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Abstract There has been tremendous interest invested by researchers and academics in Bitcoin since it’s introduction to
the financial market. However, in recent years there has been an advancement of the cryptocurrency market where other
cryptocurrencies such as Ethereum, Litecoin and Ripple have grown relatively quickly and could potentially challenge
the dominant placement of Bitcoin. These cryprocurrencies have been utilized globally as a virtual currency for multiple
transactions. The returns of cryptocurrencies are known to be volatile and have been observed to fluctuate quite a bit in recent
times. This study assesses and differentiates the performance of generalized autoregressive score (GAS) models integrated
with a few heavy-tailed distributions in Value-at-Risk (VaR) estimation of the four most popular cryptocurrencies’ returns,
i.e. Bitcoin returns, Ethereum returns, Litecoin returns and Ripple returns. This paper proposed VaR models for Bitcoin,
Ethereum, Litecoin and Ripple returns, i.e. GAS models combined with the generalized hyperbolic distribution (GHD), the
variance gamma (VG) distribution, the normal inverse Gaussian (NIG) distribution and the generalized lambda distribution
(GLD). The Kupiec likelihood ratio test was adopted to evaluate the proposed models’ adequacy and Backtesting VaR was
used to select the superior set of models.
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1. Introduction

Since Bitcoin’s inception in 2008, the cryptocurrency family has been growing both in quantities and functions as
Bitcoin’s steady growth in market capitalization and price appreciation has influenced the emergence of numerous
alternative cryptocurrencies [65]. It has obtained a crucial position in the international financial landscape and the
fascination by the media, regulators, government institutions and the general public has been on the rise in recent
years. The cryptocurrencies’ investing value has also gained enormous support from worldwide investors as a new
tool of investment as opposed to the conventional stocks, bonds, EFTs and Futures [76].

Ethereum was first introduced in August 2015 and is a peer-to-peer (P2P) virtual currency, like Bitcoin. However,
it contrasts from Bitcoin as Ethereum’s cryptocurrency token, Ether possesses no maximum supply. Ethereum has
become the second most popular cryptocurrency as it’s protocol includes online contractual agreement applications,
known as smart contracts, with a very low possibility of downtime, fraud, interference of a third party and
censorship. In October 2011, a former Google employee introduced Litecoin. Litecoin has a very similar protocol
to that of Bitcoin and has an 84 million unit supply, capped. It was designed to provide a better performing mining
process and to allow faster transactions. Although it was designed to be a rival to Bitcoin, Litecoin did not gained
the same attention from the public and social media. In the last couple of years, a new set of coins (which include
Ripple), alternative to Bitcoin has emerged. Despite Ripple’s early invention, it has recently gained value after
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proving itself as a major worldwide settlement network that facilitates transactions between banks. It has been
largely used by many banks and organizations such as UniCredit, UBS, and Santander. It boasts a transaction
confirmation time of 5 seconds, compared to Bitcoin’s slow 10 minutes [76].

Cryptocurrencies have zero exposure to common stock markets as there is no central bank controlling the
issuing of it, thus factors like inflation and interest rates have no impact to the cryptocurrency market. The prices
of cryptocurrencies is primarily influenced by behavioural factors. Modelling the volatility of cryptocurrencies
plays an essential role in risk management and prediction of market losses. Volatility is highly exhibited in
cryptocurrencies and tends to behave in a very similar manner to that of other financial time series [53]. There
has been numerous studies performed on cryptocurrencies, to date. However, since cryptocurrencies have only
been established in 2008, there is still a wide scope for research and analysis to be done to investigate the statistical
characteristics exhibited by them.

[60] analysed the capabilities of the normal inverse Gaussian (NIG) distribution, a subset of the generalized
hyperbolic (GH) distribution to fit to the returns of Bitcoin. Daily Bitcoin price data from July 2015 to May 2018
were used in the study. The returns of Bitcoin were investigated in comparison to seven major exchange rates.
Using a few statistical tests, it was found that the NIG distribution managed to adequately model the Bitcoin
returns for all seven exchange rates. Out-of sample VaR and CVaR were also obtained with both the NIG and GH
distributions. Even though the results showed minimal differences, the NIG had the higher cumulative density for
the expected shortfall. Thus, this paper suggests that the use of the NIG as better was justifiable as the model has
fewer parameters to adjust and was able to appropriately capture the highly volatile behaviour of Bitcoin as well as
produce excellent out-of-sample VaR and CVaR results.

[20] modelled seven of the most popular cryptocurrencies (excluding Ethereum) using eight statistical
distributions. The daily data of each cryptocurrency from June 2014 to February 2018 were utilized in the study.
All eight distributions were fitted to the cryptocurrencies’ returns. The fits were evaluated using VaR and expected
shortfall measures of risk of which the generalized hyperbolic distribution outperformed all the other distributions
used in the study.

The flexibility of GH in fitting finacial data is what has made the distribution so appealing in financial studies.
[34] fit a GH distribution to DAX index data from 1989 to 1992 and conclude that the GH distrubution produces
better approximations for modelling financial returns when compared to the NIG and hyperbolic distribution.
However, it was concluded by [8] that the NIG is the better candidate when modelling financial returns. [61]
first proposed the application of the GH distribution and it’s subsets to the returns of cryptocurrencies. The study
statistically analyses seven cryptocurrencies using data from June 2014 to October 2016. It was concluded that
the returns of the new financial assets exhibit consistent behaviour with that of financial data and thus the GH
distribution and it’s family are highly suited to fit to cryptocurrencies.

[71] used heavy-tailed GARCH models and generalized autoregressive score (GAS) models with underlying
distributions to model and forecast the risks and returns of Bitcoin. Daily data for the period July 2010 and April
2018 were utilized in the study. Goodness-of-fit tests were applied to evaluate the adequacy of each model and
backtesting procedures were conducted to assess the VaR model specifications. It was found that the GAS models
with the underlying heavy-tailed distributions were able to outperform the normally distributed GARCH and GAS
models. The best conditional and unconditional coverage for the 1% forecasts were produced by the GAS-AST
model.

[48] proposed the accelerating generalized autoregressive score (aGAS) technique applied to the Gaussian-
Cauchy mixture model. This led to the introduction of a novel time-varying mixture (TVM)-aGAS model. The
model was then used to forecast VaR to Bitcoin, Ethereum and Ripple. Daily data from the inception of each
cryptocurrency up until June 2015 was used in this paper. The proposed GAS models’ results was then compared
to that of the classical AR moving average ARMA-GARCH model with various innovations. The out-of-sample
VaR forecast GAS results surpassed what had been achieved by the ARMA-GARCH model.

[22] modeled Bitcoin, Ethereum, Litecoin and Ripple using GAS models to investigate the co-dependency nature
and portfolio Value-at-Risk of these cryptocurrencies. The time period of the analysis was between January 2016
and December 2021. Multivariate GAS models as well as multivariate DCC (dynamic conditional correlation)-
GARCH models were considered in this study. The out-of-sample predictive performance of each model that
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was fitted to the respective cryptocurrencies was compared and it was concluded that the GAS model highly
outperformed the traditional DCC-GARCH model.

Table 1. Summary of related research on modelling and analysing risk in cryptocurrencies.

