfolio optimization with background risk based on uncertainty theory was presented by Zhai and Bai (2017)
[11]. In their uncertain models, Xue et al. [12] suggested uncertain Portfolio Selection with Mental Accounts and
Realistic Constraints. Huang et al. (2014) [13] discussed the capital budgeting problem of projects using annual
cash inflows, initial investment outlays, and cash outflows based on experts’ evaluations.

All these papers mentioned above proposed a single-period portfolio optimization proplems. They allocate their
capital at the beginning of the investment and hold it until the end of the investment period. In a real market,
many investors prefer investing long-term to gain more return by adjusting their investment strategies from time to
time and taking into consideration novel market conditions. For this reason, the multi-period portfolio selection
problems have attracted many researchers such as [14, 15, 16, 17] .

Risk measures are an important pilar in portfolio theory, great attention is given by scholars to studying this
field. Peng [18] introduced, for the first time, the concepts of Value at Risk and Tail Value at Risk to the framework
of uncertainty theory. Yan [19] introduced Mean-VaR uncertain portfolio selection problem. However, VaR is
not a coherent risk measure. It does not give any information about the severity of losses beyond the VaR value.
To deal with this insuffisance, Tail value at risk (TVaR) is considered to provide a better measure of risk since
it is coherent when independence is satisfied. It quantifies risk beyond value-at-risk. Ning et al. [20] provided
Mean-TVaR Model for Portfolio Selection with uncertain Returns.

To ensure diversification allocations and avoid the solutions of the models are concentrated on only some
stocks which can bring a great loss, some researchers [21, 22] employed cardinality constraint enforcing solutions
diversification, while Chen et al. [23] employed Shannon entropy as a diversification risk measure. Liquidity is
also one of the main concerns for investors. For this reason, researchers take it into acount [24, 25, 26] . It measures
the degree of chance to convert an investment into cash without any significant loss.

In many cases, after a certain period, existing security may not be gainful. Therefore, investors wish to change
their situations in the financial market by buying or selling a risky asset. The cost resulting from these operations
is called transaction cost. Some researchers like [27, 28, 29] , etc. extended the works on portfolio optimization
problems with transaction costs.

To the best of our knowledge, there are a no studies in the literature that focus on multi-period portfolio model
using uncertain Tail value at Risk as a risk measure with some constraints reflecting the market reality. Therefore,
based on uncertain variables to describe stocks returns and liquidity constraints and in the presence of transaction
costs and diversification constraints, three multi-period portfolio optimization problems are proposed under the
assumption that the initial capital is allocated among the assets at the beginning of the first period while the
total wealth is generated at the end of the investment. Theses models are transformed into a crisp mathematical
problem under the assumption that the security returns and liquidity obey some uncertainty distribution forms. In
addition, an examples to illustrate the models and analyze some effects of diversification constraint and liquidity
on portfolio selection within uncertainty theory are given. The Delphi method was adapted in order to evaluate the
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expected, the standard deviation and the turnover rates values of returns of the given securities.

This paper is organized as follows. For a better understanding of the paper, some fundamentals of uncertainty
theory will be presented in the second section. In section 3, portfolio return, diversification constraint, transaction
costs, and liquidity constraint are formally expressed and new multi-period uncertain portfolio selection models are
formulated. Section 4 has been dedicated to introducing the equivalent models ether liquidity and return securities
are modelled by uncertain normal variables. In section 5, Delphi method is presented to evaluate the expected, the
standard deviation and turnover rates values of returns of the given security. Numerical examples to illustrate our
proposed models are presented in section 6. Finally, some conclusions and further works are given in Section 7.

2. Fundamentals

Uncertainty theory was founded by Liu (2007) and further developed by Liu (2010) as a branch of mathematics
for modelling subjective uncertain phenomena. For more informations about uncertainty theory, consult [4]. This
section recalls the basic contents of uncertainty theory.

