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A New Odd Log- Logistic Inverse Lindley Distribution with Properties and
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Abstract In this article, we introduce a new three-parameter odd log-logistic power inverse Lindley distribution and
discuss some of its properties. These include the shapes of the density and hazard rate functions, mixture representation, the
moments, the quantile function, and order statistics. Maximum likelihood estimation of the parameters and their estimated
asymptotic standard errors are derived. Three algorithms are proposed for generating random data from the proposed
distribution. A simulation study is carried out to examine the bias and root mean square error of the maximum likelihood
estimators of the parameters. An application of the model to three real data sets is finally presented and compared with the
fit attained by some other well-known two and three-parameter distributions for illustrative purposes. It is observed that the
proposed model has some advantages in analyzing lifetime data as compared to other popular models in the sense that it
exhibits varying shapes and shows more flexibility than many currently available distributions.
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1. Introduction

Reliability and survival analysis have several applications as an important branch of statistics, in different applied
fields, such as actuarial science, engineering, demography, biomedical studies, and industrial reliability. Several
lifetime distributions have been proposed in the statistical literature to model data in many applied sciences.

Lindley [20] proposed the Lindley distribution in the context of the Bayes theorem as a counter-example of
fiducial statistics with the probability density function (pdf):

f (y;β) =
β2

1 + β
(1 + y) e−βy; y, β > 0. (1)

Ghitany et al. [12] discussed the Lindley distribution and its applications extensively and showed that the Lindley
distribution is a better fit than the exponential distribution based on the waiting time at the bank for service. The
Lindley distribution has been extended by different researchers, including Zakerzadeh and Dolati [27], Nadarajah
et al. [22], Shanker and Mishra [24], Ghitany et al. [13], Ashour and Eltehiwy [4], Eltehiwy [10], and Alizadeh et
al. [2]. The inverse Lindley distribution was proposed by Sharma et al. [25] using the transformation X = 1

Y with
the pdf:
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f (x;β) =
β2

1 + β

(
1 + x

x3

)
e−

β
x ;β, x > 0, (2)

where Y is a random variable having pdf (1).
Another two-parameter inverse Lindley distribution introduced by Sharma et al. [26], called “the generalized
inverse Lindley distribution,” is a new statistical inverse model for upside-down bathtub survival data that uses
the transformation X = Y − 1

α with the pdf:

f (x;β, α) =
αβ2

1 + β

(
1 + xα

x2α+1

)
e−

β
xα ;β, α, x > 0, (3)

with Y being a random variable and having pdf (1). Note that Barco et al. [5] also obtained the generalized inverse
Lindley distribution by taking the transformation X = Y − 1

α where Y follows inverse Lindley distribution, known
as the power inverse Lindley distribution (PIL), with the same pdf.
The pdf (3) can be shown as a mixture of two distributions as follows:

f (x;β, α) = pf1 (x) + (1− p)f2(x),

where,

p = β
β+1 , f1 = αβ

xα+1 e
− β

xα , x > 0 and f2 = αβ2

x2α+1 e
− β

xα , x > 0.

with mixing proportion p = β/(β + 1), we see that, PIL is a two-component mixture of inverse Weibull distribution
(shape α and scale β) and generalized inverse gamma distribution (with shape parameters 2, α and scale β).

Several methods to generate new distributions by adding one or more parameters have been proposed in the
statistical literature. Some well-known generators are the Marshall-Olkin generator (MO-G) by Marshall and
Olkin [21], beta-G by Eugene et al. [11], Kumaraswamy-G (Kw-G) by Cordeiro and de Castro [7], Weibull-G
by Bourguignon et al. [6], exponentiated half-logistic-G by Cordeiro et al. [8] and among others.

Gleaton and Lynch [14, 15, 16] introduced a new family of distributions called the Generalized log-logistic
family of distributions. The cumulative distribution function (CDF) of this family is given by

F (x; θ, ξ) =
G(x; ξ)

θ

G(x; ξ)
θ
+G(x; ξ)

θ
, (4)

where θ > 0 is the shape parameter, G (x; ξ) is the CDF of the baseline distribution, G (x; ξ) = 1−G (x; ξ) is the
survival function and ξ is the set of the parameters of the baseline distribution G(.). In addition, the pdf of the
family is

f (x; θ, ξ) =
θg (x; ξ)G(x; ξ)

θ−1
G(x; ξ)

θ−1[
G(x; ξ)

θ
+G(x; ξ)

θ
]2

This family was later called the odd log-logistic family of distributions. If the baseline distribution has a closed
form CDF; the newly generated distribution will also have a closed form CDF. One can easily show that

log
[
F (x;θ,ξ)

F (x;θ,ξ)

]
log
[
G(x;ξ)

G(x;ξ)

] = θ.

Therefore, θ is the quotient of the log-odds ratio for the generated and baseline distributions.