Authors Data Models Robust models

Núñez et al. (2018)
Bitcoin

(Daily data for the period
7 July 2015-16 May 2018)

Normal inverse Gaussian
Generalized Hyperbolic Normal inverse Gaussian

Chan et al. (2017)

Bitcoin
Dash

Litecoin
MaidSafeCoin

Monero
Dogecoin

Ripple
(Daily data for the period

23 June 2014-28 February 2017)

Student’s-t
Laplace
Skew t

Generalized hyperbolic
Normal inverse Gaussian

Generalized-t
Skew Student’s-t

Asymmetric Student’s-t

Generalized Hyperbolic

Joerg (2017)

Bitcoin
Dash

Litecoin
MaidSafeCoin

Monero
Dogecoin

Ripple
(Daily data for the period
June 2014- October 2016)

Normal
Student’s t

Skewed generalized Student’s t
Hyperbolic

Generalized Hyperbolic
Asymmetric normal inverse Gaussian

Asymmetric variance Gamma

Student’s t

Troster et al. (2018)
Bitcoin

(Daily data for the period
19 July 2010-16 April 2018)

GAS-N, GAS-tS
GAS-SSTD, GAS-AST

GAS-AST1
GARCH, APARCH

GJRGARCH, TGARCH
CGARCH, NGARCH
HGARCH, EGARCH

GAS-AST

Jiang et al. (2022)

Bitcoin
Ethereum

Ripple
(Daily data for the period)

GAS
ARMA-GARCH GAS

Cheng (2023)

Bitcoin
Ethereum
Litecoin
Ripple

(Daily data for the period)
January 2016-December 2023)

Multivariate GAS(1,1)
DCC-GARCH GAS(1,1)
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To the extent of our knowledge, there has been limited research performed on using Generalized hyperbolic
distributions and the Generalized lambda distribution as underlying distributions for the GAS model. In spite of
the use of GAS models for various cryptocurrencies in [71], [48] and [22], the work done in this paper contributes
a comparative VaR analysis on the GAS models with these different underlying heavy-tailed distributions.

This paper is segmented into five sections including the Introduction. The next section describes the models
used in this analysis. A discussion on the results achieved can be found in section 3 and 4. Section 5 concludes the
article.

2. Econometric models

2.1. GAS models

A stochastic time series model is predominantly represented by the time-variation of its parameters, that are
accountable for capturing the dynamic behaviour that the time series process exhibits (in both univariate and
multivariate cases). A time series model can either be characterized as an observation-driven model or as a
parameter-driven model [26]. Parameter-driven models have been found perplexing to estimate and/or are unable
to adequately capture the shape of the conditional distribution of the data. Thus, the observation-driven approach
has become well accepted in many applied scientific fields as this approach removes the complexities of likelihood
evaluation. Generalized autoregressive score (GAS) models, proposed by [28], are a set of observation-driven
time series models. The GAS approach is different from other observation-driven approaches in that the models’
driving mechanism is the scaled score of the likelihood function. The GAS specification presents a framework
for initiating time-varying parameters in a range of nonlinear models. It encompasses popular observation-driven
models such as the GARCH models, autoregressive conditional density models (ACD) introduced by [35],
autoregressive conditional multinomial models (ACM) of [64], and Poisson models for count data.

Define Y t = {y1, y2, · · · , yt}, F t = {f0, f1, · · · , ft} and Xt = {x1, x2, · · · , xt} where xt is a vector of
independent variables.

Let yt be an N × 1 random vector at time t with conditional distribution:

yt ∼ p(yt|ft, Ft; θ), (1)

where Ft = {Y t−1, F t−1, Xt} for t = 1, 2, · · · , n and θ is a vector of static parameters.

The time-varying parameter ft is assumed to be updated by the following autoregressive equation:

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

βjft−j+1, (2)

where ω is a vector of constants. Ai and Bj are matrices of coefficients that have suitable dimensions for i
and j and are functions of θ. Furthermore, st is an appropriate function of past data, i.e. st = st(yt, ft, Ft; θ). The
distinguishing characteristic of a GAS model is the choice of the innovation st as the local score, ∇t. We specify
the innovation as follows:

st = St · ∇t, ∇t =
∆ ln p(yt|ft, Ft; θ)

∆ft
, St = S(t, ft, Ft; θ), (3)

where S(·) is a matrix function.

These equations are defined to be the generalized autoregressive score function with orders p and q, i.e. GAS
(p, q).
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Updating the time-varying parameter, ft, with the use of the score function is known for improving the model’s
fit in terms of the likelihood at time t, with the current position of ft being realized. The score, ∇t, is dependent
on the complete density of the observations yt, which differentiates the GAS model framework from many other
observation-driven models found in past literature. The structure is highly flexible in a sense that different choices
for the scaling matrix St can produce many available observation-driven models introduced in literature, as St

influences how the score is used to update ft.

In many occurrences, a form of scaling that is dependent on the variance, is considered. This scaling matrix is
defined as,

St = [It|t−1]
−α, It|t−1 = Et−1[∇t∇′

t], (4)

where Et−1 denotes an expectation with respect to the conditional density and the additional parameter α is
fixed and takes on values in the set {0, 12 , 1}. When α = 0, St is an identity matrix and there is no scaling. If α = 1
of α = 1

2 then the conditional score is multiplied by the inverse or the square root of its covariance matrix It.

For St = [It|t−1]
−1, the GAS (1, 1) model results in the standard GARCH (1, 1) model. If ft = σ2, (2.12) reduces

to,
ft+1 = ω +A1(y

2
t − ft) +B1ft, (5)

where yt = σtϵt is the basic model with the Gaussian innovation ϵt of zero mean and unit variance. This is
equivalent to,

ft+1 = α0 + α1y
2
t + β1ft, (6)

where α0 = ω, α1 = A1 and β1 = B1 are unknown coefficients and need certain restrictions to achieve
stationarity.

2.1.1. Parameterizations: The GAS model framework automatically adapts to the different choice of
parameterization of the observation density, as the parameter vector θt has a linear specification and is
consequently unbounded.

To illustrate how the GAS dynamics easily accommodates various parameterizations, consider f̃t = h(ft) for
some continuous and invertible mapping h(·). Let ḣt =

∂h(ft)
∂f ′

t
which is deterministic, taking into consideration the

information set Ft.

For unsophisticated densities,

J̃ ′
t|t−1J̃ ′

t|t−1 = (Et−1[(ḣt
−1

)′∇t∇′
tḣt

−1
])−1

= ḣtI−1
t|t−1ḣt

′

= ḣtJ̃ ′
t|t−1J̃ ′

t|t−1ḣt
′
,

(7)

which implies that the information matrix equals the expected outer product of scores as well as the expected
second derivative of the log density. The tildes in (2.17) represents the derivatives that are taken with respect to f̃t
rather than ft thus ∇̃t is given by:

∇̃t =
∂ ln p (yt |ft Ft; θ)

∂f̃t
= (ḣ′t)

−1∇t. (8)

The updating step, unique to the GAS model, for f̃t with square root information scaling is as follows:
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s̃t = J̃ ′
t|t−1∇̃t = J̃ ′

t|t−1(ḣ
′
t)

−1J̃ ′−1

t|t−1 · st, (9)

considering st = Jt|t−1 · ∇t.

For the univariate case,

J̃ ′
t|t−1(ḣ

′
t)

−1J̃ ′−1

t|t−1 = 1.

For the multivariate case,

(J̃ ′
t|t−1(ḣ

′
t)

−1J̃ ′−1

t|t−1)(J̃ ′
t|t−1(ḣ

′
t)

−1J̃ ′−1

t|t−1) = J̃ ′
t|t−1(ḣ

′
t)

−1It|t−1(ḣ
′
t)

−1J̃ ′−1

t|t−1.

Thus, the resultant updating step is an orthogonal linear transformation of the original step under the
parameterization. Therefore, the choice of parameterization only has a slight impact on the form of the updating
step if the scaling matrix Jt|t−1 is used. However, various implications can arise based on the choice of scaling.

