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Abstract We provide the learning of a DAG model arising from high dimensional random variables following both normal
and non-normal assumptions. To this end, the copula function utilized connecting dependent variables. Moreover to normal
copula, the three most applicable copulas have been investigated modeling all three dependence structures negative, positive,
and weak kinds. The copula functions, FGM, Clayton, and Gumbel are considered coving these situations and their detailed
calculations are also presented. In addition, the structure function has been exactly determined due to choosing a good
copula model based on statistical software R with respect to any assumed direction among all nodes. The direction with the
maximum structure function has been preferred. The corresponding algorithms finding these directions and the maximization
procedures are also provided. Finally, some extensive tabulations and simulation studies are provided, and in the following
to have a clear thought of provided strategies, a real world application has been analyzed.
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1. Introduction

multivariate analysis has arisen in lots of real-world applications. It is also can be used in many aspects of data
sciences and new statistical areas such as graphs, quality controls, network analysis, and so on. Up to now, lots of
improvements have been made in multivariate statistical models. Understanding all the complex connections and
multivariate dependencies that exist in a data set, developing suitable models, and improving inference procedures
are imperative challenges in modern statistical fields. In this regard, the graphical models that recently providing an
innovative field can be served as powerful instruments utilizing to discovering data structures. In another point of
view, the graphical models are one of the multivariate models relating to the joint densities of a family of variables
confined by some conditional independence assumptions and in addition, holding the conditional relation between
corresponding random variables which are denoted by a graph. For more information about the definition, structure,
performance, and usefulness of a graph see [7,8].

Among the numerous kinds of all graphs, directed acyclic graph (DAG) attracted powerful literatures from
probabilistic models. This term was firstly applied in [18,19] and known by the term DAG in statistical areas
[11,15] and bayesian network in artifical intelligence disiplines [11,20]. Data based learning for DAG models are
investigated by several researchers [4,15]. It is also worth mentioning that all of the afromentioned investigations
have been done in accordance with two concepts including score based learning and search procedure. In the case
of multinomial descrete random variables, there were provided a metrics for domains conditioning samples in
[10]. The scoring metrics for continous variables following the multivariate normal distribution are given in [6]. A
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combination learning for two previous works using a general metric for both of discrete and continous variables
was studied in [9].

Learning DAGs are a type of machine learning algorithm that is used for causal inference. DAGs are graphs
that represent the causal relationships between different variables in a dataset. In a DAG, the nodes represent
the variables, and the edges represent the causal relationships between them. The goal of learning DAGs is to
identify the causal relationships between the variables in a dataset. This is important because it allows us to
determine which variables are causing changes in other variables in the dataset, and which variables are being
influenced by other variables. There are several methods for learning DAGs, including constraint based methods,
score-based methods, and hybrid methods. Constraint-based methods involve testing conditional independence
relationships between variables, while score-based methods involve optimizing a score function that measures the
goodness-of-fit of the DAG to the data. Hybrid methods combine elements of both constraint-based and score-
based methods. Overall, learning DAGs is a powerful tool for understanding the causal relationships between
variables in a dataset, and is used in a wide range of applications, including healthcare, finance, and social sciences.
The process of learning DAGs involves using observational or experimental data to infer the causal relationships
between variables. This is done by using statistical algorithms to search through all possible DAGs that could
explain the data and identify the one that best fits the observed relationships between variables. Learning DAGs is
useful in a variety of applications, such as predicting the effect of interventions in complex systems, identifying risk
factors for diseases, and optimizing decision-making processes. However, it can be challenging because it requires
a deep understanding of statistical concepts and the ability to interpret complex graphs. Overall, learning DAGs is
a powerful tool for understanding complex systems and making informed decisions based on causal relationships
between variables. In this paper, we develop the learning method using copula functions that is more efficient and
sufficient to previous and mentioned studies.