Now, by letting G (x; ξ) in (4) as the CDF of the power inverse Lindley distribution, where ξ = (β, α) is the
set of parameters, we can obtain a new extension of the power inverse Lindley distribution, called the odd log-
logistic power inverse Lindley (henceforth, OLL-PIL) distribution. The CDF, pdf, and hazard rate function of this
distribution are given by
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F (x;α, β, θ) =

(
1 + β

(1+β)xα

)θ
e−

θβ
xα(

1 + β
(1+β)xα

)θ
e−

θβ
xα +

[
1−

(
1 + β

(1+β)xα

)
e−

β
xα

]θ , (5)

for x > 0, θ, β, α > 0 and the corresponding pdf and hazard rate function are provided by

f (x;α, β, θ) =
αθβ2

(
1+xα

x2α+1

)
e−

βθ
xα

[(
1 + β

(1+β)xα

)]θ−1[
1−

(
1 + β

(1+β)xα

)
e−

β
xα

]θ−1

(1 + β)

{(
1 + β

(1+β)xα

)θ
e−

θβ
xα +

[
1−

(
1 + β

(1+β)xα

)
e−

β
xα

]θ}2 , (6)

h (x;α, β, θ) =
αθβ2

(
1+xα

x2α+1

)
e−

βθ
xα

[(
1 + β

(1+β)xα

)]θ−1

(1 + β)
[
1−

(
1 + β

(1+β)xα

)
e−

β
xα

]{(
1 + β

(1+β)xα

)θ
e−

θβ
xα +

[
1−

(
1 + β

(1+β)xα

)
e−

β
xα

]θ} .

(7)

We write X ∼ OLL− PIL(α, β, θ)if the pdf of X can be written as (6). The new distribution is very flexible in
the sense that it can be skewed or symmetric depending on the specific choices of the parameters. Furthermore,
the associated CDF is in closed form. Consequently, this distribution can be applied to modelling censored data
too. This is a major motivation to carry out this work. Furthermore, in reliability engineering and lifetime analysis,
we often assume that the failure times of the components within each system follow the exponential lifetimes;
see, for example, Adamidis and Loukas [1], among others, and the references therein. This assumption may seem
unreasonable because, for the exponential distribution, the hazard rate is a constant, whereas many real-life systems
do not have constant hazard rates, and the components of a system are often more rigid than the system itself,
such as the bones in a human body, the balls of a steel pipe, etc. Accordingly, it becomes reasonable to consider
the components of a system to follow a distribution with a non-constant hazard function that has flexible hazard
function shapes.

A motivation of this family can be explained as follows: Let X be a lifetime random variable having power
inverse Lindley distribution. The odds ratio that an individual (or component) following the lifetime X will die
(fail) at time x is y = G(x;α, β)/G(x;α, β). Here, one can consider this odd of death as a random variable, say Y .
Now, if we model the randomness of the “odds of death” using the log-logistic distribution with scale parameter 1
and shape parameter θ,

(
FY (y) = yθ/

[
1 + yθ

])
for y > 0. Then we can write

Pr (Y ≤ y) = FY

(
G (x;α, β) /G(x;α, β)

)
,

which is given by (5), see Cooray [9] for more details regarding this interpretation.

Plots of the pdf are shown in Fig. 1. The pdfs appear always unimodal. The mode moves more to the right and
the pdf becomes less peaked with increasing values of β. The mode moves more to the right and the pdf becomes
less peaked with increasing values of θ. The pdf becomes more peaked with increasing values of α . The behavior
of h(x) in (7) of the OLL-PIL for different values of the parameters α, β and θare showed graphically in Fig. 2.
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Figure 1. Pdfs of the OLL-PIL model for selected θ, β and α.

Figure 2. Hazard rate functions of the OLL-PIL model for selected θ, β and α.
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Because the hazard rate function of extended inverse Lindley distribution is always a unimodal function in x,
the new distribution is also unimodal. Figure 2 illustrates the behavior of the hazard rate function of the OLL-
PIL distribution at different values of the parameters involved. Concerning the hazard rate function of the odd log
logistic power inverse Lindley distribution, which is shown in Fig. 2; it notably has the shape of an upside-down
bathtub, therefore being unimodal in x.This attractive flexibility makes the OLL-PIL hazard rate function useful
and suitable for non-monotone empirical hazard behaviors which are more likely to be encountered or observed in
real life situations.

We hope that this new distribution can be applied to describing lifetime data more properly than the existing
distributions. The major motivation for introducing the OLL-PIL distribution can be summarized as follows: (i)
The OLL-PIL distribution contains several lifetime distributions as special cases, such as the power inverse Lindley
(PIL) distribution due to Barco et al. [5] for θ = 1: (ii) It is shown in Section 2 that the OLL-PIL distribution can
be viewed as a mixture of exponentiated power inverse Lindley (EPIL) distributions introduced by Jan et al. [19].
(iii) The OLL-PIL distribution is a flexible model, that can be widely used for modelling lifetime data. (iv) The
OLL-PIL distribution exhibits non-monotone hazard rates but does not exhibit a constant hazard rate, which makes
this distribution superior to other lifetime distributions. (v) The OLL-PIL distribution outperforms several of the
well-known lifetime distributions with respect to some real data examples.

Special cases:
For θ = 1, we obtain the power inverse Lindley distribution.
For α = 1, we obtain the odd log-logistic inverse Lindley distribution.
For θ = α = 1, we obtain the inverse Lindley distribution.
The rest of the article is organized as follows: in Section 2, we discuss some structural properties of the OLL-

PIL distribution. Section 3 deals with the classical method of estimation (using maximum likelihood) of the model
parameters of the OLL-PIL distribution. In Section 4, three real data sets are considered as an example to illustrate
the applicability of OLL-PIL distribution. In Section 5, a simulation study is conducted to verify the efficacy of the
said estimation procedure. In Section 6, we provide some concluding remarks.