2.1.2. Parameter estimation methods- Maximum likelihood estimation: Observation-driven models are
commonly simple to estimate due to their dynamics being defined directly in terms of observables. Thus, parameter
estimation by maximum likelihood (ML) becomes a relatively uncomplicated way of estimating parameters for
these types of models. This advantageous trait applies to GAS models as well. The likelihood may be evaluated by
prediction-error decomposition, as the model is stated in terms of conditional densities that are only dependent on
a finite number of past observations. Computational issues are highly reduced with observation-driven models due
to the likelihood function being available in the closed form, which allows evaluation to be straightforward. The
maximization problem is described as follows for an observed time series y1, · · · , yn along with implementing the
standard prediction error decomposition,

θ̂ = argmax
θ

n∑
t=1

ℓt, (10)

where ℓt = ln p(yt|ftFt; θ). Estimating the log-likelihood function of the GAS model only needs the
implementation of the GAS updating equation (2.12) and the evaluation of ℓt for a specific value θ∗ of θ. However,
even when the ML estimator is consistent and asymptotically normal, the computational maximization of the
likelihood function may present some challenges due to the non-linearities induced by the link function and the
way the observations may enter the scaled score. Therefore, it is essential that good starting values be selected to
make it possible to formulate proper recursions for computing the gradient of the likelihood regarding the static
parameter vector θ. The gradient for the GAS (1, 1) model can be computed by using the chain rule, as follows,

∂ℓt
∂θ′

=
∂ ln pt
∂θ′

+
∂ ln pt
∂f ′t

· ∂ft
∂θ′

, (11)

where pt = p (yt| ft Ft; θ) and

∂ft
∂θ′

=
∂ω

∂θ′
+A1

∂st−1

∂θ′
+B1

∂ft−1

∂θ′
+ (s′t−1 ⊗ I)

∂A⃗1

∂θ′
+ (f ′t−1 ⊗ I)

∂B⃗1

∂θ′
, (12)

∂st−1

∂θ′
= St−1 ·

∂∇t−1

∂θ′
+

∂ ⃗St−1

∂θ′
, (13)

where S⃗ denotes the vector with the stacked columns of matrix S and ⊗ is the Kronecker matrix product. The
gradient recursions can then be determined.
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The MLE process is used to estimate the parameters of the GAS models fitted to both cryptocurrencies data.
The methods implemented for the GAS models in the statistical software platform R are available within the GAS
package.

2.2. Heavy-tailed distributions

2.2.1. Class of Generalized hyperbolic distributions The family of GH distributions, first introduced by [9],
encompasses a number of relevant distributions useful in finance. These distributions include the hyperbolic, the
normal, the inverse Gaussian and the variance-gamma among others [33].

The random varaible X follows a generalized inverse Gaussian (GIG) distribution if it’s probability density
function is given as,

h(x;λ, χ, ψ) =
χ−λ

(√
χψ

)λ
2Kλ

(√
χψ

) xλ−1 exp

(
−1

2

(
χx−1 + ψx

))
(14)

for x > 0, χψ > 0 and Kλ is a modified Bessel function of the third kind with index λ.

Thus the multivariate generalized hyperbolic distribution is dependent on three real parameters: χ, ψ, λ, two
parameter vectors: the location parameter (µ) and the skewness parameter (γ) in Rd, and d× d positive matrix Σ,
i.e. X ∼ GHd(λ, χ, ψ, µ, γ,Σ) [47].

Adjusting the specified parameters in (14) gives rise to the following distributions:

• Generalized hyperbolic distribution

If λ = 1, the multivariate generalized hyperbolic distribution is achieved with univariate margins that are one
dimensional hyperbolic distributions. This one dimensional distribution is widely used to model univariate
financial data.

• Normal inverse Gaussian distribution

If λ = − 1
2 , the normal inverse Gaussian distribution is produced. The NIG distribution is also highly

favoured to model univariate financial returns.

• Variance Gamma distribution

If λ > 0 and χ = 0, a limiting case referred to as the variance gamma distribution is generated.

The methods applied for the GH distributions in the statistical software platform R are available within the
package ghyp.

2.2.2. Generalized lambda distribution The generalized lambda distribution (GLD), initially introduced by [63],
is one of the most essential generalized classes of distributions. It is a four-parameter (location, scale, kurtosis
and skewness) modification of Tukey’s lambda distribution [72] that can be manipulated to produce common
statistical distributions, such as Gaussian, lognormal, uniform and Weibull, as special cases. The one-parameter
lambda distribution provided the foundation for the GLD, which was generalized to generate random variates
for simulation studies of Monte Carlo. Since then, the flexibility of the GLD has proved to be a versatile option
in multiple fields of research, specifically in modelling a wide range of financial data. However, the parameter
estimation process proves to be a downfall of the inclusive distribution, as acquiring appropriate parameters
becomes a challenging issue [49].
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The traditional parameterizations of the GLD are known as the RS [63] parameterization and the FMKL [39]
parameterization.

The FMKL GLD, the four parameter generalization of (2.24) is given by,

Q(u) = λ1 +
uλ3−1

λ3
− (1−u)λ4−1

λ4

λ2
, (15)

where λ1 is the location parameter, λ2 is the scale parameter, and, λ3 and λ4 are defined as the shape parameters,
i.e., λ3 is a skewness parameter and λ4 is a kurtosis parameter.

The methods applied for the GLD models in the statistical software platform R are available within the package
GLDEX.

2.3. Combining the GAS model with the GHD and the GLD

The step-by-step method used to create the GAS-GHD, GAS-VG, GAS-NIG and GAS-GLD models are described
as follows:

• The first step is to fit a Gaussian GAS model to the Bitcoin, Ethereum, Litecoin and Ripple returns data.
• The next step is to extract the standardized residuals from the fitted Gaussian GAS models.
• The generalized hyperbolic distribution, variance gamma, normal inverse Gaussian and generalized lambda

distribution is then fitted to the extracted sets of standardized residuals.
• The last step is to use the Anderson-Darling test to assess the goodness-of-fit of the model.

3. Empirical results

This section describes the results that were generated by the application of the proposed models (in earlier chapters)
to the cryptocurrencies’ datasets.

3.1. Data source and description

The data used in this analysis is comprised of the daily Bitcoin, Ethereum, Litecoin and Ripple closing prices
in United States dollars (USD). The time periods for each cryptocurrency differs from each other due to data
availability constraints. However this paper focuses on the capabilities and comparisons of the GAS models with
various underlying heavy-tailed distributions and thus the time period differences among the cryptocurrencies do
not inflict any comparability issues.

2095 daily observations were used for the Bitcoin closing prices for the period 28/11/2014 to 22/08/2020,
1646 daily observations for the Ethereum closing prices for the period 09/05/2016 to 09/11/2020, 1295 daily
observations for the Litecoin closing prices for the period 25/06/2017 to 09/01/2021, 1431 daily observations for
the Ripple closing prices for the period 17/01/2017 to 17/12/2020. The datasets were acquired from:
https://www.cryptodatadownload.com/data/northamerican/.