One of the most interesting quantities in the modeling of DAGs is determining their structure. The problem is
we can not calculate the structure function for a DAG before we know its model. As it is clear, on one hand, the
value of structure function is so important and can play a useful role in determining the model of a DAG, and in
another hand, we must identify the model and afterward calculate the mentioned function. To this end, we provide
a strategy that chooses the best model of a DAG, based on maximizing structure function calculating according
to some possible dependency joint densities. Precisely, at first, the good copula function is fitted on the variables
or some suitable copula functions have been selected for suitable model presenting of the corresponding random
variables. Secondly, with the assumption of a fixed copula that is selected in the previous step, we maximize
structure function among all the possible models. Precisely, with a fixed copula function, we can calculate the
exact value of structure function, and then, the model with maximized structure function can be selected.

To the best of our knowledge, score based learning has been extensively discussed in[13,2]. According to the
nonconvex and combinational features in that way, it is rarely useful in the existence of high dimensional data,
particularly when the considering parameters are greater than the sample size. The problem has remained as a
gap in literature until providing some investigation in [1,3]. Another applicable strategy for learning DAG, called
Markov Chain Monte Carlo (MCMC) procedures has been deeply discussed in [14,12,8,11,7,5]. For all the above
methods, the ordering variables does not consider and it is clear that this issue can be regarded in many real world
application disciplines like genetics, finance and so on. Learning DAGs for such fields is limited to determining
the parent random variables and extensively provided in [16,3,20]. In this manner, we present innovative learning
for DAGs in accordance with maximizing all of the possible structure functions through a search algorithm.

The rest of the paper is organized as follows. The copula function aiming to model dependency among random
variables is provided in section 2. The fitting procedures of a copula function in some variables and investigation of
its performances are also provided. In section 3, we review the structure function of a DAG model. In addition, the
calculating method for this function is described in detail. The structure function is derived in accordance with the
fitted copula function and for any possible model, the values of this function can be exactly calculated. Selecting
the best model for a mentioned DAG is the main task of section 4. The search algorithm and maximizing structure
function are also provided in this section. Extensive simulation studies finding a DAG model in lots of cases are
presented in section 5. Their performances have been deeply taken under investigation and finally, the conclusion
of our study is given in section 6.
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2. Copula function

Here, we proposed some preliminary notions that utilized in the study. First of all, consider a d−dimensional
X = (X1, X2, . . . , Xd), representing the DAG we are going to assess. The observed or realization values of
random vector X = (X1, X2, . . . , Xd) is considered with notions x = (x1, x2, . . . , xd). It is worth mentioning that
n represent the number of sampling and consequently each xi, i = 1, 2, . . . , d is a n−dimensional column vector
collected during the sampling process. More precisely, the collected data consist of a n× d matrix denoted by x as
the form of

x =


x11 x21 . . . xd1

x12 x22 . . . xd2

. . . . . .
x1n x2n . . . xdn


Suppose that X ∼ PX(.), including the factorizing distribution regarding the DAG structure G:

PX(x1, x2, . . . , xd;G) =

d∏
j=1

p(xj |x1, x2, . . . , xj−1)

=

d∏
j=1

P (xj |xpa(j)), (1)

where pa(j) is the set of parent nodes of the j−th node in G ([21]). In fact, pa(Xi) ⊆ ⊓i ∈ {X1, X2, . . . , Xi−1}
is a set of random variables rendering Xi and {X1, X2, . . . , Xi−1} that are conditionally independent. The hidden
assumption that exists in relation (1), is the statistical independence properties of the nodes.

In all previous studies, the joint model of these variables is normally considered. The whole discussions and
investigations are also constructed around these strong assumptions. It is obvious that in the real world analysis,
the joint model is not exactly determined and moreover, there are many real data sets that did not follow the
normal assumption. Now, we set ourselves to generalize this assumption into a general continuous family of joint
distributions. The dependent structure is also generally considered. The dependency among variables is mostly held
in real data analysis and additionally, it has several kinds of structures. To this end, we utilize the copula functions
that are so so useful in modeling dependent variables. In the present study, the copula function is provided modeling
the dependence structure among the nodes. Up to now, this assumption is innovative. At first, we present the basic
definitions and preliminary relations due to this function. To continue, the definition of copula function is presented
and we are going to represent alternative of relation (1), in such a dependent situation.
Definition 1. Copula function: A copula function C(.) satisfies in the following relations:

I: C(u1, u2, . . . , ud) = 0 if at least one uj = 0.
II: C(1, 1, . . . , 1, uj , 1, . . . , 1, 1) = uj if at most one uj ̸= 1.