Let Γ be a nonempty set, L be σ-algebra of a collection of subsets of Γ. Let be a nonnegative function from L
to [0, 1] satisfying normality axiom, self-duality axiom, countable subadditivity axiom and product measure axiom
if product space is needed, is called uncertain measure defined on L.

The triplet (Γ, L, ) is called an uncertainty space.
Definitions 1

An uncertain variable ξ is defined as a measurable function from an uncertainty space (Γ, L,Λ) to the set of real
numbers, i.e. for any Borel set B of real numbers, {ξϵB} = {γ ∈ Γ/ξ(γ) ∈ B} is an event.

Definitions 2
The uncertainty distribution Φ of an uncertain variable is defined by Φ(x) = M(ξ ≤ x) for any real number x.

Peng and Iwamura (2010) [30] proved that a function Φ(x) : IR 7→ [0, 1] is an uncertainty distribution if and
only if it is a monotone increasing function.

Definitions 3
Let ξ be an uncertain variable with continuous and strictly increasing uncertainty distribution Φ(x). Then the
inverse function Φ−1(α) is called the inverse uncertainty distribution of ξ.
For example, the normal uncertainty distribution of the uncertain variable ξ ∼ N(e, σ) is

Φ(x) =

(
1 + exp

(
π(e− x)√

3σ

))−1

.

The inverse uncertainty distribution of normal uncertain variable ξ is Φ−1(α) = e +
√
3σ
π · ln

(
α

1−α

)
where e and σ

are real numbers with σ > 0.
Definitions 4

Let ξ be an uncertain variable. Then the expected value of ξ is defined by E(ξ) =
∫ +∞
0

(1− Φ(r))dr−
∫ 0

−∞ Φ(r)dr

provided that at least one of the two integrals is finite. E(ξ) can also be expressed by E(ξ) =
∫ +∞
0

M(ξ ≥
r)dr−

∫ 0

−∞ M(ξ ≤ r)dr .
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Theorem 1
Let ξ be an uncertain variable with regular uncertainty distribution. If the expected value exists, then

E(ξ) =

∫ 1

0

Φ−1(α)dα

Theorem 2
Let a and b be two real numbers, and ξ and η two uncertain variables. Then we have E(aξ + b) = aE(ξ) + b.
Further, if and ξ and η are independent, then E(aξ + bη) = aE(ξ) + bE(η).

Definitions 5
Let ξ be an uncertain variable that has a finite expected value e. Then the variance of ξ is defined by V(ξ) =
E
[
(ξ − e)2

]
.

Figure 1. Normal and Inverse Normal Uncertainty Distribution

Value at Risk (VaR) is a measure of the risk of loss for investments in normal market conditions and a set period.
For a given portfolio, time horizon t, and confidence level α, the VaRα,t can be defined as the maximum possible
loss during that time after excluding all α worse outcomes. In other words, VaR is defined as sufficient capital to
cover the potential losses of a portfolio over a given period. Formally, in the framework of uncertainty theory, Peng
[18] introduced, in 2009 , the following definition:

Let ξ be an uncertain variable and α ∈ (0, 1] be the risk confidence level. Then the value at risk ”VaR” of ξ at the
confidence level α and instant t,VaRα,t, is the function

VaRα,t : (0, 1] → R such that
VaRα,t = inf{x | M{ξ ≤ x} ≥ α}

When the uncertain variable ξ is of the continuous type with distribution function Φ, then VaRα,t is expressed as

VaRα,t = −Φ(1− α)

Because of the non-coherence of the VaR risk measure, Peng [18] has been introduced a coherent risk measure
called Tail Value at risk ”TVaR” as follows:

Let ξ be an uncertain variable and α ∈ (0, 1) be the risk confidence level. Then the tail value at risk ”TVaR” of
ξ at the confidence level α and instant t, TVaR α,t, is the function

TVaRα,t : (0, 1) → IR such that

TVaRα,t =
1

1− α

∫ 1

α

VaRβ,t ·dβ
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3. Portfolio optimization model

In our multi-period portfolio selection models, we assume that investors want to build a portfolio from n risky
assets in the financial market. The initial capital W0 is allocated among n assets at the beginning of the first period
while the total wealth of all the investment WT is obtained at the end of period T . Investor can readjust his wealth
among the n risky assets at the beginning of each period along with the investment.