Exploratory data analysis was used to understand the characteristics exhibited by the cryptocurrencies’ data.
The time series plots of the closing prices (USD) for Bitcoin, Ethereum, Litecoin and Ripple are shown in Figure

1. The plots illustrate the general trend exhibited by the cryptocurrencies for the specified periods above. It is
observed that Bitcoin and Ethereum prices fluctuated at relatively small amounts until early 2017. It appeared that
after this period, all four cryptocurrencies’ prices exhibited a certain momentum and increased until it peaked in
2018. Thereafter, an unsteady trend was exhibited by all four cryptocurrencies, with Bitcoin and Litecoin peaking
slightly again in 2019. This volatile behaviour illustrated by the closing prices of Bitcoin, Ethereum, Litecoin and
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Figure 1. Time series plots of (a) daily Bitcoin prices (USD) for the period 28/11/2014-22/08/2020, (b) daily Ethereum prices
(USD) for the period 09/05/2016-9/11/2020, (c) daily Litecoin prices (USD) for the period 25/06/2017-09/01/2021, (d) daily
Ripple prices (USD) for the period 17/01/2017-17/12/2020.

Ripple is typical of non-stationarity, which implies non-constant means and high variability.

Returns on investment is of high interest to investors and thus the closing prices of the cryptocurrencies’ were
transformed to log returns,

rt = ln
pt
pt−1

,

where rt is the log return, pt is the closing price of the cryptocurrency at time t, and pt−1 is the closing price of
the cryptocurrency at time t− 1.

The time series plots of the log returns for Bitcoin, Ethereum, Litecoin and Ripple are found in Figure 2.
All four plots in Figure 2 depict a pattern of fluctuations around zero. This indicates that the cryptocurrencies’

returns data is now stationary in mean, however the time-varying variance is still observed as there are trends
of high and low periods. This behaviour suggests volatility clustering. Leverage effects are also eminent as as
negative shocks to returns increase volatility with a larger impact than that of positive shocks.

The descriptive statistics of the log returns of the four daily cryptocurrencies’ prices are reported in Table 2.
The mean of Bitcoin, Ethereum, Litecoin and Ripple are all slightly greater than zero which implies that the four
sets of returns are, to some degree, increasing. Bitcoin and Ethereum appear to be negatively skewed with Bitcoin
being more negatively skewed than Ethereum. This indicates that the left tail of both Bitcoin and Ethereum are
larger than that of the right. Litecoin and Ripple are found to be positively skewed which in contrast to Bitcoin
and Ethereum have larger right tails than that of the left. The negative skewness of Bitcoin and Ethereum suggests
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Figure 2. Time series plots of (a) daily Bitcoin log returns for the period 28/11/2014-22/08/2020, (b) daily Ethereum log
returns for the period 09/05/2016-9/11/2020, (c) daily Litecoin log returns for the period 25/06/2017-09/01/2021, (d) daily
Ripple log returns for the period 17/01/2017-17/12/2020.

Table 2. Descriptive statistics of the log returns of the daily Bitcoin, Ethereum, Litecoin and Ripple prices.

Statistics Bitcoin Ethereum Litecoin Ripple

Minimum -0.4940 -0.3878 -0.4574 -0.6530
Maximum 0.2538 0.3194 0.3904 1.0280

Mean 0.0016 0.0024 0.0011 0.0031
STDEV 0.0404 0.0580 0.0581 0.0752

Skewness -1.0475 -0.1814 0.2808 2.5888
Kurtosis 15.8044 4.2271 7.8965 35.8246

that the returns’ losses are greater than the profits for these cryptocurrencies where as the positive skewness
of Litecoin and Ripple imply the converse, i.e. the profits are greater that the losses of the returns. All four of
the cryptocurrencies have a postive excess kurtosis indicating that the daily returns are heavy-tailed which are
consistent with traits of financial data. Figure 3 and 4 presents the density plots and the Q-Q plots, respectively,
of the log returns of the cryptocurrecies. Both sets of plots show notable deviations from the normal plot and line.
The plots also show that the tails for all four cryptocurrencies are heavier than the tails of a normal distribution. As
observed in the density plots, the distributions of the returns substantially differ from that of the normal distribution.

ADF, PP and KPSS tests were done on the daily Bitcoin, Ethereum, Litecoin and Ripple returns to assess the
stationarity for all three cases found in Table 3. The resultant p-values for the ADF and PP tests for all four
cryptocurrencies are less than 0.05 suggesting the null hypothesis of non-stationarity is rejected at a 5% level of
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Figure 3. Density plots of the daily (a) Bitcoin, (b) Ethereum, (c) Litecoin and (d) Ripple log returns.

significance. The resultant p-values of the KPSS test are greater than 0.05 supporting the ADF and PP tests of
stationarity by failing to reject the null hypothesis of stationarity.

The Jarque-Bera and Shapiro-Wilk tests of normality were used to substantiate the deviations observed in Figure
3 and 4. Both tests resulted in p-values less than 0.05 for the Bitcoin, Ethereum, Litecoin and Ripple returns which
indicates the rejection of the null hypothesis of normality at a 5% level of significance.

The time-variation of all four cryptocurrencies’ returns were investigated using the Cox-Stuart test. The p-values
that resulted from the test for the Bitcoin, Ethereum, Litecoin and Ripple returns were all greater than 0.05. This
suggests that the null hypothesis of a non-monotonic trend fails to be rejected at a 5% level of significance and
all four sets of returns are in fact independent and identically distributed. This implies that the returns’ series are
uncorrelated, however the Box-Ljung test and the ARCH-LM test performed on the squared returns of the four
cryptocurrencies indicated strong ARCH effects.

In order to execute a sign and size bias test, a symmetric GARCH(1,1) model was fitted to the four sets of data.
A summary of the results of the exploratory data analysis is now completed. The analysis has concluded that

the daliy Bitcoin, Ethereum, Litecoin and Ripple returns exhibited empirical properties such as volatility clustering
and non-linear dependence, heavy-tails, significant serial correlations in the absolute and squared returns, time
variation, leverage effects and ARCH effects.
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Figure 4. QQ plots of the daily (a) Bitcoin, (b) Ethereum, (c) Litecoin and (d) Ripple log returns.

3.2. Fitting GAS models with heavy-tailed distributions

In order to perform a GAS analysis, the first step is to specify an appropriate conditional model. The focal
conditional distributions here for the daily Bitcoin, Ethereum, Litecoin and Ripple returns were the Generalized
hyperbolic Distribution (GHD), the Variance Gamma distribution (VG), the Normal inverse Gaussian distribution
(NIG) and the Generalized Lambda Distribution (GLD). A GAS (1, 1) model was fitted to all four sets of data with
different adjustments of the parameters for location, scale, skewness and shape (1 and/or 2) to acquire an adequate
fit. These parameters are denoted as µ, ϕ, γ and ν, respectively. The estimates for the parameters of the GAS (1,1)
models are reported in Table 4. All parameters of the GAS (1,1) model fitted to the Bitcoin, Ethereum, Litecoin
and Ripple returns data were found to be statistically significant at a 10% level of significance.The residuals of the
four models were then extracted and analysed.

Table 5 shows the descriptive statistics of the extracted residuals. The mean of the residuals of all four
cryptocurrencies appear to be relatively close to zero hence are not significantly differnet from zero. The four sets
of residuals appear to have heavy tails as the excess kurtoses are greater than zero. This is observed in the plots in
Figure 5, as well. Tests of normality were performed on the residuals and the results are reported in Table 6. The
Jarque-Bera and Shapiro-Wilk tests indicate that the residuals are not normally distributed. Figure 5 supports the
tests of normality as it appears that residuals’ distributions deviates from that of the normal distribution.