III: ∫
B

dC(u) =
∑

z∈×d
i=1{xi,yi}

(−1)N(z)C(z) ≥ 0,

There exist many different types of copula functions and extensively covered all dependency models. For more
pieces of information see [10]. The joint density of variables X1, X2, . . . , Xd using the copula function can be
represented as

P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = C(FX1
(x1), FX2

(x2), . . . , FXn
(xn)),

where FXi(.), i = 1, 2, . . . , d stands for the marginal cumulative distribution function and it is easy to check that
the independent model can be modeled using independent copula meaning that

C(u1, u2, . . . , ud) =

d∏
j=1

uj .
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The relation (1) may be noticed by Bayesian networks in artificial intelligence literature and DAG in statistical
studies. Learning a Bayesian network requires to understand the structure of the model. Similarly, the conditional
probability that captures P (xj |xpa(j)) should be learned. Accordingly, before dealing with the learning problems,
we should choose a suitable copula function. Afterward, the corresponding conditional independence structure
must be determined. Finally, the direction among nodes should be identified. Choosing a good copula function that
can provide suitable goodness of fit for a given data set is investigated in the future section.

3. Multivariate analysis

In this section, we are going to provide our strategy to find a suitable joint model throughout a copula function due
to the corresponding samples. The copula model can model dependency among variables and dependency between
random variables can be as three positive, weak, and negative forms.

Here, we don’t want to focus on the copula model and the main goal is to use this useful function to reach the
best learning of a DAG. Therefore, we present 3 famous copulas covering three mentioned dependencies. It is
easy to check that Gumbel, FGM, and Clayton copulas can include all dependency situations. In addition, we also
consider the normal copula as an important model that is extensively utilized in the Bayesian network.

Accordingly, we should assess the performances of these copulas based on a given data set, and then a copula
model is determined as a suitable model for the corresponding variables. Taking a good approach for our selection,
we can use the helpful command “gof” in useful package “gofCopula” from statistical software R [17], computing
for a given dataset and according to the choices of the user different tests for different copulae. The corresponding
relations for the aforementioned copulae are as follows:

Definition 2. Gumbel copula: If C(.) in (1) has the following form:

CG(u1, u2, . . . , un) = exp[−(

n∑
i=1

(− log(ui))
θ)

1

θ ].

We say it Gumbel copula with parameters θ ≥ 1. When θ = 1, it is reduced to an independent copula.

Definition 3. Clayton copula: If C(.) in (1) has the following form:

CC(u1, u2, . . . , un) = [1 +

n∑
i=1

(u−θ
i − 1)]

−
1

θ .

We say it Clayton copula with parameters θ ≥ 1, θ ̸= 0. When θ → 0, it is reduced to an independent copula.

Definition 4. FGM copula: If C(.) in (1) has the following form:

CFGM(u1, u2, . . . , un) =

n∏
j=1

uj(1 + θ

n∏
j=1

(1− uj)).

We say it FGM copula with parameters −1 ≤ θ ≤ 1, θ. When θ = 0, it is reduced to an independent copula.

Definition 5. Normal copula: If C(.) in (1) has the following form:

CN(u1, u2, . . . , un) = Φn
R(Φ

−1
U1

(u1),Φ
−1
U2

(u2), . . . ,Φ
−1
Un

(un)).

We say it Normal copula of n dimension with coefficient correlation matrix

R =


Cov(U1, U2) Cov(U1, U3) . . . Cov(U1, Un)
Cov(U2, U1) Cov(U2, U2) . . . Cov(U2, Un)

. . . . . .
Cov(Un, U1) Cov(Un, U2) . . . Cov(Un, Un)

 ,
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where Φ−1 is the inverse cumulative distribution function of a standard normal or precisely Φ(u) =

1√
2π

∫ u

−∞ e
−
x2

2 dx and Φn
R is the joint cumulative distribution function of a multivariate normal distribution with

mean vector zero and covariance matrix equal to R. It is worth mentioning that when R = 0, it is reduced to an
independent copula.

