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Abstract In this paper, we present a family of smoothing methods to solve nonlinear complementarity problems (NCPs)
involving P0-function. Several regularization or approximation techniques like Fisher-Burmeister’s method, interior-point
methods (IPMs) approaches, or smoothing methods already exist. All the corresponding methods solve a sequence of
nonlinear systems of equations and depend on parameters that are difficult to drive to zero. The main novelty of our approach
is to consider the smoothing parameters as variables that converge by themselves to zero. We do not need any complicated
updating strategy, and then obtain nonparametric algorithms. We prove some global and local convergence results and present
several numerical experiments, comparisons, and applications that show the efficiency of our approach.
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1. Introduction

The nonlinear complementarity problem (NCP) consists in finding x ∈ Rn satisfying

x ≥ 0 F (x) ≥ 0 xTF (x) = 0, (1)

where F : Rn → Rn. When F is linear, problem (1) reduces to a linear complementarity problem (LCP).
NCPs arise in many practical applications, for example, the Karush-Kuhn-Tucker (KKT) systems of mathematical
programming problem, economic equilibria, and engineering design problems, can be formulated as NCPs (see,
for instance, [11, 20, 29]).
Different concepts have been developed to study and solve these problems: reformulation as a system of nonlinear
equations or a minimization problem (see [12, 15, 23, 27, 30, 31, 32]). Recently, there have been strong interests
in equation reformulation methods for solving the NCPs. One of the most effective methods is to transform the
NCP into semi-smooth equation (NCP functions) and solve using semi-smooth Newton methods. The most well-
known NCP functions are the Fisher-Burmeister’s function introduced by Fisher Burmeister in [13] and the min
function studied by Kanzow, Yamashita and Fukushima [22]. Another well-known class of algorithms corresponds
the smoothing methods. The main idea of smoothing approaches is to approximate or regularize the NCP to obtain
smooth equations depending on some parameter (see, for example, [7, 24, 25, 33, 39]).
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1268 A NEW SMOOTHING METHOD FOR NCP

In this paper, we present, smoothing approximation scheme to solve (1). We replace

0 ≤ x ⊥ F (x) ≥ 0, (2)

by a sequence of smoothed systems of the form

Gr(x, F (x)) := (Gr(xi, Fi(x)))i=1,...,n :=

(
rψ−1

[
ψ
(xi
r

)
+ ψ

(
Fi(x)

r

)])
i=1,...,n

= 0. (3)

All the functions and parameters involved in (3) will be explicit later. Depending on the context, several functions
(θ, ψ,Gr, ...) we apply on reals or vectors. When applied to vectors, we consider that they apply component-wise.
The novelty of our approach is that we do not need any complicated strategy to update the regularization parameter
r since we will consider it as a new variable. To solve the smoothed equations system we will use the standard
Newton-like method. Without requiring a strict complementarity assumption at the solution of equation (1), we
prove that the proposed algorithm is well defined, globally and superlinearly convergent. At the end of the paper,
we present numerical results to prove the effectiveness of the algorithm.
This paper is organized as follows: some definitions are introduced in section 2. We present our approximation and
formulation in section 3. In section 4, we discuss our approach and scheme to solve (1). The convergence properties
of the algorithm are given in section 5. The section 6 is devoted to the numerical results with a comparison of our
method with other approaches. Finally, we conclude our paper.

2. Preliminaries and problem setting

Consider the NCP, which is to find a solution of the system:

x ≥ 0, F (x) ≥ 0 and xTF (x) = 0 or 0 ≤ x ⊥ F (x) ≥ 0, (4)

where F : Rn −→ Rn is a continuous function satisfying some additional assumptions to be precised later.
From (4), we obtain the equivalent formulation for component-wise products

x ≥ 0, F (x) ≥ 0 and xiFi(x) = 0, i = 1, 2, ..., n.

Or equivalently
x.F (x) = 0, x ≥ 0, F (x) ≥ 0,

where “.” stands for the Hadamard product. It provides an explanation for the term “complementarity”, namely,
for all i = 1, 2, ..., n, xi and Fi(x) are complementary in the sense that if one of them is positive then the other
term must be zero.
A particular and important class of NCP is the LCP class defined below.

Definition 2.1
When F is affine function:

F (x) =Mx+ q, x ∈ Rn, q ∈ Rn, M ∈ Rn×n.

The corresponding NCP is called an LCP. So an problem is to find x ∈ Rn such that

x ≥ 0, Mx+ q ≥ 0 and xT (Mx+ q) = 0.

To solve NCP, there are essentially three different classes of methods: equation-based methods (smoothing),
merit functions, and projection-type methods. Our goal in this paper is to present new and very simple smoothing
and approximation schemes to solve NCP and to produce efficient numerical methods. In our approach, we do not
need any complicated strategy to update the smoothing parameter since we will consider it as a new variable.
First, let us introduce the usual assumptions on F and the ones that will be used in this paper. A well-known and
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studied situation corresponds to monotone functions F and several methods and algorithms have been developed
in this case.
Almost all the solution methods consider at least the following important and standard condition on the mapping
F (monotonicity): We recall that F is said to be monotone if F : Rn → Rn satisfies for any (x, y) ∈ Rn,

(x− y)T (F (x)− F (y)) ≥ 0.

In this work, we will consider a weaker assumption on F :

F is a P0-function, (H0)

to prove the convergence of our approach. We recall the following definitions of P0 and P functions. We say
that F : Rn → Rn is a P0-function (respectively P-function) if ∀x, y ∈ Rn with x ̸= y, there exists an index
i0 ∈ {1, 2, ..., n} such that

(xi0 − yi0)[Fi0(x)− Fi0(y)] ≥ 0,

(respectively (xi0 − yi0)[Fi0(x)− Fi0(y)] > 0).

It is important to notice that the index i0 can depend on x and y.
A matrix is called a P0-matrix (resp. P-matrix) if all its principals minors are nonnegative (resp. positive). Note
that F is a P0-function if and only if ∇F (x) is a P0-matrix for all x ∈ Rn. If ∇F (x) is a P-matrix for all x ∈ Rn,
then F is a P-function. However, the converse is not necessarily true.

3. Smoothing approximation functions

In this section, we present a new smoothing function for NCP. A function ϕ : R2 → R is said to be a NCP function
if ϕ satisfies

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (5)

An example of such function is ϕmin : R2 → R,

ϕmin(a, b) = min{a, b}.

Then, ϕmin is a NCP function. Problem (1) is then equivalent to the following system of nonlinear equations:

H(x) =


ϕmin(x1, F1(x))
ϕmin(x2, F2(x))

...
ϕmin(xn, Fn(x))

 = 0. (6)

This system is clearly nonsmooth; classical Newton-like methods can not be used to try to solve it. To overcome
this difficulty, there exist several semi-smooth approaches. These techniques may present difficulties to converge.
An efficient approach is to approximate (6) by a smooth one. The following subsection introduces some smoothing
functions and establishes different properties that will be useful for our study.

3.1. θ-smoothing

In this section, we elaborate on how such a regularized function can be actually built up from the function (6).
Our smoothing technique is based on the continuous approximation of a more elementary object, namely the step
function. The step function is understood here to be the function ℑ : R+ → {0, 1} defined as

ℑ(t) =
{

0 if t = 0,
1 if t > 0.

(7)
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As an indicator of positive arguments t > 0 over R+, the step function ℑ “descriminates” the argument t = 0 by
assigning a zero value to it. The price to be paid for this sharp detection is the discontinuity of ℑ at t = 0. We wish
to have a regularization of ℑ, that is, a family of functions

{ℑ̃(., r) : R+ → [0, 1), r > 0}, (8)

such that

• ℑ̃(., r) is a smooth function of t ≥ 0, for all r > 0;
• ℑ̃ is continuous with respect to r, in some functional sense;
• limr↓0 ℑ̃(., r) = ℑ(.), in some functional sense.

To obtain such a family, we follow the methodology developed by Haddou and his coauthors [17, 2], the key
ingredient of which is a smoothing function. This notion turned out to be a versatile tool in a wide variety of
pure and applied mathematical problems [3, 18, 19, 34]. We begin with a “father” function, from which all other
regularized functions will be generated.