The conditional distributions used to model the extracted residuals are obvious candidates as all four models
accommodate for the leptokurtic behaviour exhibited by the residuals. A Generalized Hyperbolic distribution and
it’s two special and limiting cases, the Normal Inverse Gaussian distribution and the Variance Gamma distribution
are fitted to the residuals extracted from Gaussian GAS model. A Generalized Lambda distribution with FMKL
parameterizations are also fitted to the extracted residuals using the MLE method. The model estimates are reported
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Table 3. Formal tests of the log returns of daily Bitcoin prices (BTC/USD), Ethereum prices (ETH/USD), Litecoin prices
(LTC/USD) and Ripple prices (XRP/USD).

Bitcoin Ethereum Litecoin Ripple

Test Test Statistic p-value Test Statistic p-value Test Statistic p-value Test Statistic p-value

Stationarity

ADF test
Case 1: No drift, no trend -13.0000 0.0100 -11.5000 0.0100 -10.2000 0.0100 -9.5200 0.0100

Case 2: Drift, no trend -13.2000 0.0100 -11.5000 0.0100 -10.2000 0.0100 -9.5900 0.0100
Case 3: Drift and trend -13.2000 0.0100 -11.6000 0.0100 -10.2000 0.0100 -9.6800 0.0100

PP test
Case 1: No drift, no trend -2290.0000 0.0100 -1800.0000 0.0100 -1431.0000 0.0100 -1768.0000 0.0100

Case 2: Drift, no trend -1795.0000 0.0100 -1792.0000 0.0100 -1430.0000 0.0100 1765.0000 0.0100
Case 3: Drift and trend -2282.0000 0.0100 -1242.0000 0.0100 -1430.0000 0.0100 1760.0000 0.0100

KPSS test
Case 1: No drift, no trend 1.5000 0.0671 1.4400 0.0736 0.1240 0.1000 1.4000 0.0774

Case 2: Drift, no trend 0.3040 0.1000 0.3000 0.1000 0.1350 0.1000 0.3980 0.0781
Case 3: Drift and trend 0.1320 0.0760 0.1570 0.0411 0.1270 0.0850 0.1680 0.0314

Normality Jarque-Bera test 22226.0000 < 0.0001 1238.9000 < 0.0001 3393.4000 < 0.0001 78302.0000 < 0.0001
Shapiro-Wilk 0.8751 < 0.0001 0.9388 < 0.0001 0.9213 < 0.0001 0.7506 < 0.0001

Time variation Cox-Stuart test 1047.0000 0.2164 822.0000 0.9167 647.0000 0.1569 715.0000 1.0000

Leverage Sign Bias test 9.1598 0.0272 3.0611 0.3823 7.9619 0.0468 1.5115 0.6796

Autocorrelation Ljung-Box test 10.5430 0.1598 0.7876 0.3748 1.7099 0.1910 5.4001 0.0611

ARCH effects Box-Ljung test 10.5430 0.1598 0.7876 0.3748 1.7099 0.1910 5.4001 0.0611
ARCH-LM test 72.1950 < 0.0001 55.1120 < 0.0001 69.3130 < 0.0001 138.6500 < 0.0001

in Table 7. It appears that all the fitted models are good fits at a 5% level of significance, according to the Anderson-
Darling test results found in Table 8.

4. VaR estimation

In finance, estimating risk measures is of great importance as these estimations are essential for traders to assess
the risks that are associated with their portfolios’ future values, which allows for the consideration of any potential
losses. One of the standard risk measures is VaR. It is estimated at long and short positions. Generally, traders
who are selling, i.e. traders at a short position, will incur a loss if the price increases and traders who are buying,
i.e. traders who are at a long position, will suffer a loss if the price drops. The VaR estimates for short and long
positions are reported in Table 9, which are associated with the right and left quantiles of the returns distribution,
respectively. The risk levels 1%, 2.5%, 5%, 95%, 97% and 99% were accounted for.

For the Bitcoin and Ethereum returns, it appears that the GAS-GLD resulted in the lowest VaR estimates for
the 1% long position and the 95% and 97.5% short positions and had the highest VaR estimates for the long and
short position of 5% and 99%, respectively. For the Litecoin returns, the GAS-GLD produced the smallest VaR
estimates at the 95% and 99% short positions and the highest VaR estimates at the long positions 2.5% and 5%.
For the Ripple returns, the smallest VaR estimate was at the short position of 95% produced by the GAS-GLD.
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Table 4. Estimation of results of the Gaussian GAS(1,1) model for the Bitcoin, Ethereum, Litecoin and Ripple daily returns.

Parameters Estimate Std p-value

Bitcoin
ω̂µ 0.0023 0.0007 0.0009
ω̂ϕ -0.5533 0.0300 < 0.0001
âϕ 0.1898 0.0198 < 0.0001

b̂ϕ 0.9138 0.0047 < 0.0001

Ethereum
ω̂µ 0.0017 0.0013 0.0967
ω̂ϕ -0.6802 0.0489 < 0.0001
âϕ 0.1898 0.0208 < 0.0001

b̂ϕ 0.88074 0.0086 < 0.0001

Litecoin
ω̂µ 2.2726× 10−5 4.1414× 10−5 < 0.0001

ω̂ϕ −8.6745× 10−1 9.9656× 10−2 < 0.0001

âµ 1.000× 10−6 1.4053× 10−10 < 0.0001

âϕ 1.8975× 10−1 2.5885× 10−2 < 0.0001

b̂µ 9.8000× 10−1 6.8986× 10−6 < 0.0001

b̂ϕ 8.4759× 10−1 1.7532× 10−2 < 0.0001

Ripple
ω̂µ -0.0021 0.0013 0.0492
ω̂ϕ -0.4466 0.0428 < 0.0001
âϕ 0.3793 0.0336 < 0.0001

b̂ϕ 0.9138 0.0080 < 0.0001

Table 5. Descriptive statistics of the residuals extracted from the Gaussian GAS model fitted to the log returns of the daily
Bitcoin (BTC/USD), Ethereum (ETH/USD), Litecoin (LTC/USD) and Ripple (XRP/USD) prices.

Statistics Bitcoin Ethereum Litecoin Ripple

Minimum -11.6079 -5.8711 -7.0403 -4.8337
Maximum 6.4033 4.8058 5.5628 5.8590

Mean -0.0220 0.0072 -0.0114 0.0457
STDEV 0.9564 0.9665 0.9716 0.9175

Skewness -1.0209 -0.2346 0.0801 0.7033
Kurtosis 14.1172 3.6560 5.7186 6.6552

Table 6. Normality tests of the residuals extracted from the Gaussian GAS model fitted to the daily Bitcoin, Ethereum,
Litecoin and Ripple log returns

Bitcoin Ethereum Litecoin Ripple

Test Statistic p-value Test Statistic p-value Test Statistic p-value Test Statistic p-value

Jarque-Bera test 17793.0000 < 0.0001 935.3600 < 0.0001 1772.9000 < 0.0001 2767.9000 < 0.0001

Shapiro-Wilk W = 0.8961 < 0.0001 W = 0.9501 < 0.0001 W = 0.9395 < 0.0001 W = 0.9018 < 0.0001
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Figure 5. QQ plots of the residuals (a) Bitcoin, (b) Ethereum, (c) Litecoin and (d) Ripple log returns.

Table 7. Models fitted to the extracted Bitcoin, Ethereum, Litecoin and Ripple residuals from the Gaussian GAS model.