For the sake of discussion convenience, some necessary notations are listed as follows:
Symbols Explanation
ξit Uncertain return rate at the beginning of period t to security i;
ηi,t Uncertain liquidity rate at the beginning of period t to security i;
W0 The initial capital of the investment;
Wt The wealth at the end of period t;
T Lifetime of investment;
xit The portion of capital allocated at the beginning of period t to security i;
dit The unit transaction cost of risky asset i at period t;
et,i Return of security i at period t;
σt,i Standard deviation of security i at period t;
Rt,p Net portfolio return rate at period t;

Figure 2. Multiperiod investment

3.1. Investment Return

In the portfolio optimization theory, individual security returns are the basic information for the investors, and
every decision is made based on this information. The security return is expressed by the rate of return, which is
defined as

Security price at the end of the period Beginning price + dividend
Beginning price

By denoting ξit as the uncertain variable represents the return of the ith security at the end of period t, then, the
portfolio return is

∑n
i=1 xit · ξit. It is important to take into account transaction costs in portfolio selection. We

suppose that it is a V shape function of the difference between the tth period portfolio and the t− 1 th period
portfolio. Then, the transaction cost for security i at period t can be expressed by

dit |xit − xit−1| , t = 1, 2, . . . ,T

Therefore, the transaction cost for the portfolio at period t is

n∑
i=1

dit |xit − xit−1| , t = 1, 2, . . . ,T

Then, the net portfolio return rate at period t, Rt,p is expressed as

Rt,p =

n∑
i=1

(ξitxit − dit |xit − xit−1|) , t = 1, 2, . . . , T
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Therefore, the wealth at the end of period t can be represented as

Wt+1 = Wt (1+Rt,p)

=Wt

(
1+

n∑
i=1

(ξitxit − dit |xit − xit−1|)

)
, t = 1, 2, . . . ,T

Recursively, the terminal wealth obtained at the end of period T is

WT = W0

T∏
t=1

[
1+

n∑
i=1

(ξitxit − dit |xit − xit−1|)

]

Since portfolio securities returns fluctuate continuously, we propose a deterministic number to characterize the
terminal wealth. For this reason, we employ the uncertain expected value of the terminal wealth at the end of
investment E (WT) as follows

E (WT) = W0

T∏
t=1

[
1 +

n∑
i=1

(E (ξit)xit − dit |xit − xit−1|)

]

3.2. Diversification constraint

Unlike proverbs: “Don’t risk everything on one endeavor”, and “Don’t put all your eggs in one basket”, which
means that we should diversify our portfolio. Traditional models for portfolio optimization always lead to
concentrated allocations on a limited number of assets, and the investor suffers risk greatly [31].

Orris Herfindahl’s index of industrial concentration defined as, the sum of the squared shares of each product’s
contribution to the firm’s total output, is used also as diversification measure [32].

Recently [23] apply it in the portfolio selection theory as a constraint to ensure diversification portfolio by
assuming that xi is the weight of the security i in the portfolio.

If A = {A1, ..,An} is a partition of the set Ω and xi is the probability the event Ai with i = 1, . . ., n. The
Shannon entropy [33] of A is formally defined as

E =

n∑
i=1

xi ln

(
1

xi

)
, t = 1, 2, . . . ,T

It’s important to note that the maximum value of E is attained (ln(n)) when all xi are equal and reaches its minimum
value (0) if xi = 1 where i = 1, .., n. Then, a great entropy value means that the portfolio is more diversified and a
small one means the portfolio is concentrated.