2. Structural properties

In this section, we discuss some structural properties of the OLL-PIL distribution.

2.1. Mixture representations for the pdf and CDF

The EPIL distribution, introduced by Jan et al. [19] has the pdf

fEPIL (x;α, β, θ)=
αθβ2

β + 1

(
1 + xα

x2α+1

)
e−

βθ
xα

[(
1 +

β

(1 + β)xα

)]θ−1

, x > 0, θ, β, α > 0 (8)

We write EPIL (α, β, θ) if the pdf of X can be expressed as (8). In addition, the CDF of the EPIL model is

FEPIL (x;α, β, θ) =

[(
1 +

β

(1 + β)xα

)
e−

β
xα

]θ
, x > 0, θ, β, α > 0 (9)

Now, we show that the OLL-PIL distribution can be viewed as a mixture of EPIL distributions. Using the
generalized binomial expansion, the numerator of (5) can be[(

1 +
β

(1 + β)xα

)]θ
e−

βθ
xα =

∞∑
k=0

ak

[(
1 +

β

(1 + β)xα

)
e−

β
xα

]k
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Where ak =
∑∞

j=k −1k
(
θ
k

) (
j
k

)
and the denominator of (5) can be written as(

1 +
β

(1 + β)xα

)θ

e−
θβ
xα +

[
1−

(
1 +

β

(1 + β)xα

)
e−

β
xα

]θ
=

∞∑
k=0

bk

[(
1 +

β

(1 + β)xα

)
e−

β
xα

]k
where bk = ak +−1k

(
θ
k

)
. Therefore, the CDF of the OLL-PIL distribution can be expressed as

F (x) =

∑∞
k=0 ak

[(
1 + β

(1+β)xα

)
e−

β
xα

]k
∑∞

k=0 bk

[(
1 + β

(1+β)xα

)
e−

β
xα

]k =

∞∑
k=0

ck

[(
1 +

β

(1 + β)xα

)
e−

β
xα

]k
,

where c0 = a0

b0
= 0 and for k ≥ 1 we have

ck = b−1
0

[
ak − b−1

0

k∑
r=1

brck−r

]
.

Or equivalently, we can write the CDF of OLL-PIL as

F (x) =

∞∑
k=1

ckFEPIL (x; k, α, β) =

∞∑
k=0

ck+1FEPIL (x; k + 1, α, β), (10)

where FEPIL (x; k + 1, α, β) denotes the CDF of the EPIL distribution with parameters k + 1, α and β. We note
that

∑∞
k=0 ck+1 = 1. By differentiating equation (10), the pdf of the OLL-PIL distribution can be expanded as

f (x) =

∞∑
k=0

ck+1fEPIL (x; k + 1, α, β), (11)

where fEPIL (x; k + 1, α, β) denotes the pdf of the EPIL distribution with parameters k + 1, α and β.

2.2. Moments

The rth ordinary moment of X is given by µ
′

r = E (Xr) =
∫∞
−∞ xrf (x) dx. Then, using Eq.(11), we obtain

µ
′

r = (β)
r
α

∞∑
k=0

∞∑
i=0

(
k

i

)
c
k+1

(k + 1)

r
α
[
i+ 1− r

α + (k + 1)β
]
Γ
(
i+ 1− r

α

)
[(k + 1) (β + 1)]

i+1

For rth moment to exist, the constraint α > r must be satisfied.
The moment generating function MX (t) = E (etx) of X can be derived from Eq. (11) as follows:

MX (t) =

∞∑
k=0

∞∑
i=0

∞∑
n=0

tn

n!
[β (k + 1)]

n
α

(
k

i

)
ck+1

[
i+ 1− n

α + (k + 1)β
]
Γ
(
i+ 1− n

α

)
[(k + 1) (β + 1)]

i+1

2.3. Incomplete moments

The main applications of the first incomplete moment refer to the mean deviations and the Bonferroni and Lorenz
curves. These curves are very useful in economics, reliability, demography, insurance, and medicine. The sth

incomplete moment, say ηs(t), of the OLL-PIL distribution is given by

ηs (t) =

∫ t

0

xsf (x) dx,
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ηs (t) = (β)
s
α

∞∑
k=0

∞∑
i=0

(
k

i

)
ck+1 (k + 1)

s
α

[
i+ 1− s

α + (k + 1)β
]
γ
(
i+ 1− s

α ,
(k+1)(β+1)

tα

)
[(k + 1) (β + 1)]

i+1
, (12)

where γ (., .) is the lower incomplete moments. The first incomplete moment of the OLL-PIL distribution can be
obtained by setting s = 1 in (12). The first incomplete moment is related to the Bonferroni and Lorenz curves,
the mean residual, and the mean waiting times. The Bonferroni and Lorenz curves are important in economics,
reliability, demography, insurance, and medicine. The Lorenz curve, say LO(x), and Bonferroni curve, say BO(x),
are defined by

LO (x) =
η1 (t)

E(X)

and

BO (x) =
LO(x)

FOLL−PIL (x; θ, β, α)

2.4. Stochastic Orders

Stochastic ordering of positive continuous random variables is an important tool for judging comparative behavior.
Suppose Xi is distributed according to (Eqs. 5 and 6) with common parameter β and parameters θi and αi for
i = 1, 2. Let Fi denote the cumulative distribution of Xi and let fi denote the probability density function of Xi. A
random variable X1 is said to be smaller than a random variable X2 in the

I. Stochastic order (X1≤stX2) if F1 (x) ≥ F2 (x) for all x.
II. Hazard rate order (X1≤hrX2)if h1 (x) ≥ h2 (x) for all x.
III. Likelihood ratio order (X1≤LrX2) if f1(x)

f2(x)
decreases in x.