Definition 3.1
(θ-smoothing function). A function θ : R→ [0, 1) is said to be a θ-smoothing function if it is continuous,
nondecreasing, concave, and

θ(0) = 0,
lim

t→+∞
θ(t) = 1. (9)

The two most common examples of smoothing functions are:

1. the rational function θ1 : R→ (−∞, 1) defined by

θ1(t) =
t

t+ 1
for t ≥ 0 and θ1(t) = t for t ≤ 0. (10)

2. the exponential function θ2 : R→ (−∞, 1) defined by

θ2(t) = 1− exp(−t). (11)

A more general ”recipe” to build such function is to consider nonincreasing probability density functions
f : R+ → R+ and then take the corresponding cumulative distribution function on R+ i.e.,

θ(t) =

∫ t

0

f(y)dy, t ≥ 0, (12)

we complete the definition of θ on R− by θ(t) = t to get a continuous, nondecreasing function. The nonincreasing
assumtion on f gives the concavity of θ. Once a favorite θ-smoothing has been selected, the next step is to dilate
or compress it in order to produce a family of regularized functions for the step function ℑ.

Definition 3.2
(θ-smoothing family). Let θ be a θ-smoothing function. The family of functions{

θr(t) := θ(
t

r
), r > 0

}
, (13)

is said to be the θ-smoothing family associated with θ.

Obviously, θr is a smooth function of t ≥ 0 for all r > 0. It is also continuous with respect to r at each fixed
r ≥ 0. From the defining properties (9), it can be readily shown that

lim
r→0

θr(t) = ℑ(t), ∀t ≥ 0. (14)

In other words, ℑ is the limit of θr in the sense of pointwise convergence. Thus, {ℑ(., r) = θr, r > 0} is a good
family of regularized functions in the sense of (8). Associated with the two examples (10)-(11) are:
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1. the rational family θ1r : R→ (−∞, 1) defined by

θ1r(t) =
t

t+ r
for t ≥ 0 and

t

r
for t ≤ 0. (15)

2. the exponential family θ2r : R→ (−∞, 1) defined by

θ2r(t) = 1− exp(−t/r). (16)

Figure 1 display the two families (15)-(16) for a few values of the parameter r. We can see that the smaller r is,
the steeper is the slope at t = 0 and the closer to ℑ the function is.
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Figure 1. Function θr for a few values of r.

3.1.1. θ-smoothing of a complementarity condition A θ-smoothing function paves the way for a smooth
approximation of a complementarity condition.
Let (x, z) ∈ R2 be two scalars such that

0 ≤ x ⊥ z ≥ 0, (17)

that is,
x ≥ 0, z ≥ 0, xz = 0.

In the (x, z)-plane, the set of points obeying (17) is the union of the two semi-axes {x ≥ 0, z = 0} and
{x = 0, z ≥ 0}. Visually, the nonsmoothness of (17) is manifested by the “kink” at the corner (x, z) = (0, 0). It
is also clear that the corresponding set is nonconvex. We consider two possible smooth approximations of (17),
depending how it is rewritten in terms of the step function ℑ.

Lemma 3.1
[17] Assuming x ≥ 0 and z ≥ 0, we have the equivalence

xz = 0 ⇐⇒ ℑ(x) + ℑ(z) ≤ 1. (18)

The equivalence (18) suggests us to impose

x ≥ 0, z ≥ 0, θr(x) + θr(z) = 1, (19)

for r > 0, as a smooth approximation of (17). Replacing ℑ by θr in (18) is logical. Replacing “≤” by “=” in (18)
and the (19) seems to be a bold move, but this is motivated by the fact that we want an equality to be mounted into
the system of equations. Some times an additional assumption (strict complementarity x+ z > 0) is made to get
such equations.
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3.2. A new smoothing function using θ-function

Our aim is to propose a large class of θ-functions for which the problems

x(r) ≥ 0, F (x(r)) ≥ 0 and θr(x
(r)) + θr(F (x

(r))) = 1, (20)

are well-posed and any limit point of (x(r)) when r goes to 0, is a solution of NCP. In the multidimensional case,
the equation just above has to be interpreted as a system of n equations,

θr(x
(r)
i ) + θr(Fi(x

(r))) = 1, i = 1, ..., n.

Note that the relation (20) is symmetric in x and F (x). Thus, our problem can be seen as a fixed point problem for
the function Fr,θ(x) defined just below. Indeed, the equation (20) is equivalent to

x = θ−1
r (1− θr(F (x))) = rθ−1(1− θ(F (x)/r)) =: Fr,θ(x).

By symmetry of the equation (20), we also have the relations:

F (x) = θ−1
r (1− θr(x)) = rθ−1(1− θ(x/r)),

but we shall not go that direction. As in [18] we propose another way to approximate a solution of NCP as follows.
Let ψr(t) = 1− θr(t), the relation (20) is equivalent to the three following equalities

ψr(x) + ψr(F (x)) = 1 = ψr(0),

ψ−1
r [ψr(x) + ψr(F (x))] = 0 and

rψ−1
[
ψ
(
x
r

)
+ ψ

(
F (x)
r

)]
= 0.

(with ψ = 1− θ). For the sequel, we set for any x, y ∈ Rn and any r > 0

Gr(x, y) := (Gr(xi, yi))i=1,...,n :=
(
rψ−1

[
ψ
(xi
r

)
+ ψ

(yi
r

)])
i=1,...,n

. (21)

where ψ : R→]0,+∞[.
First, we characterize the solutions (x, y) of Gr(x, y) = 0 when ψ satisfies some conditions independent of F .
Let 0 < a < 1. We say that ψ satisfies condition (Ha) if there exists sa > 0 such that

ψ(s) ≤ 1

2
ψ(as) ∀s ≥ sa or equivalently

1

2
+

1

2
θ(as) ≤ θ(s) ∀s ≥ sa. (Ha)

The condition (Ha) imposes that the decay of ψ(s) is under some uniform control for large s or in terms of θ that
θ(s) should grow enough quickly with some uniformity for large s. Since ψ and θ are monotone, it is interesting to
take a as large as possible in the condition (Ha) since (Ha) =⇒ (Hb) for b < a.
Note that we can never take a = 1 because θ ≤ 1 unless θ is constant and equal to one for large s. But in some
cases, a can be chosen as close to 1, see for instance θ2.
One can obtain by simple calculations that:

1. For θ1, we have

ψ1(t) =

{ 1

t+ 1
if t ≥ 0,

1− t if t < 0,

and the condition (Ha) is only satisfied for 0 < a < 1/2 with sa ≥
1

1− 2a
.
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2. For θ2, we have ψ(t) = e−t and the condition (Ha) is satisfied for any 0 < a < 1 with sa =
ln 2

1− a
.

From now on, all the results use the function ψ. Obviously, everything can be easily transposed on θ.We summarize
here some important facts proved in [18]. The following lemma compare the function Gr defined in (21) to the min
function and will be useful for the rest of our analysis.

Lemma 3.2
If ψ : R→]0,+∞[ is an invertible non-increasing function, then for any (s, t) ∈ R2 and any r > 0

Gr(s, t) ≤ min(s, t).

The next theorem shows how the condition (Ha) gives information about the behavior of Gr.

Theorem 3.1
Let ψ : R→]0,+∞[ be an invertible non-increasing function such that

lim
t→−∞

ψ(t) = +∞, ψ(0) = 1, and lim
t→+∞

ψ(t) = 0.

If ψ satisfies the condition (Ha) for some a ∈ ]0, 1[, then for all s, t ∈ R,

lim
r↘0

Gr(s, t) = 0 ⇐⇒ min(s, t) = 0.

For both θ1r and θ2r examples, the assertion of Theorem 3.1 is satisfied. Indeed direct computations lead to

1. For s > 0 and t > 0 such that
1

s
+

1

t
≤ 1

r
, we have the following explicit expression

G1
r(s, t) =

st− r2

s+ t+ 2r
. (22)

Note that the denominator is not zero when s, t are non-negative even when s = t = 0. In addition, when

min(s, t) > 0 we have lim
r↘0

G1
r(s, t) =

st

s+ t
< min(s, t).

2. For any s, t ∈ R, we have the following explicit expression

G2
r(s, t) = −r log(e−s/r + e−t/r). (23)

Assume s = min(s, t). Then we have s− r log(2) ≤ G2
r(s, t) because

e−s/r + e−t/r ≤ 2e−s/r.