3.3. Liquidity risk

In the practice, liquidity risk is a determinant factor affecting the optimal portfolio selection. It measures the
degree of chance to convert an investment into cash without any significant loss. Rational investors prefer to select
securities with high liquidity. Turnover rate, which is defined as the percentage of traded shares, is used to measure
it. It is modeled by uncertain variable, η, due to the uncertainty of the market. Then, portfolio liquidity at instant t,
is represented formally as follows,

lt = E

(
n∑

i=1

xi,t · ηi,t

)
=

n∑
i=1

xi,t.E (ηi,t) , t = 1, 2, . . . , T
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3.4. Formulation of portfolio optimization models

Supposing that an investor wants minimizing the cumulative investment risk of the portfolio
∑T

t=1 TVaRα,t

knowing that the terminal wealth over the T period,
∏T

t=1

[
1 +

∑n
i=1 (E (ξit) xit− dit |xit − xit−1|)], must be

greater than the given minimum return level λ. In addition, to avoid the concentrative allocation and control the
maximum portion to invest in each security, we employ entropy constraints. Let βt and lt be the minimum levels
of diversification and liquidity that the investor preset in each period t respectively. As a result, the multi-period
uncertain portfolio selection model is formally expressed as follows,

Min
T∑

t=1

TVaRα,t

Subject to


W0

∏T
t=1

[
1 +

∑n
i=1 (E (ξit)xit − dit |xit − xit−1|)

]
≥ λ∑n

i=1 xit = 1, t = 1, . . . ,T
−
∑n

i=1 xit ln (xit) ⩾ βt, t = 1, 2, . . . ,T∑n
i=1 (ηi,t) ≥ lt, t = 1, 2, . . . ,T

xit ⩾ 0, t = 1, . . . ,T; i = 1 . . . ,n

(1)

If an investor wants to maximize the final wealth at the maximal given risk level θ, then the adequat programming
model is expressed as follows,

Max W0

T∏
t=1

[
1 +

n∑
i=1

(E (ξit) · xit − dit |xit − xit−1|)

]

Subject to



∑T
t=1 TVaRα,t ≤ θ∑n
i=1 xit = 1, t = 1, 2, . . . ,T

−
∑n

i=1 xit ln (xit) ⩾ βt, t = 1, 2, . . . ,T∑E
i=1 E (ηi,t) ⩾ lt, t = 1, 2, . . . ,T

xit ⩾ 0, t = 1, . . . ,T; i = 1 . . . ,n

(2)

A rational investor always wants to maximize the terminal wealth and minimize the investment risk, which are
completely inconsistent. In order to select an optimal portfolio under a given level of risk aversion, we introduce
the following optimization problem,

Max W0

T∏
i=1

[
1 +

n∑
i=1

(E (ξit) · xit − dit | xit − xit−1)

]
− ϕ ·

(
T∑

t=1

TVaRα,t

)

Subject to


∑n

i=1 xit = 1, t = 1, 2, . . . ,T
−
∑n

i=1 xit ln (xit) ⩾ βt, t = 1, 2, . . . ,T∑n
i=1 E

(
ηi,t) ⩾ lt, t = 1, 2, . . . ,T

xit ⩾ 0, t = 1, . . . ,T, i = 1 . . . ,n

(3)

Where ϕ is a non-negative number. It means the level of risk aversion. The greater the value of ϕ, the more
conservative is the investor.

4. Deterministic Forms of the Uncertain Models

Theorem Suppose the return rates of securities ξt,i and turnover rates ηi,t are all normal uncertain variables
ξt,i ∼ N (eit, σit) and ηi,t ∼ N ((µit, τit) , i = 1, 2, . . . , n; t = 1, 2, . . . ,T . Then model (2) and model (3) can be
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converted into the following forms,

Max W0

T∏
t=1

[
1 +

n∑
i=1

(eit · xit − dit |xit − xit−1|)

]

Subject to



∑T
t=1

∑n
i=1 xit

[
−eit +

√
3

π σit

(
− ln(1− α)− α

1−α ln(α)
)]