The following results due to Shaked and Shanthikumar [23] are well known for establishing stochastic ordering of
distributions:

X1≤LrX2 ⇒ X1≤hrX2 ⇒ X1≤stX2

The OLL-PILD is ordered with respect to the strongest “likelihood ratio” ordering as shown in the following
theorem:

Theorem 2.1. Let X1 ∼ OLLPILD (θ1, β1, α1) and X2 ∼ OLL− PILD (θ2, β2, α2). If β1 = β2, andθ2 ≥ θ1 (or
if β2 ≥ β1and θ1 = θ2), then X1≤LrX2 and hence X1≤hrX2 and X1≤stX2.
Proof. Straight forward and hence omitted.
Setting α1 = α2

Case 1: β1 = β2 and θ2 ≥ θ1 we obtained d
dx

(
f2(x)
f1(x)

)
as an increasing function of x.

Case 2: β1 ≥ β2 and θ2 = θ1 we obtained d
dx

(
f2(x)
f1(x)

)
as an increasing function of x.

This implies X1≤LrX2 and hence X1≤hrX2 and X1≤stX2.

2.5. Quantile Function

Let X denotes a random variable with the probability density function (Eq. 6). The quantile function, say Q (p),
defined by F (Q (p)) = p is the root of the equation(

1 +
β

(1 + β)Q(p)
α

)
e−

β
Q(p)α =

− (1 + β) p1/θ

p1/θ + (1− p)
1/θ

(13)
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for 0 < p < 1. Multiplying (13) both sides by e−1−β we get,

−
(
1 + β +

β

Q (p)
α

)
e−(1+β+ β

Q(p)α ) =
− (1 + β) p1/θe−(1+β)

p1/θ + (1− p)
1/θ

Using the Lambert W function which is the solution of the equation W (z) eW (z), where z is a complex number,
we have

W

(
− (1 + β) p1/θe−(1+β)

p1/θ + (1− p)
1/θ

)
= −

(
1 + β +

β

Q (p)
α

)
The negative Lambert W function of the real argument −(1+β)p1/θe−(1+β)

p1/θ+(1−p)1/θ
is

W−1

(
− (1 + β) p1/θe−(1+β)

p1/θ + (1− p)
1/θ

)
= −

(
1 + β +

β

Q (p)
α

)
,

which upon solving for Q (p) results in

Q (p) =

[
−1− 1

β
− 1

β
W−1

(
− (1 + β) p1/θe−(1+β)

p1/θ + (1− p)
1/θ

)]− 1
α

.

Using above equation, the quartiles of the OLL-PIL distribution can be determined.

2.6. Asymptotic properties

Let X ∼OLL-PIL then the asymptotic of equations (5), (6) and (7) as x → 0 are given by

F (x) ∼
(

β
xα

)θ
as x → 0

f(x) ∼ αθβθ

xαθ+1 as x → 0

h(x) ∼ αθβθ

xαθ+1 as x → 0

The asymptotic of equations (5), (6) and (7) as x → ∞ are given by

1− F (x) ∼
(

β
1+β

)θ
e
− θβ

xα

xθα as x → ∞

f(x) ∼ θβα
(

β
1+β

)θ
e
− θβ

xα

xα(θ+1)+1 as x → ∞

h(x) ∼ θβα
xα+1 as x → ∞

This attractive flexibility makes the OLL-PIL hazard rate function useful and suitable for non-monotone empirical
hazard behaviors that are more likely to be encountered or observed in real life situations.

2.7. Distribution of order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Suppose that X1, . . . , Xn

are a random sample from an OLL-PIL distribution. Let Xi:n denote the i-th order statistic. The pdf of Xi:n can be
expressed as (see Arnold et al. [3]).

fi:n (x) = Kf (x)F i−1 (x) {1− F (x)}n−i
= K

n−i∑
j=0

(−1)
j

(
n− j
j

)
f(x)F (x)

j+i−1
,
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where K = n!
(i−1)!(n−i)!

We use the result 0.314 of Gradshteyn and Ryzhik [17] for a power series raised to a positive integer n (n ≥ 1)( ∞∑
i=0

aiu
i

)n

=

∞∑
i=0

dn,iu
i,

where the coefficients dn,i (for i = 1, 2, . . . ) are determined from the recurrence equation (with dn,0 = an0 )

dn,i = (ia0)
−1

i∑
m=1

[m (n+ 1)− i] amdn,i−m.

We can demonstrate that the density function of the i-th order statistics of an OLL-PIL distribution can be expressed
as

fi:n =

∞∑
r,k=0

∞∑
j=0

m∗
r,k,jfEPIL (x, r + k + i+ j, α, β), (14)

where fEPIL (x;α, β, θ) denotes the density of EPIL distribution with parameters α, β and θ and the coefficient
m∗

r,k,j ≡ m∗
r,k,j(i, n)

′s are given by

m∗
r,k,j =

n! (r + 1) cr+1(−1)
j
a∗j+i−1.k

(i− 1)! (n− i− j)!j! (r + k + i+ j)
,

in which the coefficients c′rs are defined in subsection 2.1 and quantities a∗j+i−1,k can be determined such that
a∗j+i−1,0 = cj+i−1

1 and for k ≥ 1

a∗j+i−1.k = (kc1)
−1

k∑
q=1

[q (j + i)− k] cq+1a
∗
j+i−1,k−q.