Thus, min(s, t)− r log(2) ≤ G2
r(s, t) ≤ min(s, t). Passing to the limit as r goes to 0, we conclude that

lim
r↘0

G2
r(s, t) = min(s, t).

Figure 2 illustrate the behaviour of G2
r(x,−x).
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Figure 2. Comparison of G2
r(x,−x) and min(x,−x).

Now, we focus on the case where ψ satisfies (Ha) for all a ∈]0, 1[ and state a stronger result (see [18]).

Theorem 3.2
Let ψ : R→]0,+∞[ be an invertible non-increasing function such that

lim
t→−∞

ψ(t) = +∞, ψ(0) = 1, and lim
t→+∞

ψ(t) = 0.

If ψ satisfies (Ha) for all a ∈ ]0, 1[, then for any s, t > 0,

lim
r↘0

Gr(s, t) = min(s, t).

3.3. An approximate formulation

In this section, we present two new reformulations of the complementarity problem (4) by corresponding to two
approximation schemes.

3.3.1. Approximation of NCP using θ1r -function and θ2r -function Using θr-function, we regularize each
complementarity constraint by considering

xizi = 0, xi ≥ 0, zi ≥ 0 by Gr(xi, zi) := 0, i = 1, ..., n.

This approximation yields the following formulation

(P̃θ)

 F (x) = z,
x ≥ 0, z ≥ 0, r ↘ 0,
Gr(x, z) = 0.

(24)

We consider the family {Hr
θ (.), r > 0}, where

Hr
θ (x, z) =

[
F (x)− z
Gr(x, z)

]
, (25)

is a regularized function of H defined in (6).

Lemma 3.3
Let Hr

θ1
(x, z) and Hr

θ2
(x, z) be defined by (25) respectively for θ1r and θ2r . Then, for any (x, z) ∈ R2n

+ the Jacobian
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matrix of Hr
θ1
(x, z) is

∇Hr
θ1(x, z) =

(
∇F (x) −I
Da(x, z) Db(x, z)

)
,

where Da(x, z) = diag{a1(x, z), ..., an(x, z)} and Db(x, z) = diag{b1(x, z), ..., bn(x, z)} are two diagonal
matrices, given by

ai(x, z) =

(
zi + r

xi + zi + 2r

)2

, bi(x, z) =

(
xi + r

xi + zi + 2r

)2

, i = 1, ..., n.

and, for any (x, z) ∈ R2n
+ the Jacobian matrix of Hr

θ2
(x, z) is

∇Hr
θ2(x, z) =

(
∇F (x) −I
Qk(x, z) Ql(x, z)

)
,

whereQk(x, z) = diag{k1(x, z), ..., kn(x, z)} andQl(x, z) = diag{l1(x, z), ..., ln(x, z)} are two diagonal matrices,
given by

ki(x, z) =
e−xi/r

e−xi/r + e−zi/r
, li(x, z) =

e−zi/r

e−xi/r + e−zi/r
, i = 1, ..., n.

In order to study the nonsingularity of the Jacobian matrix of Hr
θ1
(x, z) (resp. Hr

θ2
(x, z)), we state first a basic

but essential lemma.

Lemma 3.4
Let M ∈ Rn×n be a P0-matrix. Then any matrix in the following form is nonsingular:

Ns +NtM,

whereNs ∈ Rn×n is a positive (negative) diagonal matrix, andNt ∈ Rn×n is a nonnegative (non-positive) diagonal
matrix.

Proof
Let Ns = diag(s1, s2, ..., sn) and Nt = diag(t1, t2, ..., tn). If Ns is positive, and Nt is nonnegative, then si > 0 and
ti ≥ 0 for all i = 1, 2, ..., n.

Let v ∈ Rn be a vector such that (Ns +NtM)v = 0. Then, we have vi = −
ti
si
(Mv)i.

It yields v2i = − ti
si
vi(Mv)i. If ti = 0, then vi = 0, ∀i = 1, ..., n.

If vi ̸= 0, we have ti
si
> 0. Owing to v2i ≥ 0, we have vi(Mv)i ≤ 0. If vi(Mv)i = 0, then vi = 0. Otherwise,

vi(Mv)i < 0 contradicts the property of M . Based on the above discussion, it is concluded that v = 0, then
Ns +NtM is a nonsingular matrix.

By Lemma 3.4, we can obtain a property of Hr
θ1

and Hr
θ2

if F is a P0-matrix.

Theorem 3.3
Let F be a P0-function. Then, for any r > 0, and any (x, z) ∈ R2n

+ the Jacobian matrix ∇Hr
θ1
(x, z) (resp.

∇Hr
θ2
(x, z)) is nonsingular.

Proof
For all r > 0 and from Lemma 3.3, it follows that the diagonal matrix Da(x, z) (resp. Qk(x, z)) is non-negative,
and Db(x, z) (resp. Ql(x, z)) is non-negative diagonal matrix.
Since F is a P0-function, the Jacobian matrix ∇F (x) is a P0-matrix.
We have

det(∇Hr
θ1(x, z)) = det(Da(x, z) +∇F (x)Db(x, z)),

Stat., Optim. Inf. Comput. Vol. 10, September 2022



1276 A NEW SMOOTHING METHOD FOR NCP

and
det(∇Hr

θ2(x, z)) = det(Qk(x, z) +∇F (x)Ql(x, z)).

Since ∇F (x) is a P0-matrix and from Lemma 3.4, it follows that Da(x, z) +∇F (x)Db(x, z) (resp. Qk(x, z) +
∇F (x)Ql(x, z)) is nonsingular. Hence ∇Hr

θ1
(x, z) (resp. ∇Hr

θ2
) is nonsingular.

4. New approach for solving nonlinear complementarity problems

In this section, we present the idea of our algorithms, we take inspiration from the well-known interior-point
methods (IPMs) usually used in nonlinear programming. Even though we don’t have any objective function to
minimize, the regularization idea behind IPM can be used to tackle NCP.
One can replace the original nonsmooth problems NCPs by a sequence of regularized problems

Hr(X) = 0, (26)

where

X =

[
x
z

]
∈ R2n

+ , Hr(X) =

[
F (x)− z
x.z − re

]
, (27)

and r ≥ 0 is the smoothing parameter, e ∈ Rn is the vector whose components are all equal to 1. The Jacobian
matrix of Hr with respect to X, does not depend on r and can be denoted by

∇Hr(X) =

(
∇F (x) −I
Z X

)
, (28)

where Z and (resp. X) the diagonal matrix of z (resp. x).
The main difficulty in this approach, is to drive r to 0. In [36] the authors propose a new technique where r is
considered as a new variable.

4.1. When the parameter becomes a variable

In the system (26), the status of the parameter r is very distinct from that of the variable X. While X is computed
“automatically” by a Newton iteration, r has to be updated “manually” in an ad-hoc manner.
Our goal is to find a strategy that decreases r during iterations and ensures the nonnegative of variables. However,
we must adjust the strategy when the model or its parameters are changed. To avoid this trouble, we consider r as
an unknown of the system instead of a parameter as in [36].
We feel that it would be judicious to incorporate the parameter r into the variables. Let us, therefore, consider the
enlarged vector of unknowns

X =

[
X
r

]
∈ R2n

+ ×R+, (29)

and then consider a system of 2n+ 1 equations

Hθ(X) = 0, (30)

to be on X. To this end, let us remind ourselves that our ultimate goal is to solve H0
θ1
(X) (we restrict our choice of

θ-fucntion to θr(t) = θ1r(t)), together with the inequalities x ≥ 0, z ≥ 0.
Thus, it is really natural to first consider

Hθ(X) =
[
Hr

θ1
(X)
r

]
. (31)

This construction turns out to be too naive. Indeed, if we start from some r0 and solve the smooth system (31) by
the smooth Newton method since the last equation is linear, we end up with r1 = 0 at the first iteration. Once the
boundary of the interior region is reached, we are “stuck” there.
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To prevent r from rushing to zero in just one iteration, we could set

Hθ(X) =
[
Hr

θ1
(X)
r2

]
. (32)

At this stage, system (32) is not yet fully adequate. Indeed, the last equation is decoupled from the others.
Everything happens as if r follows a prefixed sequence, generated by the Newton iterates of the scalar equation
r2 = 0, regardless of X. It is desirable to a couple r and X in a tighter way. In this respect, we advocate

Hθ(X) =
[

Hr
θ1
(X)

1
2∥x

−∥2 + 1
2∥z

−∥2 + r2

]
, (33)

where x− is the vector of components x−i = min(xi, 0) and similarly for z− and

∥x−∥2 =

n∑
i=1

min2(xi, 0), ∥z−∥2 =

n∑
i=1

min2(zi, 0).