To continue, utilizing the useful package “gofCopula” we can satisfy the dependency model of observed data
with the four mentioned copula. These functions, generally covered most of the applicable real data dependencies,
and furthermore using the command “gof” can also improve the determination of selected copulas. The selection
copula is not our attention, and we are going to provide general structures that can include not only the normal
dependency but also most of the dependency models like negative and positive ones. For all of the aforementioned
copulas, we present corresponding learning strategies and both theoretical and applicational backgrounds are also
investigated.

Using the copula functions, the three most used kinds of these functions including the Farlie-Gumbel-
Morgenstern (FGM) copula, the Gumbel copula, and the Clayton copula are provided and corresponding learning
methods for dependence structures following these models are investigated. The comparison results of these
copulas are explained through Kendall’s τ correlation coefficient (rank dependent correlation coefficient). We will
present learning a DAG not only for different models following these non-normal dependence structures but also
for the models with the assumption of the multivariate normal model. Choosing the normal model is clear and it
is discussed previously by many scholars since the assumption is trivial and applicable. We also consider three
copula functions, the FGM copula, the Gumbel copula, and the Clayton copula, which have been very useful
independence modeling. The FGM can accommodate relatively weak dependence between nodes and the Gumbel
copula is well suited for the case when there is strong right tail dependence and the Clayton copula can be used
when the correlation between marginal variables exhibits a strong left tail dependence.

4. Learning DAGs

Accordingly, to the previous section, the dependence structure of variables is known. In the following, we are
going to determine a learning concept for a pre-specified DAG. Learning will be explained for all of the mentioned
copulas and their details will be extensively discussed. Here assume that the copula function with a good fitting to
the variables set X1, X2, . . . , Xd is demonstrated by C∗.

The graph structure G described in (1) is determined as C∗. Consequently, this relation can be exactly calculated
in any direction among the nodes. To this end, the direction should be firstly assumed and the structure-function
should be exactly determined. Since, there are many possible directions, the direction with maximum structure
function can be selected as our goal. The process is given as follows.

I: Fit data set to copula functions normal, Clayton, Gumbel, and FGM and select the best one according to their
test power called by C∗.

II: Calculate the structure values assuming C∗ for all possible DAGs considering the whole direction.
III: Select a graph with the largest structure values demonstrated by our selected DAG.

Assuming X1, X2, . . . , Xd following the selected copula function C∗ meaning that

P (X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd) = C∗(FX1
(x1), FX2

(x2), . . . , FXd
(xd)),

and consequently, the corresponding joint density is given by:

fX1,X2,...,Xd
(x1, x2, . . . , xd) =

d∏
j=1

fXj
(xj)c

∗(FX1
(x1), FX2

(x2), . . . , FXd
(xd)),
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Using the chain rule of probability, the other form of joint density can be derived as:

fX1,X2,...,Xd
(x1, x2, . . . , xd) =

d∏
j=1

fXj |X1,X2,...,Xj−1,Xj+1,...,Xd
(xj).

But, Xj may conditionally be independent of some nodes. Let Iij , j, i = 1, 2, . . . , d. be a bivariate quantity equal
to zero when Xj is not of parents for node Xi or precisely

Iij =

{
1 Xj is a parents for the node Xi;

0 Xj is not of parents for the node Xi.

Hence, the joint density can be rewritten as the following form:

fX1,X2,...,Xd
(x1, x2, . . . , xd) =

d∏
j=1

fXj |X1,X2,...,Xj−1
(xj)

=

d∏
j=1

fXj |Πj
(xj),

where Πj be a set of all variables conditionally dependent to node Xj or

Πj = {Xi ∈ {X1, X2, . . . , Xj}|Iij = 1}.

To the best of your knowledge about our strategy, we provide a wide and general examples below.

Example 1. Dual nodes: This example deals with the variables priority i.e, in the first stage, we should determine
the variables we want to start or learning method. Consider two nodes X1 and X2 with corresponding joint density
fX1,X2

(x1, x2) = fX1
(x1)fX2

(x2)c
∗
2(FX1

(x1), FX2
(x2)), and we are going to prefer among all possible directions

demonstrated in figures (1), and (2).
The priority of node X1 to the other nodes (P1) are shown in figure (1) and conversely the priority of X2 to the

other nodes (P2) are shown in figure (2). The initial problem without any special assumptions of the model is a
decision about these cases. Accordingly, the quantities P1, and P2 can be respectively defined as:

P1 =

∫
R

fX1
(x)

fX2
(x)

dx,

and
P2 =

∫
R

fX2(x)

fX1
(x)

dx.