Equation (14) is the main result of this section. It reveals that the pdf of the OLL-PIL order statistic is a linear
combination of EPIL distributions. Therefore, several mathematical quantities of these order statistics, like ordinary
and incomplete moments, factorial moments, the moment generating function, mean deviations, and others, can be
derived using this result.

3. Maximum Likelihood Estimation of Parameters

Let X1, . . . , Xn be a random sample of size n from OLL-PIL. Then, the log-likelihood function is given by

L(α, β, γ, θ) =
n∑

i=1

lnf (xi) ,

= n [ln (α) + 2ln (β) + ln (θ)− ln (1 + β) ] +

n∑
i=1

ln (1 + xα
i ) − (2α+ 1)

n∑
i=1

ln (xi)

−β

n∑
i=1

x−α
i + (θ − 1)

n∑
i=1

ln [ti (1− ti)]− 2

n∑
i=1

ln
[
tθi + (1− ti)

θ
]

, (15)

where ti =
(
1 + β

(1+β)xα

)
e−

β
xα .

The MLEs α̂, β̂, θ̂ of α, β, θ are then the solutions of the following non-linear equations:

∂

∂α
L (α, β, γ, θ) =

n

α
+

n∑
i=1

xα
i ln (xi)

xα
i + 1

− 2

n∑
i=1

ln (xi) + β

n∑
i=1

x−α
i .ln (xi)
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+(θ − 1)

n∑
i=1

t
(α)
i

ti
+ (1− θ)

n∑
i=1

t
(α)
i

1− ti
− 2θ

n∑
i=1

t
(α)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

= 0, (16)

∂

∂β
L (α, β, γ, θ) =

n (β + 2)

β (β + 1)
−

n∑
i=1

x−α
i + (θ − 1)

n∑
i=1

t
(β)
i

ti
+ (1− θ)

n∑
i=1

t
(β)
i

1− ti

−2θ

n∑
i=1

t
(β)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

= 0 (17)

∂

∂θ
L (α, β, γ, θ) =

n

θ
+

n∑
i=1

ln [ti (1− ti)]− 2

n∑
i=1

tθi ln (ti) + (1− ti)
θ
ln (1− ti)

tθi + (1− ti)
θ

= 0, (18)

where

t
(α)
i =

β2

1 + β

(
1 + xα

i

x2α+1
i

)
e
− β

xα
i ln (xi) ,

t
(β)
i =

e
− β

xα
i

xα
i (1 + β)

2 − e
− β

xα
i

xα
i

(
β

xα
i (1 + β)

+ 1

)
The above non-linear system of equations is solved by the numerical iteration technique, and maximum likelihood
estimates are obtained.For the three parameters of the OLL-PIL distribution, all the second order derivatives exist.
Thus, we have the inverse dispersion matrix, as follows: θ̂

β̂
α̂

 ∼ N

 θ
β
α

 ,

 V̂11 V̂12 V̂13

V̂21 V̂22 V̂23

V̂31 V̂32 V̂33



V −1 = −E

 V11 . . . V13

. . . . . . . . .
V31 . . . V33

 = −E

 ∂2L
∂θ2 . . . ∂2L

∂θ∂γ

. . . . . . . . .
∂2L
∂θ∂γ . . . ∂2L

∂γ2

 (19)

Equation (19) is the variance covariance matrix of the OLL− PIL (θ, β, α).

V11 =
∂2L
∂θ2

V12 =
∂2L
∂θ∂β

V 13 =
∂2L
∂θ∂α

V22 =
∂2L
∂β2

V23 =
∂2L
∂β∂α

V 33 =
∂2L
∂α2

The second derivatives of L can be derived as follows:

∂2L
∂θ2

=
−n

θ2
− 2

n∑
i=1

tθi (1− ti)
θ
ln(ti)ln

(
ti

1−ti

)
+ tθi (1− ti)

θ
ln (1− ti) ln

(
1−ti
ti

)
[
tθi + (1− ti)

θ
]2 ,

∂2L
∂α2

= − n

α2
+

n∑
i=1

xα
i ln(xi)

2

(1 + xα
i )

2 − β

n∑
i=1

(lnxi )
2

xα
i

+ (θ − 1)

n∑
i=1

t
(αα)
i ti−

[
t
(α)
i

]2
t2i

+(1− θ)

n∑
i=1

t
(αα)
i (1− ti) +

[
t
(α)
i

]2
(1− ti)

2 − 2θ

n∑
i=1

t
(αα)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ
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−2θ(1− θ)

n∑
i=1

[
t
(α)
i

]2 tθ−2
i + (1− ti)

θ−2

tθi + (1− ti)
θ

+ 2θ2
n∑

i=1

[
t
(α)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

]2

∂2L
∂β2

=

[
−2n

β2
+

n

(β + 1)
2

]
+ (θ − 1)

n∑
i=1

t
(ββ)
i ti −

[
t
(β)
i

]2
t2i

+ (1− θ)

n∑
i=1

t
(ββ)
i (1− ti) +

[
t
(β)
i

]2
(1− ti)

2

−2θ

n∑
i=1

t
(ββ)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

− 2θ(θ − 1)

n∑
i=1

[
t
(β)
i

]2 tθ−2
i + (1− ti)

θ−2

tθi + (1− ti)
θ

+2θ2
n∑

i=1

[
t
(β)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

]2
.