This choice has the benefit of taking into account the nonnegativity condition x ≥ 0 and z ≥ 0.
Indeed, the last equation of (33) implies that, as long as r ≥ 0, we are ascertained that x− = z− = 0. This amounts
to saying that x ≥ 0 and z ≥ 0. Should a component of x or z become negative during the iteration, this equation
would contribute to “penalize” it.
Since r is now considered a variable and the scalar function t 7→ 1

2 |min(t, 0)|2 is differentiable and its derivative is
equal to min(t, 0). From this observation, the Jacobian matrix of Hθ is:

∇XHθ(X) =

∇xH
r
θ1
∇zH

r
θ1

∂rH
r
θ1

(x−)T (z−)T 2r

 , (34)

where

∇xH
r
θ1 =

(
∇xF (x)
Da(x, z)

)
2n×n

, ∇zH
r
θ1 =

(
−I

Db(x, z)

)
2n×n

,

∂rH
r
θ1 =

 0n×1

diag

((
−2r

xi + zi + 2r
+

2(r2 − xizi)
(xi + zi + 2r)2

)
1≤i≤n

)
e


2n×1

,

If Hθ(X) = 0 where X ∈ R2n
+ ×R+ we obtain r = 0 and x− = z− = 0. Hence in this case, ∇XHθ(X) becomes

singular, since det(∇XHθ(X)) = 0. To solve this issue, we add a small enough positive parameter ε in the last
equation. We get

1

2
∥x−∥2 + 1

2
∥z−∥2 + r2 + εr = 0. (35)

Hence, we define the following systems

Hθ(X) =
[

Hr
θ1
(X)

1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr

]
. (36)

Lemma 4.1
Let X ∈ Ξ̄ (the closure of Ξ), where Ξ is the interior region defined in

Ξ = {X = (x, z) ∈ R2n | x > 0, z > 0}. (37)

Let r ∈ R and X = [X; r]T . Then,

det ∇Hθ(X) = (ε+ 2r) det ∇Hr
θ1(X).

If r > − ε
2 , the two Jacobian matrices are singular or nonsingular at the same time.
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Proof
Thanks to the assumption X ∈ Ξ̄, we have x ≥ 0 and z ≥ 0, so that x− = z− = 0. Expanding the determinant of
∇Hθ(X) with respect to the last row yields the desired result.

5. Convergence

In this section, we propose a generic algorithm to solve NCPs and prove some convergence results.
From now on, the enlarged equation (36) is selected as the reference system in the design of our new algorithm. The
idea is simply to apply the standard Newton method to the smooth system (36). To enforce a global convergence
behavior, we also recommend using α line search like Armijo back-tracking technique.
Now, we present our algorithm:

Algorithm1 Nonparametric method with Armijo line search
1. Chose X0 = (X0, r0), X0 ∈ Ξ, r0 =< x0, z0 > /n, τ ∈ (0, 1/2), ϱ ∈ (0, 1). Set k = 0.
2. If Hθ(Xk) = 0, stop.
3. Find a direction dk ∈ R2n+1 such that

Hθ(Xk) +∇XHθ(Xk)dk = 0.

4. Choose ζk = ϱjk ∈ (0, 1), where jk ∈ N is the smallest integer such that

Θ(Xk + ϱjkdk)−Θ(Xk) ≤ τϱjk ∇Θ(Xk)Tdk.

5. Set Xk+1 = Xk + ζkdk and k ← k + 1. Go to step 2.

The merit function used in the line search is:

Θ(X) = 1

2
∥Hθ(X)∥2.

A detailed description of nonparametric method is given in Algorithm 1. A few comments are in order:

• The initial point X0 = (X0, r0) must be an interior point, namely, X0 > 0 and the initial parameter
r0 =< x0, z0 > /n has the correct order of magnitude.

• If Xk ∈ Ξ, then (xk)− = (zk)− = 0 and

dk =

[
dXk

drk

]
= −

∇xH
r
θ1
∇zH

r
θ1

∂rH
r
θ1

0T 0T ε+ 2rk

−1 [
Hr

θ1
(Xk)

εrk + (rk)2

]
,

provided that the Jacobian matrix is invertible. The increment for the parameter is then

drk = −εr
k + (rk)2

ε+ 2rk
.

• There is no need to truncate the Newton direction dk to preserve positivity for xk+1 and zk+1, since
nonnegativity is “guaranteed” at convergence. However, if we want all the iterates to be nonnegative, so
we need to carry out additional damping after Step 4 (Armijo’s line search).

Proposition 5.1
Let F be a continuous differentiable P0-function. Then, step 3 in Algorithm 1 is well-defined.

Proof
We know that for all k ≥ 0, rk > 0,Xk > 0, and ε > 0,

det ∇Hθ(Xk) = (ε+ 2rk) det ∇Hrk

θ1 (X
k).
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By Theorem 3.3, ∇Hrk

θ1
(Xk) is nonsingular, so step 3 of Algorithm 1 is well-defined.

5.1. Global convergence analysis

Definition 5.1
(Regular zero). Let X∗ ∈ R2n+1 be a zero of Hθ, that is, Hθ(X∗) = 0. If the Jacobian matrix ∇XHθ(X∗) is
nonsingular, X∗ is said to be a regular zero of Hθ.

The main interest of Algorithm 1 lies in the prospect of global convergence, as envisioned by the theory that
we are developing now. This global convergence theory, is primarily based on the regularity of zeros [Definition
(5.1)]. We reproduce a concise result that can be found in the book of Bonnans [5], in view of its importance to our
algorithm.
We will prove the global convergence of Algorithm 1. First, we show that every d ∈ △ is a descent direction of Θ
at X, where

△(X) = {d ∈ Rn | ∇XHθ(X)d = −Hθ(X)}. (38)

Lemma 5.1
(see [37]) If X is not a solution of NCP, i.e. Θ(X) > 0, then every d ∈ △(X) satisfies the descent condition for X,
i.e., ∇Θ(X)Td < 0.

Using the preceding results, we can prove the following global convergence theorem.

Theorem 5.1
Every limit point X∗ = (X∗, r∗) of a sequence{Xk} generated by Algorithm 1 corresponds to a solution of NCP.

Proof
Since the sequence {Θ(Xk)} is nonnegative and decreases monotonically, it converges to some Θ∗ ≥ 0. We assume
Θ∗ > 0. Let X∗ be an accumulation point of {Xk} and {Xk}k∈K be a subsequence converging to {X∗}. Taking
a further subsequence if necessary, we can assume without loss of generality that lim

k→∞
dk = d∗, because ∆ is

uniformly compact near and closed at X∗ (see [37]). Furthemore, by the closedness of ∆, we have

d∗ ∈ ∆(X∗). (39)

Since Θ(Xk + ζkdk)−Θ(Xk) ≤ ζkτ ∇Θ(Xk)Tdk ≤ 0 . It is obvious that {ζkτ ∇Θ(Xk)Tdk} converges to 0. In
order to prove ∇Θ(Xk)Tdk → 0, we show that {ζk} is bounded away from 0. Now suppose that there exists a
subsequence such that ζk → 0. By the line search rule, we have

Θ(Xk + σkdk)−Θ(Xk)

σk
> τ ∇Θ(Xk)Tdk, (40)

where σk = ζk

ρjk . Since σk → 0, taking the limit of both sides of (40) yields

∇Θ(X∗)Td∗ > τ∇Θ(X∗)Td∗. (41)

Since Θ(X∗) = Θ∗ > 0 by assumption, it follows from (39) and Lemma 5.1 that ∇Θ(X∗)Td∗ < 0. Since τ < 1,
this contradicts (41). This implies that {ζk} is bounded away from 0, and hence, {∇Θ(Xk)Tdk} converge to 0.
That is,

lim
k→∞

∇Θ(Xk)T dk = ∇Θ(X∗)T d∗ = 0. (42)

It then follows from (39) and Lemma 5.1 that Θ(X∗) = 0. This is contradictory to Θ∗ > 0. Therefore, we must
have Θ(Xk)→ 0,which implies that any accumulaton point X∗ of {Xk} satisfies Θ(X∗) = 0 and hence is a solution
of NCP. The proof is complete.