Distribution Parameter estimates Bitcoin Ethereum Litecoin Ripple

GHD

µ̂ -0.0190 -0.0068 -0.0567 -0.0050
δ̂ 0.1900 0.2717 0.9225 0.6307
α̂ 1.0378 1.2206 0.6233 0.5209
β̂ -0.0032 0.0150 0.0483 0.0599
λ̂ 0.3374 0.5379 -0.9301 -0.7345

VG

µ̂ -0.0285 -0.0338 -0.0878 -0.0135
δ̂ 0.0100 0.0100 0.0100 0.0100
α̂ 1.3265 1.4049 1.6344 1.5545
β̂ 0.0001 0.0444 0.0865 0.0791
λ̂ 0.7374 0.9099 1.1784 0.9019

NIG

µ̂ -0.0025 0.0001 -0.0583 -0.0052
δ̂ 0.5258 0.7021 0.7730 0.5504
α̂ 0.5614 0.7316 0.8352 0.6657
β̂ -0.0208 0.0444 0.0507 0.0613
λ̂ -0.5000 -0.5000 -0.5000 -0.5000

GLD

λ̂1 -0.0060 0.0065 -0.0317 0.0150
λ̂2 3.5495 2.7935 2.6397 3.4814
λ̂3 -0.3313 -0.2142 -0.1591 -0.2484
λ̂4 -0.3007 -0.2121 -0.1952 -0.3078

This distribution also had the largest VaR estimates at the short positions of 2.5% and 5% and at the long position
of 99%. The GAS-VG model produced the lowest VaR estimates for the Bitcoin returns at the 99% short position,
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Table 8. AD tests of the models fitted to the extracted residuals of the Gaussian GAS model from the daily Bitcoin,
Ethereum, Litecoin and Ripple log returns

Bitcoin Ethereum Litecoin Ripple

Test Statistic p-value Test Statistic p-value Test Statistic p-value Test Statistic p-value

Generalized hyperbolic 0.9224 0.4007 0.2617 0.9639 0.1092 0.9999 0.2067 0.9885

Variance Gamma 1.6448 0.1454 0.5243 0.7222 0.4223 0.8263 1.2707 0.2421

Normal inverse Gaussian 1.4535 0.1880 0.4054 0.8433 0.1127 0.9999 0.2477 0.9716

Generalized Lambda 2.0109 0.0906 0.6314 0.6188 0.1225 0.9998 0.2034 0.9895

Table 9. VaR estimates for the returns at long and short positions

Distribution Long position Short position

1% 2.5% 5% 95% 97.5% 99%

Bitcoin

GAS-VG -2.6455 -1.9960 -1.5116 1.4550 1.9396 2.5891
GAS-GHD -2.7882 -2.0489 -1.5131 1.4641 1.9965 2.7313
GAS-NIG -2.9674 -2.0608 -1.4667 1.3863 1.9441 2.7920
GAS-GLD -3.0633 -2.0350 -1.4353 1.3489 1.8908 2.7964

Ethereum

GAS-VG -2.6144 -1.9946 -1.5277 1.5992 2.0967 2.7571
GAS-GHD -2.6923 -2.0266 -1.5340 1.5690 2.0738 2.7562
GAS-NIG -2.7707 -2.0173 -1.4979 1.5232 2.0518 2.8194
GAS-GLD -2.8002 -1.9961 -1.4786 1.4863 2.0002 2.7974

Litecoin

GAS-VG -2.4775 -1.9256 -1.5050 1.5704 2.0376 2.6508
GAS-GHD -2.6201 -1.9388 -1.4726 1.5073 2.0285 2.7998
GAS-NIG -2.6167 -1.9533 -1.4863 1.5260 2.0443 2.7850
GAS-GLD -2.6012 -1.9233 -1.4662 1.4907 2.0052 2.7919

Ripple

GAS-VG -2.2842 -1.7353 -1.3221 1.4967 1.9545 2.5624
GAS-GHD -2.4843 -1.7479 -1.2671 1.4418 2.0129 2.9043
GAS-NIG -2.4814 -1.7651 -1.2833 1.4627 2.0271 2.8743
GAS-GLD -2.4559 -1.7124 -1.2476 1.4135 1.9790 2.9297

a Bold values are the lowest VaR estimates and italic values are the highest VaR estimates.

for the Litecoin returns at the long position of 5% and the short position of 99% and for the Ripple returns at the
long position of 5% and the short positions of 97.5% and 99%. The GAS-VG model also produced the largest
VaR estimates at the long position of 1% for all four cryptocurrencies’ returns. For Bitcoin and Ethereum returns,
the highest VaR estimates for the long position 2.5% was produced by the GAS-VG. This model had the largest
VaR estimates at the short positions 95% and 97.5% for both the Ethereum and Litcoin returns, as well, whereas
for the Ripple returns only at the 95% level. For the Bitcoin returns, the GAS-GHD generated the lowest estimate
at the 5% long position and the highest estimate at both the 95% and 97.5% short positions. For the Ethereum
returns, the lowest VaR estimates were produced by the GAS-GHD model at the 2.5%, 5% and 99% risk levels.
For the Litecoin and Ripple returns, the GAS-GHD generated the smallest estimate at the long position of 1%
and the highest estimate for just the Litecoin returns at the short position of 99%. The GAS-NIG model had the
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lowest VaR estimates for the Bitcoin, Litecoin and Ripple returns at the long position of 2.5%. It also produced the
highest estimates at the 99% risk level for Ethereum and at the 97.5% risk level for Ripple.

It appears that the models performed very similar for the Bitcoin and Ethereum returns at the 1% and 5% long
positions. The models also performed similarly for the Ethereum and Litecoin returns at the short positions of 95%
and 97.5%. This similar model performance is also found at the 1%, 2.5% and 95% risk levels for the Litecoin and
Ripple returns as well as at the 99% level for Bitcoin and Ripple returns.

4.1. In-sample backtesting

Kupiec likelihood ratio test (1995) was used to perform in-sample backtesting to examine the model adequacy
in VaR estimation. The p-values for the in-sample data produced by the Kupiec likelihood ratio test at different
levels of risk are found in Table 10. The robustness of the models were based on the highest p-values at each risk
level. The p-values less than 0.05 suggests that the null hypothesis of model adequacy is to be rejected at a 5%
level of significance at the considered risk levels. However, it appears that all models are adequate at this specified
α-quantile except for the GAS-VG model fitted to the Bitcoin returns.

For Bitcoin, the GAS-NIG outperformed the other 3 models at the 1% long position and the 95% short
position. At the 2.5% level, the GAS-GHD, GAS-NIG and GAS-GLD all had the highest p-value. The GAS-GHD
performed the best at the 5% level. The GAS-GLD appears to have best performed at the 97.5% short postion and
the GAS-VG had the highest p-value at the 99% level.

For the Ethereum returns, the GAS-GLD had the highest p-values for all of the levels of the long-positions. All
the models appear to have produced the highest p-value at the 2.5% long position. The GAS-NIG model had the
largest p-value at the 5% long position and the 95% short position. The GAS-GHD outperformed the other models
at the 97.5% level and shared the highest p-value with the GAS-VG model at the 99% level.

With regards to the Litecoin returns, the GAS-VG performed the best at the 2.5% and 5% long positions as well
as at the 97.5% short position. The GAS-GHD model had the highest p-values at the 1%, 95% and 97.5% levels.
The GAS-NIG shared the best performance at the 1%, 97.5% and 99% risk levels. The GAS-GLD had the highest
p-values at the 1%, 5% and 95% levels.

For Ripple, the GAS-Vg model outperformed all the other models at the first two short positions (1% and 2.5%)
whereas the GAS-NIG performed the best at the other short position (5%) and at the 97.5% long position. The
GAS-GLD was the model robust model at the 95% and 99% risk levels.