X1 X2

Figure 1. Case I

X1 X2

Figure 2. Case II

If P1 ≥ P2 the case I, is preferred and vice versa if P1 ≤ P2, the case II is selected. In fact, P1 is a measure
validating the whole affection that can be received by node X1 from all other nodes, and can be extended for
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d-dimensional as the following form:

Pi =

∫
R

fXi(x)

fX1,X2,...,Xi−1,Xi+1,...,Xd|Xi
(x)

dx

=

∫
R

f2
Xi

(x)

fX1,X2,...,Xd
(x)

dx

=

∫
R

f2
Xi

(x)

c∗d(x, x, . . . , x)
dx

=

∫
R

f2
Xi

(x)

∂d

∂xd
C∗

d(x, x, . . . , x)

dx, d = 3, 4, . . . .

The node with a maximum value of Pis is our learning priority and in the same manner, we can continue learning
the concept. The next example deals with the problem of finding suitable variables that can directly connect with
the first node, which is selected in the first step.

Example 2. Triple nodes: In this example, there are three variables that have been considered regarding any
dependence assumption and we are going to investigate an applicable learning issue. Firstly, as can be seen in
Figures (3), and (4), we should determine one variable in accordance with the start of a learning algorithm. In
previous pieces of literature not only there only assumed variables following the normal assumptions but also they
start with an initial number 1 meaning that their algorithms start with the first random variable such as [20,14].
In the beginning, one may be interested investigate what variable is suitable for starting the algorithm instead of
the fixed choice of the first variable? The reason may return to the fact that we didn’t have any further knowledge
about the nodes model, but here, we maximize the whole structure-function or main likelihood aiming to find the
best model. For these variables assume that we determine C∗

3 such that:

P (X1 ≤ x1, X2 ≤ x2, X3 ≤ x3) = C∗
3 (FX1(x1), FX2(x2), FX3(x3)),

and also it is clear that:

fX1,X2,X3(x1, x2, x3) =

3∏
j=1

fXj (xj)c
∗
3(FX1(x1), FX2(x2), FX3(x3)).

X1

X2 X3

Figure 3. Case I

In accordance with these relations, it is available to calculate marginal densities or partial structure values. First
of all, without losing any generality, assume that P3 ≤ P2 ≤ P1. Hence the priorities respectively are P3, P2, and
P1 and the learning algorithm should start with nodes X1. The next question arise now. What is the number of
connected variables to X1? Are two nodes connected to X1 like as figure (3), or just only a variable is connected to
X1 like as figures (4), and (5)? The other issue is, if there is only one variable connected to X1, what is that node?
or what model should be preferred between figures (4), and (5)?
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X1

X2 X3

Figure 4. Case II

X1

X2 X3

Figure 5. Case III

Discussing the above question, we can extend Pi for two or more directions. For instance, the affection received
by node Xi from the other two nodes like as Xj1 and Xj1 , can be extended as:

P i
j1,j2 =

∫
R

fXi
(x)

fXj1 ,Xj2 |Xi
(x)

dx

=

∫
R

f2
Xi

(x)

fXj1 ,Xj2
(x, x)

dx

Accordingly, choosing two suitable nodes can be done by maximizing the above relation just like the previous
algorithms. Returning our attention to the main questions, we can calculate P 1

2,3, P 1
3 , and P 1

2 . In what follows, we
should choose among 2 and 1 directions connected to the pre-selected node X1. Here, we can define the maximum
affection received by node Xi from k directions as follows:

P i−k = max
(
P i
j1,j2,...,jk

|(j1, j2, . . . , jk) ∈ πk

)
, (2)

where πk stands for all corresponding possible permutations.
Finally, we have:

P 1−2 = P 1
2,3,

and
P 1−1 = max

(
P 1
2 , P

1
3

)
.