≤ θ∑n
i=1 xit = 1, t = 1, . . . ,T

−
∑n

i=1 xit ln (xit) ⩾ βt, t = 1, 2, . . . ,T∑n
i=1 µit ⩾ lt, t = 1, 2, . . . ,T

xit ⩾ 0, t = 1, . . . ,T; i = 1 . . . ,n

(4)

and

Max W0

T∏
t=1

[
1 +

n∑
i=1

(eit · xit − dit |xit − xit−1|)

]

−ϕ ·

(
T∑

t=1

n∑
i=1

xit

[
−eit· ·

√
3

π
σit

(
− ln(1− α)− α

1− α
ln(α)

)])

Subject to


∑n

i=1 xit = 1, t = 1, 2, . . . ,T
−
∑n

i=1 xit ln (xit) ⩾ βt, t = 1, 2, . . . ,T∑n
i=1 µit ⩾ lt, t = 1, 2, . . . ,T

xit ⩾ 0, t = 1, . . . ,T; i = 1 . . . ,n

(5)

Proof. The returns of securities ξt,i are chosen as normal uncertain variables for all t = 1, 2, . . . ,T and
i = 1, 2, . . . ,n, with mean denoted by et,i and standard deviation σt,i.
According to the Liu (2007), if ξ1 and ξ2 be independent normal uncertain variables N(m1;σ1) and N(m2;σ2),
respectively. Then the sum ξ1 + ξ2 is also a normal uncertain variable N(m1 ; +m2; ;σ1 + σ2). Further, the
multiplication of a normal uncertain variable N(m;σ) and a scalar number k > 0 is also a normal uncertain variable
N(km; kσ).
Let Rt,p =

∑n
i=1 xitξit be the portfolio return at the end of period t. Rt,p is a normal uncertain variable with

expected value et =
∑n

i=1 xiteit and variance σ2
t =

∑n
i=1 x

2
itσ

2
it, t = 1, . . . , n. The loss, being the negative of this,

is given therefore by −
∑n

i=1 xitξit. Then

VaRα,t = inf

{
k | M

{
−

n∑
i=1

xitξit ≤ k

}
≥ α

}

= inf

{
k | M

{
n∑

i=1

xitξit ≤ −k

}
≤ 1− α

}
= −

n∑
i=1

xitΦ
−1
i (1− α)

When Φ−1
i is the inverse function distribution of ξit. Therefore, Value at risk of security i at the end of period t is

expressed as following

VaRα,t = −
n∑

i=1

xiteit +

n∑
i=1

xit

√
3σit

π
· ln
( α

1− α

)
, t = 1, . . . ,T

Based on Tail Value at risk definition, TVaR of security i at the end of period t is

TVaRα,t =
1

1− α

∫ 1

α

[
−

n∑
i=1

xiteit +

n∑
i=1

xit

√
3σit

π
· ln
(

β

1− β

)]
· dβ

=

n∑
i=1

xit

[
−eit +

√
3

π

(
− ln(1− α)− α

1− α
ln(α)

)
σit

]
, t = 1, . . . ,T
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Wherefore, the total loss of the end of investment is
∑T

t=1 TVaRα,t and expressed as

T∑
t=1

n∑
i=1

xit

[
−eit +

√
3

π
σit

(
− ln(1− α)− α

1− α
ln(α)

)]
The theorem is completed. Theorem Suppose the return rates of securities ξt,i are all linear uncertain variables
ξt,i ∼ L (ait , bit) , i = 1, 2, . . . , n; t = 1, 2, . . . ,T and turnover rates ηi,t are all zigzag uncertain variables ηi,t ∼
Z (ait,bit, cit) , i = 1, 2, . . . , n; t = 1, 2, . . . ,T. Then model (2) and model (3) can be converted into the following
forms:

Max w0

T∏
t=1

[
1 +

n∑
i=1

(
ait + bit

2
xit − dit |xit − xit−1|

)]