4.2. Out-of-sample backtesting

The unconditional coverage (UC) test of Kupiec (1995) was used to apply out-of-sample backtesting which
assesses the precision of the predictive capabilities of the VaR model by allocating an estimation period and
evaluation period. The out-of-sample periods for Bitcoin, Ethereum, Litecoin and Ripple are 22 August 2020 to 27
August 2021, 9 November 2020 to 27 August 2021, 9 January 2021 to 27 August 2021 and 17 December 2020 to
27 August 2021, respectively. Table 11 presents the Kupiec p-values for both the long and short positions. The null
hypothesis of correct model specification should be rejected at a 5% level of significance if the Kupiec p-value is
less than 0.05. According to the out-of-sample VaR backtesting results, all of the models were correctly specified
to all four cryptocurrencies’ returns.

For the Bitcoin returns, the GAS-NIG and GAS-GLD both produce the largest p-values at the 1%, 2.5% and 99%
risk levels. The GAS-GLD model outperformed the other models at the 5% risk level. The GAS-VG and GAS-
GHD had the highest p-value for the 95% short position and the GAS-GHD had the best model specification at
the 97.5% risk level. All models had the same p-values for the 2.5% and 99% long and short positions, respectively.
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Table 10. In-sample VaR backtesting for the Bitcoin and Ethereum returns

Distribution
Long position Short position

1% 2.5% 5% 95% 97.5% 99%

Bitcoin
GAS-VG 0.3869 0.0492 0.7420 0.4973 0.1337 0.1694

GAS-GHD 0.6560 0.1484 0.8182 0.3766 0.0505 0.0608
GAS-NIG 0.8352 0.1484 0.5980 0.5314 0.1337 0.0608
GAS-GLD 0.1048 0.1484 0.3576 0.2257 0.2297 0.0608

Ethereum GAS-VG 0.0491 0.9842 0.5485 0.5485 0.7350 0.3748
GAS-GHD 0.1909 0.9842 0.4054 0.6278 0.9842 0.3748
GAS-NIG 0.1909 0.9842 0.8873 0.9325 0.7688 0.0848
GAS-GLD 0.2796 0.9842 0.8873 0.4508 0.4498 0.1507

Litecoin GAS-VG 0.5746 0.5439 0.9287 0.2046 0.9082 0.7701
GAS-GHD 0.7701 0.4281 0.6762 0.5441 0.9082 0.5780
GAS-NIG 0.7701 0.3270 0.8687 0.4608 0.9082 0.9866
GAS-GLD 0.7701 0.5439 0.6762 0.5441 0.7707 0.5780

Ripple GAS-VG 0.8536 0.8986 0.4992 0.7603 0.4798 0.0956
GAS-GHD 0.5295 0.5180 0.8561 0.9516 0.7059 0.2343
GAS-NIG 0.5295 0.4105 0.9516 0.9516 0.8332 0.2343
GAS-GLD 0.7257 0.8332 0.5887 0.9517 0.5874 0.4859

b Bold values are largest p-values.

All the models fitted to the Ethereum returns produced similar results at the 1%, 97.5% and 99% risk levels.
The GAS-VG and GAS-GLD models were the best models at the 2.5% long position. The GAS-NIG model and
GAS-GLD model outperformed the other two models at the 5% risk level. The GAS-GHD model produced the
largest p-value at the 95% short position.

For Litecoin, the GAS-GHD model outperformed the rest of the models at the 5% risk level. The GAS-GHD,
GAS-NIG and GAS-GLD all have the same p-values which appear to better than the p-values of the GAS-VG
model for the 1% and 2.5% long positions. All models have the same Kupiec p-values for all of the short positions
for the Litecoin returns.

All four models fitted to the Ripple returns had the same p-value for the 1% level and the 97.5% level. The GAS-
GLD model, for Ripple, outperformed the other models at the 2.5% risk level and shared the best performance with
the GAS-GHD model at the 5% long position. The GAS-NIG had the highest p-value at the 95% short position.
All the models except the GAS-VG model produced the same p-value for the 99% short position which was greater
than the p-value of the GAS-VG model.

5. Conclusion

Over the past few years, cryptocurrencies have become highly favoured and very popular around the world due
to it’s fast, digital and secure transactions. Since it does not seem like it is going away any time soon, identifying
and understanding the behaviour of these evolving assets play a crucial role to the global financial markets.
Researching models that have the capability to forecast the risks affiliated with investment opportunities are of
great significance to investors of cryptocurrency.
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Table 11. Out-of-sample VaR backtesting for the Bitcoin, Ethereum, Litecoin and Ripple returns

Distribution
Long position Short position

1% 2.5% 5% 95% 97.5% 99%

Bitcoin
GAS-VG 0.2702 0.4340 0.5420 0.3002 0.8052 0.7053

GAS-GHD 0.5191 0.4340 0.3887 0.3002 0.9334 0.7053
GAS-NIG 0.8770 0.4340 0.7169 0.2087 0.8052 0.7053
GAS-GLD 0.8770 0.4340 0.9047 0.0570 0.8052 0.7053

Ethereum GAS-VG 0.9626 0.6153 0.6618 0.8712 0.1767 0.1910
GAS-GHD 0.9626 0.3611 0.6618 0.9148 0.1767 0.1910
GAS-NIG 0.9626 0.3611 0.8712 0.5295 0.1767 0.1910
GAS-GLD 0.9626 0.6153 0.8712 0.5295 0.1767 0.1910

Litecoin GAS-VG 0.1234 0.9249 0.6323 0.4735 0.4288 0.3290
GAS-GHD 0.3114 0.9250 0.8671 0.4735 0.4288 0.3290
GAS-NIG 0.3114 0.9250 0.6323 0.4735 0.4288 0.3290
GAS-GLD 0.3114 0.9250 0.6323 0.4735 0.4288 0.3290

Ripple GAS-VG 0.7779 0.5733 0.0739 0.8389 0.8871 0.1707
GAS-GHD 0.7779 0.5733 0.4202 0.7125 0.8871 0.7779
GAS-NIG 0.7779 0.5733 0.2621 0.9314 0.8871 0.7779
GAS-GLD 0.7779 0.8871 0.4202 0.7125 0.8871 0.7779

b Bold values are the largest p-values.

Due to its dynamic and flexible nature, GAS models have become a particularly appropriate choice for modeling
and forecasting financial data, including cryptocurrencies. However, it should be noted that the model can
become rather complex as the number of parameter increases which can, in turn, lead to estimation difficulties.
The capabilities of the GAS models also relies highly on the correct choice of a score function and thus an
inappropriate specification may lead to unsatisfactory performance and estimates. These models are also known
for it’s versatility however they are not adequate for all sets of time series as issues may arise when certain features
are exhibited such as regime changes, structural breaks, etc. Nevertheless, GAS models have proven to possess
numerous advantageous features which outweigh the drawbacks when it comes to modeling financial data.

In this study, the performance of GAS models with underlying heavy-tailed distributions in estimating the VaR
of Bitcoin, Ethereum, Litecoin and Ripple returns were investigated. The adequacy of the models studied here
were assessed using in-sample backtesting by utilising the Kupiec test. Table 12 lists the most appropriate models
that were found for each of the four cryptocurrencies. At every VaR level, the GAS models with the different
underlying distributions appear to be most adequate for at least one of the cryptocurrencies- except at the 95%
VaR level where the GAS-VG does not seem appropriate for any of the cryptocurrencies.

The forecasting capabilities of all the models used in this paper were also compared using out-of-sample
backtesting. In Table 13, the results of the most robust models are found for each of the VaR levels. All GAS
models seem to have exhibited adequate predictive power at different VaR levels of both the long and short
positions for all four sets of returns.