Now, if P 1−2 ≥ P 1−1, we prefer Figure (3), while if P 1−2 ≤ P 1−1, in accordance with the previous steps, we
should determine what the figures are suitable between figure (4), and (5).

5. Simulation studies

In this section, five heterogeneous nodes with different types of dependency are considered and the corresponding
simulation studies aiming to find related DAG’s are present. To this end, the Gumbel (1.5), Clayton (1), and
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normal (0.5), dependence structures are considered with the same Kendalls tau
1

3
, representing a positive strong

dependency. In addition, five models were also taken into account including normal, Weibull, gamma, exponential,
and betta densities that are mostly utilized in real-world applications. In the beginning, we should determine the
variable priorities. This code for normal copula is available in Appendix and the calculation for other copulas
is similar and also can be transformed. In this regard, the Pi values are available in Table (1), and under any
assumption, we can determine the main node. The same task is also provided for P k

i in Table (2).

Normal copula (0.5) Clayton copula (1) Gumbel copula (1.5)
P1 7.048 22.593 6.255
P2 3.768 8.773 2.821
P3 0.615 1.469 0.466
P4 8.082 38.159 9.028
P5 92.913 279.033 80.172

Priorities P3 ≤ P2 ≤ P1 ≤ P4 ≤ P5 P3 ≤ P2 ≤ P1 ≤ P4 ≤ P5 P3 ≤ P2 ≤ P1 ≤ P4 ≤ P5

Table 1. The Pi values for the Clayton, Gumbel, and normal copulas with assumed variable models

Hence the priorities are the same in the first step and the algorithm should be started from node X5. In continue,
the partial priorities have been calculated in Table (1), and in the same manner, the learning contexts are shown in
Figures (6), (7), and (8), respectively for the normal, Clayton, and Gumbel structures.

Normal copula (0.5) Clayton copula (1) Gumbel copula (1.5)
P 5
1,2,3,4 14.265 24.368 63.254
P 5−4 14.265 24.368 63.254
P 5
1,2,3 13.285 12.654 34.957

P 5
1,2,4 11.395 21.478 54.298

P 5
1,3,4 17.426 32.147 24.298

P 5
2,3,4 21.289 25.962 40.147

P 5−3 21.289 32.147 54.298
P 5
1,2 29.821 30.126 32.258

P 5
1,3 9.357 19.895 43.159

P 5
1,4 11.237 13.592 21.328

P 5
2,3 32.856 35.728 17.983

P 5
2,4 38.921 15.628 29.864

P 5
3,4 33.294 21.328 11.958

P 5−2 38.921 35.728 43.159
P 5
1 7.284 41.925 11.278

P 5
2 4.329 34.956 29.862

P 5
3 9.289 84.962 21.327

P 5
4 11.249 67.389 27.925

P 5−1 11.249 84.962 29.862

Table 2. The corresponding priorities after choosing the node X5.
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X5

X2 X4

X1 X3

Figure 6. Dag learning for the normal copula

X5 X3

X1X2

X4

Figure 7. Dag learning for the Clayton copula

X5

X3X1

X2 X4

Figure 8. Dag learning for the Gumbel copula
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6. Conclusion

In this study, a multivariate data set coming from an unknown directed acyclic graph has been considered and we
are going to determine the learning topic around this graph. In contrast to the previous studies, not only normal
assumptions for these variables are considered but also non-normal assumptions have been widely investigated.

To this end, the copula function is utilized for constructing a suitable dependency structure between the
considered variables. The copula function is not our attention here and it has been used just for fitting the variables
for a good model as it is possible that can be normal or even not normal.

The task is done by introducing three non-normal models including FGM, Clayton, and Gumbel, and moreover
the normal one itself. The fitting process is devoted to an excellent package “gofCopula” and its very useful
command “gof” and we regret the further topics around finding a suitable model, but the corresponding algorithm
is provided in detail. Using the selected model, we are going to determine structure-function due to all possible
directions.

The direction with maximum value is selected as an excellent DAG model and the corresponding algorithms are
also given with comprehensive discussion. In continue, through simulation studies, these algorithms are examed
and their performances are also calculated. In addition, some tables and figures are presented as a good showcase
of what we discussed.
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