∂2L
∂θ∂α

=

n∑
i=1

t
(α)
i

ti
−

n∑
i=1

t
(α)
i

1− ti
− 2

n∑
i=1

t
(α)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

−2θ

n∑
i=1

t
(α)
i tθ−1

i (1− ti)
θ−1

ln
(

ti
1−ti

)
[
tθi + (1− ti)

θ
]2 ,

∂2L
∂θ∂β

=

n∑
i=1

t
(β)
i

ti
−

n∑
i=1

t
(β)
i

1− ti
− 2

n∑
i=1

t
(β)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

−2θ

n∑
i=1

t
(β)
i

tθ−1
i ln (ti)− (1− ti)

θ−1
ln (1− ti)

tθi + (1− ti)
θ

+ 2θ

n∑
i=1

t
(β)
i

[
tθi ln (ti) + (1− ti)

θ
ln (1− ti)

] [
tθ−1
i − (1− ti)

θ−1
]

[
tθi + (1− ti)

θ
]2 ,

∂2L
∂α∂β

=

n∑
i=1

x−α
i ln (xi)+ (θ − 1)

n∑
i=1

t
(αβ)
i ti − t

(α)
i t

(β)
i

t2i

+(1− θ)

n∑
i=1

t
(αβ)
i (1− ti)− t

(α)
i t

(β)
i

(1− ti)
2 − 2θ

n∑
i=1

t
(αβ)
i

tθ−1
i − (1− ti)

θ−1

tθi + (1− ti)
θ

−2θ (θ − 1)

n∑
i=1

t
(α)
i t

(β)
i

tθ−2
i + (1− ti)

θ−2

tθi + (1− ti)
θ

+ 2θ2
n∑

i=1

t
(α)
i t

(β)
i

[
tθ−1
i + (1− ti)

θ−1

tθi + (1− ti)
θ

]2
,

in which;

t
(αα)
i =

β2

1 + β

(
1

x2α+1
i

)
e
− β

xα
i [ln (xi) ]

2 [− (xα + 2) + β
(
1 + x−α

)]
,

t
(ββ)
i =

e
− β

xα
i

x2α
i

(
β

xα
i (1 + β)

+ 1

)
− 2e

− β
xα
i

xα
i (1 + β)

3 − 2e
− β

xα
i

x2α
i (1 + β)

2 ,

t
(αβ)
i = −βe

− β
xα
i ln (xi) (1 + xα

i )

x2α+1
i (1 + β)

2

[
β(1 + β)

xα
− β − 2

]
.

These solutions will yield the asymptotic variance and co-variances of these ML estimators for θ̂, β̂ and α̂ by
solving this inverse dispersion matrix. By using Eq.19 approximately the 100 (1− α)% confidence intervals for
θ, β, α and γ can be determined as

θ̂ ± Zα
2

√
V̂11 β̂ ± Zα

2

√
V̂22 α̂± Zα

2

√
V̂33
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where Zα
2

is the upper α-th percentile of the standand normal distribution.

4. Data Analysis

In this section, we illustrate the power of OLL-PIL distribution using three real data sets. Tables 1 and 2
contain average wind speed data from Demak, Indonesia, as reported by Hibatullah et al. [18]. The third dataset
in table 3 is from Nadarajah et al. [22]. The data shows the relief times of 20 patients receiving an analgesic. The
estimation of the parameters for the OLL-PIL distribution was conducted using the maximum likelihood method.
The comparison of OLL-PIL with the other models is conducted in terms of the log-likelihood values (log L),
the Akaike information criterion (AIC) defined by −2log L + 2q, and the Bayesian information criterion (BIC)
defined by −2log L +q log(n), where q is the number of estimated parameters and n is the sample size. The best
model would be given by the highest value of log L and the lowest values of the AIC and BIC. Thus, the OLL-PIL
distribution is compared with the Lindley (L) distribution, the power Lindley (PL) distribution, the inverse Lindley
(IL) distribution, the Power inverse Lindley (PIL) distribution, the Weibull (W) distribution, and the Gamma (G)
distribution.

Table 1. Data set 1.
1.04525
2.78426
2.54918
6.90446
2.46577
2.83905
2.09819
0.47927
1.41378
4.77888