Below is a result about the Jacobian matrix of Hθ(X), when r goes to 0.
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Lemma 5.2
Suppose that X∗ = (x∗, z∗) is a solution of NCP, then we have the following equality

lim inf
r→0

max
(
(∇xG

1
r(x

∗, z∗))ii, (∇zG
1
r(x

∗, z∗))ii
)
≥ 1

4
, ∀i = 1, ..., n,

where

∇xG
1
r(x

∗, z∗) = diag

(( z∗i + r

x∗i + z∗i + 2r

)2
)

1≤i≤n

 , and ∇zG
1
r(x

∗, z∗) = diag

(( x∗i + r

x∗i + z∗i + 2r

)2
)

1≤i≤n

 .

Proof
By considering the two possible situations (x∗i ≥ z∗i ) and (x∗i < z∗i ), very simple calculation give:

1. x∗i ≥ z∗i

max

((
z∗i + r

x∗i + z∗i + 2r

)2

,

(
x∗i + r

x∗i + z∗i + 2r

)2
)

=

(
x∗i + r

x∗i + z∗i + 2r

)2

≥
(

x∗i + r

2x∗i + 2r

)2

=
1

4
.

2. z∗i > x∗i

max

((
z∗i + r

x∗i + z∗i + 2r

)2

,

(
x∗i + r

x∗i + z∗i + 2r

)2
)

=

(
z∗i + r

x∗i + z∗i + 2r

)2

≥
(

z∗i + r

2z∗i + 2r

)2

=
1

4
.

Since ∇xG and ∇zG are bounded, the proof is complete by passing to the limit.

Lemma 5.3
Let X∗ = (x∗, z∗) be a solution of NCP satisfying the strict complementarity condition (i.e. x∗i + z∗i > 0, ∀i ∈
{1, ..., n}). We have

lim
r→0

(∇XHθ(X
∗, r)) =

∇F (x∗) −In×n 0n×1

ϕ(Z∗) ϕ(X∗) 0n×1

01×n 01×n ε

 ,

where

ϕ(Z∗)ii =

{
1 if z∗i ̸= 0 and x∗i = 0
0 if z∗i = 0 and x∗i ̸= 0,

and ϕ(X∗)ii =

{
1 if x∗i ̸= 0 and z∗i = 0
0 if x∗i = 0 and z∗i ̸= 0.

Proof
by definition

Hθ(X) =

 F (x)− z
G1

r(x, z)

1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr

 .
The Jacobian matrix of Hθ is:

∇XHθ(X) =

 ∇xF (x) −In×n 0n×1

∇xG
1
r(x, z) ∇zG

1
r(x, z) ∂rG

1
r(x, z)

(x−)T (z−)T 2r + ε

 .

1. The derivative of G1
r(x, z) with respect to x is:

∇xG
1
r(x

∗, z∗) = diag

(( z∗i + r

x∗i + z∗i + 2r

)2
)

1≤i≤n

 ,

when r goes to 0 the only two cases to consider are:
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• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i →0
z∗
i ̸=0

(∇xG
1
r(x

∗, z∗))ii = lim
r→0

(
z∗i + r

z∗i + 2r

)2

= 1.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∇xG
1
r(x

∗, z∗))ii = lim
r→0

(
r

x∗i + 2r

)2

= 0.

2. The derivative of G1
r(x, z) with respect to z is:

∇zG
1
r(x

∗, z∗) = diag

(( x∗i + r

x∗i + z∗i + 2r

)2
)

1≤i≤n

 ,

as below, the only two cases to consider are:

• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i →0
z∗
i ̸=0

(∇zG
1
r(x

∗, z∗))ii = lim
r→0

(
r

z∗i + 2r

)2

= 0.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∇zG
1
r(x

∗, z∗))ii = lim
r→0

(
x∗i + r

x∗i + 2r

)2

= 1.

3. The derivative of G1
r(x, z) with respect to r is:

∂rG
1
r(x

∗, z∗) =

(
−2r

x∗i + z∗i + 2r
+

2(r2 − x∗i z∗i )
(x∗i + z∗i + 2r)2

)
i=1,...,n

,

when r goes to 0 the only two cases to consider are:

• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i →0
z∗
i ̸=0

(∂rG
1
r(x

∗, z∗))i = lim
r→0

(
−2r

z∗i + 2r
+

2r2

(z∗i + 2r)2

)
= 0.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∂rG
1
r(x

∗, z∗))i = lim
r→0

(
−2r

x∗i + 2r
+

2r2

(x∗i + 2r)2

)
= 0.

Finally, since X∗ = (x∗, z∗) is a solution of NCP, we have x∗ ≥ 0 and z∗ ≥ 0, so that x− = z− = 0. Hence

lim
r→0

(∇XHθ(X
∗, r)) =

∇F (x∗) −In×n 0n×1

ϕ(Z∗) ϕ(X∗) 0n×1

01×n 01×n ε

 .

We present now, two situations where we can conclude about the nonsingularity of lim
r→0
∇XHθ(X

∗, r).
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Lemma 5.4
Suppose that X∗ = (x∗, z∗) is a solution of NCP, we have two possibilities when computing the determinant of Hθ

on (x∗, z∗).

• If X∗ = (x∗, z∗) satisfies the strict complementarity condition, then by Lemma 5.6, ∀ I ⊂ {1, ..., n}we have:

lim
r→0

det (∇XHθ(X
∗, r)) =

∣∣∣∣∣∣∣∣

(
∇F (x∗) −In×n

ϕ(Z∗) ϕ(X∗)

) 0

0

0 0 ε


∣∣∣∣∣∣∣∣ = ε

∣∣∣∣(∇F (x∗) −In×n

ϕ(Z∗) ϕ(X∗)

)∣∣∣∣ = ε|∇F (x∗)II|,

therefore the matrix lim
r→0
∇XHθ(X

∗, r) exists and is invertible if F is P-function.

• If X∗ = (x∗, z∗) does not satisfy the strict complementarity condition, then by Lemma 5.6, ∀ I ⊂ {1, ..., n}
we have:

lim
r→0

det (∇XHθ(X
∗, r)) =

∣∣∣∣∣∣∣∣

(
∇F (x∗) −In×n

ϕ(Z∗) ϕ(X∗)

) 0

0

0 0 ε


∣∣∣∣∣∣∣∣

= ε

∣∣∣∣(∇F (x∗) −In×n

ϕ(Z∗) ϕ(X∗)

)∣∣∣∣ = ε

∣∣∣∣(∇F (x∗)− In×n −In×n

ϕ(Z∗) + ϕ(X∗) ϕ(X∗)

)∣∣∣∣ ,
from Lemma 5.2 we have:

lim inf
r→0

max
(
(∇xG

1
r(x

∗, z∗))ii, (∇zG
1
r(x

∗, z∗))ii
)
≥ 1

4
> 0, ∀i = 1, ...n, (43)

hence lim
r→0

(
∇xG

1
r(x

∗, z∗) +∇zG
1
r(x

∗, z∗)
)
= ϕ(Z∗) + ϕ(X∗) is a positive diagonal matrix.

From Lemma 3.4, we take:

M = ∇F (x∗)− In×n,

Nt = ϕ(X∗),

Ns = ϕ(Z∗) + ϕ(X∗),

(44)

where Ns is a positive diagonal matrix, and Nt is a nonnegative diagonale matrix. Therefore the matrix
lim
r→0
∇XHθ(X

∗, r) exists and is invertible if ∇F (x∗)− In×n is P0-matrix.

Remark 5.1
The matrix lim

r→0
∇XHθ(X

∗, r) exists and is invertible if ∇F (x∗)− βIn×n is P0-matrix for any β > 0. Since

ϕ(Z∗) + βϕ(X∗) is a positive diagonal matrix for any β > 0.