Subject to


−
∑T

t=1

∑n
i=1 xit

(
1+α
2 ait +

1−α
2 bit

)
≤ θ∑n

i=1 xit = 1, t = 1, . . . ,T
−
∑n

i=1 xit ln (xit) ⩾ βt, t = 1, 2, . . . ,T∑n
i=1 xi,t · (ait + 2 bit + cit) ⩾ 4lt, t = 1, 2, . . . ,T

xit ⩾ 0, t = 1, . . . ,T; i = 1 . . . ,n

(6)

and

Max
w0

∏T
t=1

[
1 +

∑n
i=1

ait+bit

2 , xit − dit |xit − xit−1|
)]

+ϕ ·
∑T

t=1

∑n
i=1 xit

(
1+α
2 ait +

1−α
2 bit

)
Subject to


∑n

i=1 xit = 1, t = 1, 2, . . . ,T
−
∑n

i=1 xit ln (xit) ⩾ βt, t = 1, 2, . . . ,T∑n
i=1 xi,t · (ait + 2 bit + cit) ⩾ 4lt, t = 1, 2, . . . ,T

xit ⩾ 0, t = 1, . . . ,T; i = 1 . . . ,n

(7)

Proof. The returns of securities ξt,i are linear uncertain variables ηt,i ∼ L (ait,bit). We have and

E (ξit) =
ait + bit

2
and E (ηit) =

ait + 2bit + cit
4

VaRα,t = −
n∑

i=1

xitΦ
−1
i (1− α) = −

n∑
i=1

xit · (αait + (1− α)bit)

When Φ−1
i is the inverse function distribution of ξit.

Then, TVaR of security i at the end of period t is

TVaRα,t =
1

1− α

∫ 1

α

[
−

n∑
i=1

xit · (βait + (1− β)bit)

]
· dβ

= −
n∑

i=1

xit

(
1 + α

2
ait +

1− α

2
bit

)
, t = 1, . . . ,T

Wherefore, the total loss of the end of investment is
∑T

t=1 TVaRα,t and expressed as

−
T∑

t=1

n∑
i=1

xit

(
1 + α

2
ait +

1− α

2
bit

)
The theorem is completed.
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5. Expected and standard deviation values estimation

In order to evaluate the expected, the standard deviation and turnover rates values of returns of the given security
used in the last model, we will adapt Delphi method introduced by WangGao-Guo [35] as follows:
As a first step, m numbers of domain experts are invited to evaluate the expected values, standard deviation
values, and liquidity rate values of the given security respectively, and give their reasons for their evaluations. An
anonymous summary of the evaluations and the reasons for them is given to the m experts in order to revise their
earlier evaluations. During this process, the opinions of domain experts will converge to appropriate values. The
main process is listed as follows:

Step 1. The m experts provide their expert’s experimental data. Let (ei,j , σi,j , ηi,t) , i = 1, . . . , n and
j = 1, 2, . . . ,m be the evaluation data, where ei,j represent the jth expert’s evaluation of the expected value of the
ith security return, and σi,j the jth expert’s evaluation of the standard deviation value of the ith security returns and
ηi,t the jth expert’s evaluation of the turnover rates of the ith security.

Step 2. By amusing that the experts are considered equally knowledgeable, we calculate the expected returns,
the standard deviations, and the turnover rates as follows:

e1 =
1

m

m∑
j=1

ei,j , σ1 =
1

m

m∑
j=1

σi,j and ηi =
1

m

m∑
j=1

ηi,t, i = 1, . . . ,n

to Step 4. Otherwise, give the m experts the anonymous summary of the earlier evaluations and the reasons for the
evaluations, and asked them to provide a new round of evaluation data. Go to Step 2 .

Step 4. Let ei = e1 and σi = σ1 and ηi = η1, i = 1, . . . , n. The evaluations of the means and standard deviations
and turnover rates of all securities are determined.