2.28740
4.79976
1.32359
1.71967
3.52471
0.38095
10.9028
1.38314
1.89628
1.03046

2.44529
13.1893
2.16495
3.78884
2.20266
0.71543
16.4941
3.14792
7.72747
2.84926

2.68460
5.45061
1.32353
1.48582
5.10102
3.00342
1.77735
4.88295
0.80280
5.02584

1.50003
2.01266
1.74341
3.11761
0.80668
2.65187
4.64156
1.65586
6.95507
5.83996

3.33749
1.27453
2.29751
3.26983
2.65993
4.53323
5.73434
2.09596
1.52554
2.71060

TABLE 2. Data set 2.
61.80
32.40
57.09
62.44
25.60
29.92

43.54
14.00
49.65
48.78
37.55
28.9

6.53
24.90
34.58
18.92
12.52
40.25

6.53
6.40
34.58
18.92
12.52
26.44

3.72
8.90
28.35
11.54
7.00
31.43

2.74
5.90
20.56
14.84
13.48
18.90

3.00
7.60
25.54
30.89
23.25
19.20

3.10
10.60
7.62
8.85
24.41
28.85

5.26
87.50
10.60
9.90
28.83
34.66

17.56
40.30
87.51
20.98
377.09
17.34

TABLE 3. Data set 3.
1.1
4.1

1.4
1.8

1.3
1.5

1.7
1.2

1.9
1.4

1.8
3.0

1.6
1.7

2.2
2.3

1.7
1.6

2.7
2.0
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TABLE 4. Summary of fitted distributions for data set 1
Models α β θ logL AIC BIC
Lindley (L) —- 0.49297 —- -129.586 261.172 263.266
Inverse Lindley (IL) 1 2.50067 1 -132.532 267.063 269.157
Power Lindley (PL) 1.09454 0.43377 1 -129.022 262.044 266.233
Power Inverse Lind-
ley (PIL)

1.26995 2.68507 1 -129.671 263.343 267.531

Gamma (G) 1.95473 1.73284 — -129.639 257.278 261.467
Weibull (W) 1.33872 3.72481 —- -128.960 259.920 266.109
OLL-PIL 0.22158 1.31936 7.162 -123.611 253.222 259.506

TABLE 5. Summary of fitted distributions for data set 2
Models α β θ logL AIC BIC
Lindley (L) —- 0.06303 —- -269.795 541.590 543.684
Inverse Lindley (IL) 1 13.6935 1 -262.256 526.512 528.606
Power Lindley (PL) 0.77956 0.14195 1 -263.387 530.773 534.962
Power Inverse Lind-
ley (PIL)

1.11928 17.3911 1 -261.593 527.186 531.375

Gamma (G) 1.21189 25.4074 — -264.977 533.954 538.143
Weibull (W) 0.99265 30.6667 —- -265.630 533.259 539.448
OLL-PIL 0.53839 4.04225 2.44 -257.303 520.606 526.889

TABLE 6. Summary of fitted distributions for data set 3
Models α β θ logL AIC BIC
Lindley (L) —- 0.8161 —- -30.2496 62.4991 63.4948
Inverse Lindley (IL) 1 2.2547 1 -31.7572 65.5144 66.5101
Power Lindley (PL) 2.2529 0.3445 1 -20.4320 44.8640 46.8554
Power Inverse Lind-
ley (PIL)

3.9812 6.7190 1 -15.4132 34.8263 36.8178

Gamma (G) 9.6695 0.1965 — -17.8186 39.6372 43.8259
Weibull (W) 2.7870 2.1300 —- -20.5864 43.1728 49.3615
OLL-PIL 3.55142 5.54344 1.15 -15.3889 36.7779 39.7652

Table 4 presents the parameter estimation, log L, AIC, and BIC from dataset 1 for the fitted OLL-PIL distribution
and its special cases (IL, PIL), L, PL, the Gamma distribution, and the Weibull distribution. Table 5 presents log L,
AIC, and BIC from dataset 2 for the fitted OLL-PIL distribution and its special cases (IL, PIL), L, PL, the Gamma
distribution, and the Weibull distribution. From the value of log L, we see that OLL-PIL has higher values than
the other models. From the AIC and BIC, OLL-PIL has the lowest values of all the models. Therefore, OLL-PIL
provides the best fit to this data. Fig. 3 gives a graphical representation of the histogram for dataset 1 and the graphs
of OLL-PIL, Gamma, Weibull, and PL. Fig. 4 gives a graphical representation of the histogram for dataset 2 and
the graphs of OLL-PIL, Gamma, Weibull and IL. Table 6 presents log L, AIC, and BIC from dataset 3 for the
fitted OLL-PIL and its special cases (IL, PIL), L, PL, the Gamma distribution, and the Weibull distribution. From
the values of log L, AIC, and BIC, the PIL model was a better fit than the other models. Fig. 5 gives a graphical
representation of the histogram for dataset 3 and the graphs of OLL-PIL, Gamma, Weibull, and PIL.
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(a) (b)

(c) (d)
FIGURE 3. plots of the histogram from data set 1 and (a) OLL-PIL, (b) Gamma, (c) Weibull, and (d) PL

(a) (b)

(c) (d)
FIGURE 4. Plots of the histogram from data set 2 and (a) OLL-PIL, (b) Gamma, (c) Weibull, and (d) IL
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(a) (b)

(c) (d)
FIGURE 5. Plots of the histogram from data set 3 and (a) OLL-PIL, (b) Gamma, (c) Weibull, and (d) PIL.

5. Generation Algorithms and Monte Carlo Simulation Study

In this section, the algorithms for generating random data from OLL-PIL distribution are given. A simulation
study was also conducted to check the performance and accuracy of maximum likelihood estimates of the OLL-PIL
model parameters. The Simulation study was performed using the statistical software Mathcad 14.

5.1. Generation algorithms

In this subsection, different algorithms that can be used to generate random data from OLL-PIL distribution are
presented.
Algorithm I. (mixture form of the inverse Lindley distribution)
1. Generate Ui ∼ uniform (0, 1) , i = 1, . . . , n;
2. Generate Vi ∼ inverse Exponential (β) , i = 1, . . . , n;
3. Generate Gi ∼ inverse Gamma (2, β) , i = 1, . . . , n.