Remark 5.2
If ∇F (x∗)− βIn×n is P0-matrix for any β > 0 then ∇F (x∗) is a P-matrix.

In the following, we focus our attention on the superlinear convergence rate of Algorithm 1.

Theorem 5.2
(Theorem 6.9, [5]). Let Hθ : R2n+1 → R2n+1 be a continuously differentiable function.

1. (Local analysis) Let X∗ be a regular zero of Hθ. If X0 is close enough to X̄, then ζk = 1 for all k, and Xk

converge to X∗ super-linearly (and we recover the standard Newton method).
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2. (Limit point) Let X∗ be a limit point of sequence {Xk}. If ∇Hθ(X∗) is invertible, then X∗ is a regular zero
of H. If X∗ is a regular zero of Hθ, then ζk = 1 for k big enough and Xk converge to X∗ super-linearly.

Proof
We apply Theorem 5.1 and Lemma 5.4 under some condition on F.

The next lemma measures the ”additional coercivity” effect of the smoothing.

Lemma 5.5
Assume F is a P0-function, then

1. Hθ is a P-function.
2. If Hθ(X, 0) exists then it is a P0-function.

Proof
(1) Let X, Y be two distinct vectors of R2n. Since F is a P0-function there exists an index i ∈ {1, ..., 2n} such
that Xi ̸= Yi and (Xi − Yi)(Fi(X)− Fi(Y )) ≥ 0. Without loss of generality, we can suppose that Xi > Yi and
Fi(X) > Fi(Y ).
Since ψ and ψ−1 are decreasing, we obtain consecutively that for any r > 0,

ψ(Xi/r) + ψ(Fi(X)/r) < ψ(Yi/r) + ψ(Fi(Y )/r), (45)

so
Gr(Xi, Fi(X)) > Gr(Yi, Fi(Y )).

Hence, Hθ is a P-function.
We will now deal with the case whereXi = Yi, ∀i < 2n+ 1. For i = 2n+ 1,we can suppose thatX2n+1 > Y2n+1

(X2n+1 − Y2n+1)(Hθ(X)2n+1 −Hθ(Y )2n+1) =(r1 − r2)(r21 + εr1 − r22 − εr2) > 0.

Hence, Hθ is a P function.
(2) If Hθ(X, 0) exists, passing to the limit in (45) as r ↘ 0, we obtain that Hθ(X, 0) is a P0-function.

Now we would like to study the asymptotic behavior of the Jacobian matrix of our method with the Jacobian
matrix of IPM when r goes to 0 and we need a lemma that is used to prove our main result.

Lemma 5.6
We consider the following system

Z.X = 0
Z ≥ 0, X ≥ 0,

(46)

where Z = diag(z) and X = diag(x).
Assume that Z, X are strictly complementary (i.e. Z +X > 0n×n). Then J is singular if and only if T is singular,
where

J =

(
∇F (x) −I
Z X

)
, and T =

(
∇F (x) −I
ϕ(Z) ϕ(X)

)
,

where ϕ(.) is defined in Lemma 5.3, here ϕ operates component-wise on Z and X .

Proof
By the strict complementarity hypothesis, we range the rows and the columns of J and T as follows

Jσ =

 ∇F (x)σ −Iσ(
Z1 0
0 0

) (
0 0
0 X2

) ,
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where X2 > 0 and Z1 > 0, and

(T )σ =



∇F (x)σ −Iσ
1

. . .
1

0

0 0




0 0

. . .

0

1 0
. . .

0 1




.

The determinant of the two matrices Jσ and (T )σ are equal to

det(Jσ) =

∣∣∣∣∣∣
∇F (x)σ −Iσ(
Z1 0
0 0

) (
0 0
0 X2

) ∣∣∣∣∣∣ = ±
∏
i∈I1

xi
∏
i∈I2

zi det(C),

det(Tσ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇F (x)σ −Iσ
1

. . .
1

0

0 0




0 0

. . .

0

1 0
. . .

0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ±

∏
i∈I1

ϕ(xi)
∏
i∈I2

ϕ(zi) det(C),

where C is a certain matrix, I1 = {i | xi > 0} and I2 = {i | zi > 0}. Since

±
∏
i∈I1

xi
∏
i∈I2

zi and
∏
i∈I1

ϕ(xi)
∏
i∈I2

ϕ(zi),

are nonzeros, then we can conclude that J and T are invertibles and singulars at the same time.

Theorem 5.3
Suppose that X∗ = (x∗, z∗) is a solution of NCP which satisfies the strict complementarity, and ∇H0(X

∗) be
defined by (28) (the Jacobian matrix of the interior-point method) is invertible. Then lim

r→0
∇XHθ(X

∗, r) is invertible,

i.e., the two Jacobian matrices are singular or nonsigular at the same time.

Proof

In view of Lemma 5.6, and thanks to the assumption X∗ = (x∗, z∗) is a solution of NCP, we have x∗ ≥ 0 and
z∗ ≥ 0, so that x− = z− = 0. Hence

lim
r→0

det (∇XHθ(X
∗, r)) =

∣∣∣∣∣∣∣∣

(
∇F (x∗) −In×n

ϕ(Z∗) ϕ(X∗)

) 0

0

0 0 ε


∣∣∣∣∣∣∣∣ = ε

∣∣∣∣(∇F (x∗) −In×n

ϕ(Z∗) ϕ(X∗)

)∣∣∣∣ ,
where ϕ(.) is defined in Lemma 5.3, Z∗ = diag(z∗) and X∗ = diag(x∗).
From Lemma 5.6, we conclude that if ∇XH0(X

∗) is invertible then lim
r→0
∇XHθ(X

∗, r) is invertible. This means,

that if the IPM converges our method converges.

Hypothesis H0 (F is a P0-function) assures us that our method is well defined and the Theorem 5.3 shows that
the domain of convergence of our method is at least as large as that of the IPM.
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6. Numerical experiments and applications

In this section, we present some numerical experiments for the two smoothing functions. Our aim is just to verify
the theoretical assertions for these two “extreme” cases.
First, we study eight test problems with various sizes and characteristics. Then, we present a comparison of some
randomly generated problems of our method and other approaches that have been suggested recently in [6, 14].
We also present numerical results for two concrete examples. All the codes are written in MATLAB 2020R and
run in the system of Windows 10 with PC i5 8-th Gen and 16.00 GB RAM. We take the precision ε = 10−9 (the
termination criterion).

Example 6.1
We consider eight test problems (that can be found in [9, 16, 21, 26, 38, 40]) with various sizes and characteristics.
In some cases, F is monotone or strongly monotone whereas others can have a non-connected solution set, in this
case, F is at most a P0-function. A precise description of each test problem is given in the appendix.

Table 1. Results for θ1 and θ2

Pb size Iter Opt. Feas. cpu time(s) r
(θ1, θ2) (θ1, θ2) (θ1, θ2) (θ1, θ2) (θ1, θ2)

P1 10 (114, 47) (7.58e-11, 7.66e-13) (0, 8.23e-11 ) (0.04, 0.0073) (2.96e-04, 0.0014)
100 (134, 65 ) (9.31e-12, 1.15e-15) (0, 1.51e-12) (0.14, 0.07) (1.06e-04, 9.21e-04)
500 (148, 66) (1.87e-12, 6.39e-16) (0, 4.28e-12) (5.24, 2.52) (4.90e-05, 8.95e-04)
1000 (153, 68) (1.05e-12, 7.82e-14) (0, 1.04e-09) (25.30, 11.41) (3.70e-05, 0.0012)

P2 10 (116, 47) (7.53e-11, 7.66e-13) (0, 8.23e-11) (0.01, 0.02) (2.83e-04, 1.41e-03)
100 (133, 74) (7.64e-12, 2.64e-13) (0, 3.47e-10) (0.19, 0.10 ) (8.74e-05, 0.0013)
500 (147, 84) (1.60e-12, 1.29e-12) (0, 8.62e-08) (5.25, 3.14) (4.01e-05, 0.0014)
1000 (153, 115) (8.22e-13, 2.25e-15) (0, 3.02e-10) (24.47, 19.89) (2.86e-05, 9.53e-04 )