6. Case study

In order to illustrate the effectiveness and the behavior of our proposed models on portfolio selection, two
numerical examples are presented in this section. Suppose an investor plans to adjust his capital four times
during the investment among the six stocks chosen from Shanghai Stock Exchange: Stock 1 (code 600019);
Stock 2 (code 600115); Stock 3 (code 600150); Stock 4 (code 600229); Stock 5 (code 600295) and Stock 6
(code 600398). Return rates, standard deviations and turnover rates are estimated by experts based on available
information. Return rates and turnover rates are considered as normal uncertain variables (ξit ∼ N(eit;σit) and
ξit ∼ N(ηi,t; δit)) and are given in table 1 and table 2 respectively. The following results are obtained by the
software LINGO.

Table 1. Uncertain normal return rates

Stock 1 Stock 2 Stock 3
Period 1 N(0.0303, 0.0088) N(0.0338, 0.0178) N(0.0424, 0.0468)
Period 2 N(0.0465, 0.0252) N(0.0565, 0.0367) N(0.0530, 0.0516)
Period 3 N(0.0239, 0.0274) N(0.0347, 0.0158) N(0.0330, 0.0445)
Period 4 N(0.0648, 0.0297) N(0.0894, 0.0687) N(0.0675, 0.0294)

Stock 4 Stock 5 Stock 6
Period 1 N(0.0402, 0.0123) N(0.0524, 0.0994) N(0.0386, 0.0498)
Period 2 N(0.0654, 0.0315) N(0.0336, 0.0417) N(0.0539, 0.0475)
Period 3 N(0.0545, 0.1185) N(0.0024, 0.0954) N(0.0386, 0.0074)
Period 4 N(0.0834, 0.0678) N(0.0536, 0.0157) N(0.1062, 0.1167)
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Table 2. Uncertain normal turnover rates

Stock 1 Stock 2 Stock 3
Period 1 N(0.2300, 0.0022) N(0.1201, 0.0065) N(0.3276, 0.0033)
Period 2 N(0.2500, 0.0032) N(0.1348, 0.0071) N(0.2917, 0.0045)
Period 3 N(0.2750, 0.0045) N(0.1436, 0.0057) N(0.3056, 0.0037)
Period 4 N(0.2587, 0.0067) N(0.1574, 0.0063) N(0.2737, 0.0043)

Stock 4 Stock 5 Stock 6
Period 1 N(0.3101, 0.0068) N(0.1010, 0.0070) N(0.1029, 0.0045)
Period 2 N(0.2879, 0.0093) N(0.1376, 0.0085) N(0.1250, 0.0065)
Period 3 N(0.2896, 0.0085) N(0.1260, 0.0073) N(0.1376, 0.0048)
Period 4 N(0.2659, 0.0082) N(0.1525, 0.0072) N(0.1530, 0.0053)

Example 1. Assuming that the transaction cost rates of the six risky assets are dit = 0.003; i = 1, 2, . . . , 6; t =
1, 2, 3, 4. Besides that, in the beginning of investment, investor has no security on hand. Therefore, we presumed that
xi0 = 0, i = 1, . . . , 6. We also set α = 0.95, θ = 0.2, lt = 0.1; t = 1, 2, 3, 4 and βt = 1; t = 1, 2, 3, 4. By investing
10000RMB yuan, the maximum expected total wealth, using model 4, is 12581.37 RMB yuan. We remark that the
optimal portfolio, shown in Table 3 , is diversified.

Table 3. Optimal allocation of model (4) (%)

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6
Period 1 0.57 5.37 71.05 12.30 4.73 0
Period 2 2.29 11.60 5.98 70.73 0.53 9.23
Period 3 0.03 11.60 1.48 30.63 0 56.26
Period 4 1.05 16.25 1.58 15.83 0.27 64.75

In order to emphasize the impact of the realistic constraints on model (4), we will consider two sub-portfolios.
One without diversification constraints and the other without liquidity constraints. Numerical results showed that
if we do not consider the diversification constraints, the optimal solution of the Mean-TVaR model is concentrated
and expected wealth increses at 12694.83 RMB yuan. This means that the existence of diversification constraints
in our optimization model minimizes the risk but also the total return.