4. if U
1/θ
i

U
1/θ
i +(1−Ui)

1/θ
≤ β

1+β , then set Xi = V
1/α
i , otherwise, set Xi = G

1/α
i , i = 1, . . . , n.

Algorithm II. (mixture form of the Extended inverse Lindley distribution)
1. Generate Ui ∼ uniform (0, 1) , i = 1, . . . , n;
2. Generate Yi ∼ inverse Weibull (α, β) , i = 1, . . . , n;
3. Generate Si ∼ Generalized inverse Gamma (2, α, β) , i = 1, . . . , n.

4. if U
1/θ
i

U
1/θ
i +(1−Ui)

1/θ
≤ β

1+β , then set Xi = Yi, otherwise, set Xi = Si, i = 1, . . . , n.

Algorithm III: (inverse CDF)
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1. Generate Ui ∼ uniform (0, 1) , i = 1, . . . , n;
2. Set

Xi =
[
−1− 1

β − 1
βW−1

(
−(1+β)p1/θe−(1+β)

p1/θ+(1−p)1/θ

)]− 1
α

5.2. Monte Carlo simulation study

In this subsection, we study the performance and accuracy of maximum likelihood estimates of the OLL-
PIL model parameters by conducting various simulations for different combinations of 5 sample sizes with two
sets of parameter values. Algorithm II was used to generate random data from the OLL-PIL distribution. The
simulation study was repeated N = 10,000 times each with samples of size n = 25, 50, 100, 200, 400 combined
with parameter values (I): θ = 0.7, β =4, α = 0.8, and (II): θ = 1.5, β = 0.6, α = 2 . Four quantities were
computed in this simulation study: (i) Average bias of the MLE ϑ̂ of the parameter ϑ = α, β, θ: 1

N

∑N
i=1

(
ϑ̂− ϑ

)
;

(ii) Root mean squared error (RMSE) of the MLE ϑ̂ of the parameter ϑ = α, β, θ:
[

1
N

∑N
i=1

(
ϑ̂− ϑ

)2]0.5
;(iii)

Coverage probability (CP) of 95% confidence intervals of the parameter ϑ = α, β, θ; (iυ) Average width (AW)
of 95% confidence intervals of the parameter ϑ = α, β, θ. Table 7 presents the average Bias, RMSE, CP and AW
values of the parameters α, βand θ for different sample sizes. According to the results, it can be concluded that,
as the sample size n increases, the RMSEs decrease toward zero. We also observe that, for all the parameters, the
biases decrease as the sample size n increases. The results show that the coverage probabilities of the confidence
intervals are quite close to the nominal level of 95% and that the average confidence widths decrease as the sample
size increases. Consequently, the MLEs and their asymptotic results can be used for estimating and constructing
confidence intervals even for reasonably small sample sizes.

Table 7: Monte Carlo simulation results: Average Bias, RMSE, CP and AW
I II

Parameter n Average
bias

RMSE CP AW Average
bias

RMSE CP AW

θ 25 0.6485 0.3878 0.9613 0.7842 0.6562 0.8655 0.9441 3.8412
50 0.6277 0.3766 0.9631 0.6851 0.6549 0.8466 0.9423 2.4051
100 0.5921 0.3611 0.9635 0.4723 0.6516 0.8411 0.9453 1.8763
200 0.5851 0.3541 0.9653 0.4514 0.6415 0.8381 0.9465 1.5791
400 0.5745 0.3348 0.9741 0.3649 0.5713 0.7972 0.9626 0.3678

β 25 2.4498 2.1978 0.9632 1.2381 0.5866 0.6925 0.9632 5.0502

50 2.3834 2.1198 0.9561 0.4227 0.5751 0.6807 0.9636 1.5696
100 1.9259 2.1756 0.9573 0.3289 0.5561 0.6212 0.9675 0.8471
200 1.9111 2.1767 0.9616 0.2464 0.5452 0.6112 0.9691 0.5452
400 1.8482 1.9856 0.9645 0.2032 0.4418 0.4947 0.9701 0.2535

α 25 0.6631 0.7442 0.9426 2.1786 0.6256 0.9531 0.9216 1.8816
50 0.5111 0.6561 0.9402 1.5187 0.5224 0.6932 0.9390 1.4735
100 0.4482 0.4999 0.9312 1.1469 0.4347 0.5945 0.9258 0.8399
200 0.4412 0.4658 0.9356 0.8867 0.4305 0.3788 0.9276 0.7119
400 0.4271 0.4411 0.9468 0.3386 0.3497 0.3431 0.9496 0.4187
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6. Concluding Remarks

In this paper, we have proposed a new family of distributions called the odd log-logistic power inverse Lindley
distribution. As special cases from OLL-PIL, we obtain the probability density functions for odd log-logistic
inverse Lindley and power inverse Lindley distributions. Some mathematical properties and estimation issues
are addressed. The hazard rate function behavior of the odd-logistic power inverse Lindley distribution shows
that the subject distribution can be used to model reliability data. The estimation of parameters is approached
by the method of maximum likelihood. We present a simulation study to exhibit the performance and accuracy
of maximum likelihood estimates of the OLL-PIL model parameters. A data application was also presented to
illustrate the usefulness and applicability of the OLL-PIL distribution.
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