P3 10 (14, 16) (3.46e-10, 1.65e-19) (0, 3.99e-18) (0.006, 0.02) (0.001, 4.49e-04)
100 (108, 44) (4.99e-10, 3.63e-20) (0, 4.75e-21) (0.22, 0.05) (0.0014, 0.0042)
500 (353,140) (7.58e-10, 3.97e-11) (9.68e-13, 7.54e-11) (35.03, 5.14) (0.0011, 0.002)
1000 (675, 265) (8.94e-10, 2.32e-10 ) (1.31e-12, 1.58e-11) (91.41, 24.77) (0.0011, 0.002 )

P4 4 (53, 58) (2.97e-10, 1.20e-10) (1.24e-07, 4.19e-08) (0.008, 0.0242) (6.06e-04, 1.72e-04)
P5 4 (16, 14) (3.02e-10, 1.92e-10) (0, 3.84e-10 ) (0.003, 0.009) (0.0026, 0.018)
P6 7 (10, 13) (1.06e-10, 7.16e-11) (0, 0) (0.1264, 0.0044) (0.0016, 1.33e-04)
P7 5 (33, 30) (2.23e-11, 1.16e-10 ) (0, 3.44e-14) (0.011, 0,016) (0.004, 0.003)
P8 10 (65, 45) (7.21e-11, 2.27e-11) (1.34e-12, 5.18e-11) (0.18, 0.16) (0.0018, 3.76e-04)

In this table, Size stands for the number of variables, Iter corresponds to the total number of Jacobian
evaluations, Opt. and Feas. correspond to the following optimality and feasibility measures

Opt. := max
1≤i≤n

|xiFi(x)| and Feas. := ∥min(x, 0)∥1 + ∥min(F (x), 0)∥1.

The results clearly show that our methods are efficient. We also remark that the second smoothing function is much
more efficient and powerful than the first one.
In the next table, we compare the results of θ2-smoothing approach to three state-of-the-art methods (Namely:
Fischer Burmeister (FB-Alg) [6], Newton Min (Min-Alg) and projection method (PM-Alg) [10]. We make a
comparison among Algorithm 1, FB-Alg, Min-Alg, and PM-Alg by implementing these algorithms to solve the
same benchmark test problems available in the literature. Since, we can not compare the iterative numbers, we only
present the optimality measures, and cpu time(s).
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Table 2. Comparison of Algorithm 1 (θ2) with FB-Alg, Min-Alg and PM-Alg.

Pb size Algorithm 1 (θ2) FB-Alg Min-Alg PM-Alg
Opt. time(s) Opt. time(s) Opt. time(s) Opt. time(s)

P1 10 7.66e-13 0.0073 4.23e-11 0.0273 3.11e-07 0.0092 2.5e-09 0.63
100 1.15e-15 0.07 1.55e-10 0.1052 1.55e-14 0.0134 9.1e-11 5.48
500 6.39e-16 2.52 4.47e-11 10.3936 1.55e-14 0.0282 4.7e-10 96.37

1000 7.82e-14 11.41 4.47e-11 96.5009 1.55e-14 0.0557 8.8e-11 224.04
P2 10 7.66e-13 0.02 2.47e-11 0.0512 1.76e-12 0.0136 2.2e-10 1.19

100 2.64e-13 0.10 1.25e-10 1.7285 5.06e-17 0.0193 7.1e-12 5.76
500 1.29e-12 3.14 6.04e-11 5.6432 2.06e-12 0.6265 5.3e-12 112.41

1000 2.25e-15 19.89 9.51e-12 25.1059 2.20e-13 3.2308 2.9e-11 336.20
P3 10 1.65e-19 0.02 6.58e-11 0.0272 4.24e-17 0.0078 6.4e-11 1.03

100 3.63e-20 0.05 5.90e-11 0.0327 4.24e-17 0.0080 1.8e-12 5.19
500 3.97e-11 5.14 1.30e-11 1.6040 4.24e-17 0.020 5.8e-13 90.22

1000 2.32e-10 24.77 5.56e-11 11.0915 4.24e-17 0.0314 2.4e-11 350.06
P4 4 1.20e-10 0.0242 2.94e-14 0.0435 6.12e-10 0.0019 3.1e-12 0.19
P5 4 1.92e-10 0.009 2.37e-10 0.2752 2.22e-16 0.0120 1.4e-12 0.34
P6 7 7.16e-11 0.0044 5.70e-10 0.1158 6.05e-17 0.0341 2.3e-11 0.31

The results clearly show that our methods are efficient, competitive, and superior to the Fischer Burmeister
method and projection method.

Example 6.2
This example is described in [16, 40]. The corresponding function F (x) is of the form:

F (x) = (AAT +B +D)x+ q,

where the matrices A, B and D are randomly generated as: any entry of the square n× n matrix A and of the
n× n skew-symmetric matrix B is uniformly generated from ]− 5, 5[, and any entry of the diagonal matrix D is
uniformly generated from ]0, 3[. The vector q is uniformly generated from ]− 500, 0[.
The matrix AAT +B +D is a positive definite and the function F is strongly monotone. We used the M-files
proposed in [40] to generate A, B, D and q.
In this example, we will compare our methods already mentioned in sections 3 and 4, named: Algorithm 1 (θ1),
Algorithm 1 (θ2) to some other methods (Newton min method (Min-Alg), Fischer-Burmeister’s method [6] (FB-
Alg) and the classical interior-point method [14] (IPM-Alg)). In order to complete this experiment, we propose the
performance profiles, developed by E. D. Dolan and J. J. Moré [8], as a tool for the comparative analysis of these
methods.
We set “ns = 5” as the number of methods and we have chosen “np = 100” (problems to be tested). We are
interested in the comparison of the computation time and the number of iterations.
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Figure 3. Performance profiles where tp, s represents the average computation time.

The figure above shows the performance profiles of five methods where the performance measure is execution
time. It is clear that our method with the θ2-function captures our attention (admits the highest probability value).
In fact, in the interval [0, 1], our method is able to solve 99% of the problems, while the other methods do not
reach 20% and require more time. We also notice that IPM-Alg is the slowest compared to others. However, for
t > 4, the three algorithms FB-Alg, Min-Alg, and Algorithm 1 with θ1-function confirm their robustness. Figure 3
also indicates that, with respect to the computation time, with the same initial points and under the same stopping
criterion, our method with θ2-function (resp. θ1-function) is the fastest method, followed respectively by Min-Alg,
FB-Algor, and IPM-Alg.
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Figure 4. Performance profiles where tp, s represents the average number of iteratoins.

In Figure 4, we illustrate the performance profiles of five methods considering the number of iterations required
as a performance measure. We notice that our method with the θ2-function is the winner (admits the highest
probability value) followed by our method with the θ1-function, Min-Algo, and FB-Alg. We also note that IPM-
Alg needs more iterations to resolve problems. The performance of our method with the θ1-function becomes
interesting beyond t = 3.

Example 6.3
(Geochemical Models [35]) The problem comes from Geochemistry. We introduce a model which are 2-salts. The
main idea is that we need to find a way to reformulate a general problem to a problem which has a form like
G(x) = 0. We show the numerical results by applying several iteration methods.
Let T,K are constant vectors which have meaning in chemistry. We define the problem as follows:
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Let x = (x1, x2, x3) and p = (p1, p2),

H : R5 → R3

(x, p)→ H(x, p) =

T1 − x1 − p1T2 − x2 − p2
x3 − x2 − x1

,
F : R3 → R2

x→ F (x) =

[
K1 − x1x3
K2 − x2x3

]
,

G : R5 → R5

(x, p)→ G(x, p) =

 H(x, p)
PTF (x)

p ≥ 0, F (x) ≥ 0

 .