To investigate the behavior of the terminal wealth as a function of diversification level, we will change the preset
entropy value βt on the interval (0, ln 6). The result is presented in figure 3 . We remark that terminal wealth
decreases as a function of the diversification level.

Table 4. Optimal allocation of model 4 without diversification constraints (%)

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6
Period 1 0 0 0 100 0 0
Period 2 0 0 0 100 0 0
Period 3 0 0 0 36.46 0 63.54
Period 4 0 0 0 0 0 100
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Figure 3. The behavior of the terminal wealth as a function of diversification level of model 4

It can be seen from Figure 3 that, using model 4 without liquidity constraints, when the turnover ratre increases,
the investor gains less terminal expected wealth. As a particulate cas, in the absence of liquidity constraints,
terminal wealth is 12515.11 RMB yuan, Table 5.

Table 5. Optimal allocation of model 4 without liquidity constraints (%)

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6
Period 1 16 7.02 16.70 38.01 18.82 3.45
Period 2 1.05 7.65 20.54 65.58 0 5.18
Period 3 0 8.55 7.57 18.85 0 65.03
Period 4 0.84 23.85 1.11 11.42 0.47 62.30

Figure 4. The behavior of the terminal wealth as a function of turnover rate of model 4

In order to further highlight the change of the optimal terminal expected wealth with the change of TVaR, we
change the risk tolerant levels in model 4, with and without diversification and liquidity constraints, and obtain
different optimal terminal expected wealth. We can see from Figure 5 that the bigger of risk tolerant level, the
bigger terminal wealth of the optimal portfolio in the two cases, with diversification and liquidity constraints and
without diversification and liquidity constraints.

Stat., Optim. Inf. Comput. Vol. 11, September 2023



K. BELABBES, M. EL HACHLOUFI, Z. GUENNOUN 975

Figure 5. The efficient frontiers of model 4 with and without diversification and liquidity constraints

Example 2. Using the same data of the first example, supposing that an investor searches the optimal solution by
apply model (5). We can see that when ϕ = 1.5, terminal expected wealth is 12699.96 RMI (yuan). The optimal
investment strategy for portfolio selection is displayed in table 6. To study the influence of ϕ on the optimal
allocation, we will change risk aversion values into (0, 20). Investment return values are shown in Figure 6. It is
clear that terminal wealth decreases when risk aversion increases.

Table 6. Optimal allocation of model (5) when ϕ = 1.5

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6
Period 1 0.80 2.08 6.45 12.24 70.51 7.92
Period 2 1.56 10.73 6.45 69.15 0.15 11.96
Period 3 1.57 10.73 6.37 69.15 0.15 12.02
Period 4 1.57 13.57 3.00 13.57 0.45 67.84

Figure 6. The behavior of the terminal wealth as a function of the preference coefficient of model (5)

7. Conclusion and perspectives

This article proposed three uncertain models for multi-period portfolio optimization. Compared with the existing
works, we model the return and the risk of the investment using the uncertain mean value and the Tail Value
at Risk, respectively. The security returns and turnover rates are assumed uncertain variables, and taking into
account liquidity constraints, diversification constraints and transaction costs. In addition, theses models are
transformed into a crisp mathematical problems under the assumption that the security returns and liquidity obey
some uncertainty distribution forms. We adapted the Delphi method in order to evaluate the expected, the standard

Stat., Optim. Inf. Comput. Vol. 11, September 2023



976 UNCERTAIN MEAN-TVAR MODELS FOR DIVERSIFIED MULTI-PERIOD PORTFOLIO OPTIMIZATION

deviation and the turnover rates values of returns of the given securities. The effectiveness of the proposed models
is illustrated by examples.

As a perspective of our research, we are interested in proposing multi-period optimization problems considering
more general conditions, where security returns are other kinds of uncertain variables and considering other reality
factors. We aim in developing algorithms for solving the problem in general cases.
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