The key outcomes of this study are summarised in Table 12 and 13 which clarifies that GAS models coupled
with underlying distributions of different variations of the Generalized hyperbolic distributions are highly suitable
for VaR estimation of Bitcoin, Ethereum, Litecoin and Ripple.
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The findings in this study could prove to be of leading value in the financial industry to risk-managers & analysts,
traders, portfolio managers etc as the explorations in this study illustrates how GAS models, when coupled with
a suitable heavy-tailed model can obtain adequate risk-management & volatility forecasting outcomes as well as
improve trading strategies. This paper will also be of great use to the numerous stakeholders in the cryptocurrency
market as the results suggest that GAS models are well equipped to handle extreme volatility. It can also be used
to better assess the risks associated and assist with decision making.

The outcomes of this paper may also be useful to academics and researchers who are investigating and modeling
the behaviour of other cryptocurrencies and financial data which are observed to possess similar trends such as the
cryptocurrencies studied here.

For future research, incorporating GAS models with other heavy-tailed distributions such as the standard
statistical distributions built within the R GAS package may be beneficial for exploring the modelling and
forecasting of Bitcoin, Ethereum, Litecoin and Ripple returns. Also, following a method similar to the one
employed in the analysis of this paper, whereby the innovations of the Gaussian GAS model is extracted, may
allow more complex models to be fitted as the underlying distributions of the GAS model. Other avenues of research
may include using the models explored in this study to analyze and forecast other popular cryptocurrencies such
as Tether, Binance Coin, Dogecoin, etc.

Table 12. Most appropriate model selected for Bitcoin, Ethereum, Litecoin and Ripple (In-sample)

VaR level Bitcoin Ethereum Litecoin Ripple

1% GAS-NIG GAS-GLD
GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG

2.5%
GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GLD GAS-VG

5% GAS-GHD GAS-NIG
GAS-GLD GAS-VG GAS-NIG

95% GAS-NIG GAS-NIG GAS-GHD
GAS-GLD GAS-GLD

97.5% GAS-GLD GAS-GHD
GAS-VG

GAS-GHD
GAS-NIG

GAS-NIG

99% GAS-VG GAS-VG
GAS-GHD GAS-NIG GAS-GLD
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Table 13. Most appropriate model selected for Bitcoin, Ethereum, Litecoin and Ripple (Out-of-sample)

VaR level Bitcoin Ethereum Litecoin Ripple

1% GAS-NIG
GAS-GLD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

2.5%
GAS-VG

GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GLD

GAS-GHD
GAS-NIG
GAS-GLD

GAS-GLD

5% GAS-GLD GAS-NIG
GAS-GLD GAS-GHD GAS-GHD

GAS-GLD

95% GAS-VG
GAS-GHD GAS-GHD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

GAS-NIG

97.5% GAS-NIG

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

99%
GAS-VG

GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

GAS-VG
GAS-GHD
GAS-NIG
GAS-GLD

GAS-GHD
GAS-NIG
GAS-GLD
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6. M. Arltová and D. Fedorová, Selection of Unit Root Test on the Basis of Length of the Time Series and Value of AR(1) Parameter,
Statistika - Statistics and Economics Journal, 96(3) 47-64, 2016.

7. M. Aslam, Introducing Kolmogorov-Smirnov Tests under Uncertainty: An Application to Radioactive Data, ACS omega vol. 5,1
914-917, 2019.

8. O. Barndorff-Nielsen, and P. Blaesild, Hyperbolic Distributions and Ramifications: Contributions to Theory and Application,
Advanced Study Institutes Series (Series C: Mathematical and Physical Sciences), 79, Springer, Dordrecht, 1981.

9. O. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size., Proc R Soc Lond A 353:401–419,
1977.

10. D. G. Baur, and T. Dimpfl, Asymmetric volatility in cryptocurrencies., Economics Letters, 173(C), 148-151.
11. J. Bhosale and S. Mavale, Volatility of select Crypto-currencies: A comparison of Bitcoin, Ethereum and Litecoin., Annual Research

Journal of SCMS, 6, 132-141, 2018.
12. F. Blasques, A. Lucas and E. Silde, A Stochastic Recurrence Equations Approach for Score Driven Correlation Models., Econometric

Reviews, 37(2) 166-181, 2018.
13. A. Bhargava, On the Theory of Testing for Unit Roots in Observed Time Series., Review of Economic Studies, 53(3), 369-384, 1986.
14. Bollerslev, Generalized autoregressive conditional heteroskedasticity., Journal of Econometrics, 31(3), 307-327, 1986
15. J. Bouoiyour, R. Selmi, A. Tiwari, and O. Olayeni, What drives Bitcoin price?, Economics Bulletin, 36, 843-850, 2016.
16. T. Burdorf, and G. Van Vuuren, An evaluation and comparison of Value at Risk and Expected Shortfall, Investment Management

and Financial Innovations, 15(4), 2018.
17. L. Catania, and S. Grassi, Modelling Cryptocurrencies Financial Time Series, SSRN Electronic Journal, 2017.
18. L. Catania, S. Grassi and F. Ravazzolo, Predicting the Volatility of Cryptocurrency Time Series., Mathematical and statistical

methods for actuarial sciences and finance, Springer International Publishing, Cham, 2018.
19. Y. Chalabi, D. J. Scott, and D. Wuertz, Flexible distribution modeling with the generalized lambda distribution., MPRA Paper No.

43333, 2012.
20. S. Chan, J. Chu, S. Nadarajah, and J. Osterrieder, A Statistical Analysis of Cryptocurrencies., Journal of Risk and Financial

Management, 10(2), 12, 2017.
21. I. M. Chakravarti, R. G. Laha, and J. Roy, Handbook of Methods of Applied Statistics, Volume I, John Wiley and Sons, 392-394,

1967
22. J. Cheng, Modelling and forecasting risk dependence and portfolio VaR for cryptocurrencies., Empirical Economics, 65(2), 899-924,

2023.
23. J. Chu, J, S. Chan, S. Nadarajah, and J. Osterrieder, Volatility estimation for Bitcoin: A comparison of GARCH models., Journal of

Risk and Financial Management, 11, 23, 2017.
24. C. Conrad, A. Custovic, and E. Ghysels, Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis,

Journal of Risk and Financial Management, 11(2):23, 2018.
25. C. J. Corrado, Option Pricing Based on the Generalized Lambda Distribution., Journal of Futures Market, 2001.
26. D. R. Cox, Statistical Analysis of Time Series: Some Recent Developments [with Discussion and Reply]., Scandinavian Journal of

Statistics, 65(2), 2, 93-115, 1981.
27. D. Creal, S. J. Koopman, and A. Lucas, A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations,

Journal of Business & Economic Statistics, 29, 552-563, 2011.
28. D. Creal, S. J. Koopman, and A. Lucas, Generalized autoregressive score models with applications, Journal of Applied

Econometrics, 28, 777-795, 2013.
29. R. Cont, Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods:

GLDEX in R, Quantitative Finance, 1, 223-236, 2001.
30. D. Duffie and J. Pan, Testing for unit roots: An empirical investigation, 1997
31. A. S. Downes and H. Leon, An Overview of Value at Risk, Economics Letters, 24(3) 231-235, 1986.
32. A. Dyhrberg, Bitcoin, gold and the dollar – A GARCH volatility analysis., Finance Research Letters, 16, 223-236, 2015.
33. E. Eberlein, and E. A. Hammerstein, Generalized Hyperbolic and Inverse Gaussian Distributions: Limiting Cases and Approximation

of Processes, Random Fields and Applications IV. Progress in Probability, vol 58. Birkhäuser, Basel, 2004.
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