We want to solve the equation

G(x, p) = 0 ⇐⇒

 H(x, p)
PTF (x)

p ≥ 0, F (x) ≥ 0

 = 0. (47)

Using our approach with θr = θ1r (resp. θr = θ2r ), we reformulate (47) and we get

Gθ1
r
(x, p) =



K1 − x1x3 − z1
K2 − x2x3 − z2
T1 − x1 − x4
T2 − x2 − x5
x3 − x2 − x1
x4z1 − r2

x4 + z1 + 2r
x5z2 − r2

x5 + z2 + 2r
1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr


= 0, Gθ2

r
(x, p) =



K1 − x1x3 − z1
K2 − x2x3 − z2
T1 − x1 − x4
T2 − x2 − x5
x3 − x2 − x1

−r log(e−x4/r + e−z1/r)

−r log(e−x5/r + e−z2/r)
1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr


= 0

and considering x4 = p1, x5 = p2.
Since our focus is on the effect of different smoothing approaches in solving (47), we replace the complementarity
constraint by the Min function, and by the Fischer-Burmeister’s function [6]. The corresponding two algorithms
are referred to as Min-Alg and FB-Alg, respectively. We make a comparison among Algorithm 1, Min-Alg, and
FB-Alg, IPM-Alg (the classical interior-point method [14]) by implementing these algorithms to solve problem
(47).
The Table 3, and Figure 5 show the results with the intial point x0 = (3, 1, 4, 5, 6)T , T = (2, 6)T ,
and K = (37.5837, 7.6208)T .
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Table 3. Comparison of Algorithm 1 (θ1) and Algorithm 1 (θ2) with Min-Alg, FB-Alg, and IPM-Alg.

Iter Algorithm 1 (θ1) Algorithm 1 (θ2) Min-Alg FB-Alg IPM-Alg
k ∥Gθ1

r
(xk)∥ ∥Gθ2

r
(xk)∥ ∥GMin(x

k)∥ ∥GFB(x
k)∥ ∥GIPM (xk)∥

0 24.5837 24.5837 24.5837 24.5837 24.5837
1 8.2104 13.2212 13.3538 8.9798 8.3720
2 2.5518 12.0213 12.1412 4.2253 6.2486
3 4.1723 9.6610 11.0112 1.2774 1.8581
4 1.9497 6.1377 9.9651 0.4355 1.2035
5 0.0382 1.3388 9.0020 0.2001 0.8359
6 0.0063 0.3347 8.1192 0.1049 0.2406
7 0.0012 0.0838 7.1321 0.0537 0.0032
8 2.4936e-04 0.0210 6.0534 0.0272 5.1935e-05
9 5.0533e-05 0.0052 4.6609 0.0137 1.6166e-05

10 1.0487e-05 0.0013 2.9998 0.0068 4.9426e-06
11 2.1474e-06 3.2750e-04 1.2778 0.0034 1.5108e-06
12 4.4258e-07 8.1875e-05 0.0563 0.0017 4.6172e-07
13 9.1435e-08 2.0469e-05 1.2410e-05 8.5782e-04 1.4110e-07
14 1.8834e-08 5.1172e-06 4.4658e-12 4.2899e-04 4.3119e-08
15 4.5031e-09 1.2793e-06 2.1451e-04 1.3176e-08
16 9.6186e-10 3.1982e-07 1.0726e-04 4.0264e-09
17 7.9956e-08 5.3631e-05 1.2304e-09
18 1.9989e-08 2.6816e-05 3.7597e-10
19 4.9973e-09 1.3408e-05
20 1.2493e-09 6.7041e-06
21 3.1233e-10 3.3520e-06
...

...
34 4.0918e-10

0 5 10 15 20 25 30 35

x

0

5

10

15

20

25

 |
|G

(x
)|

|

2-salts model  ||G(x
k
)||

 Algorithm 1 (
1
)

 Algorithm 1 (
2
)

Min-Alg

IPM

FB-Alg

0 5 10 15 20 25 30 35

x

-30

-25

-20

-15

-10

-5

0

5

 l
o
g
(|

|G
(x

)|
|)

2-salts model  log(||G(x
k
)||)

 Algorithm 1(
1
)

 Algorithm 1 (
2
)

Min-Alg

IPM

FB-Alg

Figure 5. 2-salts model of ∥G(xk)∥∞ and log(∥G(xk∥∞).
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According to Figure 5, the two best methods based on the number of iterations are the semi-smooth Newton
min method (14 iters) followed by our method (for θ1-function) with (16 iters). Next, come the classical interior-
point method and our method (for θ2-function) with (18 iters) and (21 iters), respectively. The last is the Fischer-
Burmeister’s method with (34 iters).

7. Conclusion

In this paper, we have presented a new smoothing approach for solving the nonlinear complementarity problem.
For such an approach, some useful properties have been analyzed, which were employed to develop a well-defined
and efficient Jacobian Newton algorithm for solving the nonlinear complementarity problem with P0-function. We
have established a result of global convergence and a super-linear convergence rate for the developed algorithm.
Numerical experiments prove the efficiency of our study in the following aspects:

1. It can find the solution of NCP either with less number of iterations or with higher precision than the other.
2. It is relatively more robust when the dimension of the test problems increases. In particular, it seems to be

more suitable for large-scale problems.
3. It is more efficient to find the nondegenerate solution of NCP with less iteration number than the others.

Appendix

We give in this appendix a brief description of each test example.

1. The two first examples P1 and P2 [21] correspond to strongly monotone function

F (x) = (F1(x), ..., Fn(x))
T with Fi(x) = −xi+1 + 2xi − xi−1 +

1

3
x3i − bi, i = 1, ..., n.

where x0 = xn+1 = 0 and bi = (−1)i (resp. bi =
(−1)i√

i
), i = 1, ..., n, for P1 (resp. P2).

2. P3 is another strongly monotone test problem from [9] where F (x) = (F1(x), ..., Fn(x))
T with

Fi(x) = −xi+1 + 2xi − xi−1 + arctan(xi) +
(
i− π

2

)
, i = 1, ..., n, (x0 = xn+1 = 0).

3. P4 and P5 are known as the degenerate and non-degenerate examples of Kojima-Shindo [26]. P4 and P5
are respectively defined by

F4(x) =


3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x1 + x22 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9
x21 + 3x22 + 2x3 + 3x4 − 3

 , F5(x) =


3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x1 + x22 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 3x4 − 1
x21 + 3x22 + 2x3 + 3x4 − 3

 .

P5 has a unique solution x∗ =
(√

6
2 , 0, 0,

1
2

)
with F (x∗) =

(
0, 2 +

√
6
2 , 5, 0

)
while P4 has two optimal

solutions x∗ =
(√

6
2 , 0, 0,

1
2

)
with F (x∗) =

(
0, 2 +

√
6
2 , 0, 0

)
and x∗∗ = (1, 0, 3, 0) with

F (x∗) = (0, 31, 0, 4). The first optimal solution of P4 is degenerate since x∗3 = F3(x
∗) = 0.

4. [38] In problem (4), x ∈ R7 and F (x) : R7 → R7 is given by
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F6(x) =



2x1 − x3 + x5 + 3x6 − 1
x2 + 2x5 + x6 − x7 − 3

−x1 + 2x3 + x4 + x5 + 2x6 − 4x7 + 1
x3 + x4 + x5 − x6 − 1
−x1 − 2x2 − x3 − x4 + 5
−3x1 − x2 − 2x3 + x4 + 4

x2 + 4x3 − 1.5


.

P6, has a non-degenerate solution

x∗ = (0.2727, 2.0909, 0, 0.54545, 0.4545, 0, 0)T .

5. A complete description of P7 and P8 can be found in [40, 16]. These two examples correspond to the Nash-
Cournot test problem with N = 5 and N = 10.
Let x ∈ RN , Q =

∑
xi and define the functions Ci(xi) and p(Q) as follows:

P (Q) = 5000
1
γQ

−1
γ , Ci(xi) = cixi +

bi
1 + bi

L
1
bi

i x
bi+1

bi

i .

The NCP function is given by

Fi(x) = C ′
i(xi)− P (Q)− xip′(Q), i = 1, ..., N,

with ci, Li, bi > 0 and γ ≥ 1. For our numerics, we used:

• N = 5, c = [10, 8, 6, 4, 2]T , b = [1.2, 1.1, 1, 0.9, 0.8]T , L = [5, 5, 5, 5, 5]T , e = [1, 1, 1, 1, 1]T and γ =
1.1.

• N = 10, c = [5, 3, 8, 5, 1, 3, 7, 4, 6, 3]T , b = [1.2, 1, 0.9, 0.6, 1.5, 1, 0.7, 1.1, 0.95, 0.75]T ,
L = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]T , e = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T and γ = 1.2.
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