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Abstract This paper adopts a bootstrap procedure in the maximum pseudo-likelihood method under probability sampling
designs. It estimates the mean of a population that is a mixture of excess zero and a nonzero skewed sub-population.
Simulations studies show that the bootstrap confidence intervals for zero-inflated log-normal population consistently capture
the true mean. The proposed method is applied to a real-life data set.
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1. Introduction

An underlying population that contains many zeros appears in a wide range of literature, from social sciences to
natural sciences. Data with too many zero values are common in several applications such as insurance, reliability,
meteorology, ecology, auditing, and manufacturing; Paneru [15] cited examples of data with too many zero
values in various disciplines. In meteorology, for example, a geographical region may have many days with no
rainfall (zero precipitation is recorded); the rest of the days are recorded with a value of positive precipitation.
Similarly, in a production process, a manufacturing plant aims to produce a large proportion of non-defective
items (a zero-defect is recorded) and a small proportion of defective items where the number of defects follows
a probability distribution [11, 14]. In general, zero-inflated data has a large spike of zero values with a smaller
proportion of nonzero values and is thus called a zero-inflated population (ZIP). These examples suggest that a
zero-inflated population could consist of a nonzero sub-population with continuous or count data.

Excess zeros and skewness in the zero-inflated population are commonly encountered phenomena that limit
traditional methods to estimate the population mean. Similar issues happen in developing regression models for
the zero-inflated data. Estimating the population mean based on normal approximation or the central limit theorem
(CLT) gives poor estimates because of apparent skewness caused by zero values, skewness in the population’s
nonzero component, or both. Different approaches and techniques are developed to overcome the issue of zero
inflation. In a two-component mixture model, the population is split into zero and nonzero components, where
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the nonzero component follows a known probability distribution [10]. Under parametric assumptions, likelihood
ratio statistics and bootstrap techniques are applied to construct confidence intervals for the mean of diagnostic
test charge data containing many zeros [26]. Other approaches to construct confidence intervals of zero-inflated
population mean include a pseudo empirical likelihood approach in complex sampling surveys [2], a mixture
model of true zero exposures, and a log-normal distribution with left censoring [22]. The zero-inflated log-normal
distribution is important in real-life as many populations are highly skewed, such as rainfall, air contamination
exposure, and diagnostic test charge; and different approaches exist to compare the mean of such populations
[27, 23, 25, 26, 12]. Satter and Zhao [20] proposed empirical and adjusted empirical likelihood methods to
construct nonparametric confidence intervals for the mean of a zero-inflated population. Satter and Zhao [21]
further extended their empirical methods to the Jackknife empirical likelihood method to estimate the difference
in means of two zero-inflated skewed populations. Pittman et al. [19] describe different methods for analyzing
overdispersed zero-inflated count data and illustrate their application to cigarette and marijuana smoking data.
Furthermore, modeling of zero-inflated count data and applications have been studied by many researchers, e.g.,
[24, 9, 3, 13, 4]. Although, many of the existing methods for estimating the mean of ZIPs do not address the
problem when the data is produced through complex probability sampling designs such as stratified sampling
and cluster sampling, which are commonly applied to survey sampling and designs. Chen et al. [1] proposed
a maximum pseudo-likelihood approach under complex probability sampling designs for interval estimation of
zero-inflated population mean. Paneru and Chen [16, 17] extended the pseudo-likelihood approach to develop
regression models for the zero-inflated data.

Although the pseudo-likelihood approach addresses complex sampling designs and shows confidence intervals
have better coverage than existing methods, the method reliant on pseudo-likelihood ratio test statistic to produce
confidence intervals under the pseudo-likelihood approach is mathematically and computationally complex. To
overcome the complexity, Paneru et al. [18] adopted a pseudo-likelihood approach in a bootstrap procedure, an
alternative method for constructing interval estimates for the mean of the zero-inflated population. The bootstrap
procedure is mathematically, computationally, and intuitively more straightforward than existing methods. Paneru
et al. [18] provide the application in the normal model, assuming that the nonzero component is normally
distributed.

This paper extends Paneru et al. [18] to highly skewed data where a nonzero component brings extra skewness
in a zero-inflated population. This paper describes the two-component mixture model, maximum pseud-likelihood
function, and derivation of parameter estimates in the zero-inflated log-normal mixture model. It explains the
bootstrapping procedure used, along with the results of the simulations. It also demonstrates the application to
actual data, the Canadian Labour Force Survey-2000 detailing extra work hours.

2. Methodology

This paper follows the concept of the two-component parametric mixture model from [10], the maximum pseudo-
likelihood approach developed in [1], and the bootstrap procedure adopted in [18]. In ZIPs, two components
exist; one consists solely of zero values and the second component of nonzero values that adheres to some known
probability distribution. The two-component mixture model for the zero-inflated population is defined by

h(y;α, µ, σ) = αf(y;µ, σ)I(y ̸=0) + (1− α)I(y=0), (1)

where α is the proportion of nonzero values, µ is the mean and σ is the nuisance parameter of the nonzero
component, and I is the indicator function. The parameter of interest, the mean of the zero-inflated population,
is

θ = αµ.
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Consider a survey population of N units with values y1, · · · , yN be independently generated from the model (1)
. The log-likelihood function of all N sampling units of survey population is

l(α, µ, σ) =

N∑
i=1

log h(yi;α, µ, σ).

Let s be a random subset of n sampling units with values y1, · · · , yn selected from the surveyed population. Let
m(< n)) be the number of zero values in n observed units arranged as

yi ̸= 0 for i = 1, · · · , n−m

= 0 for i = n−m+ 1, · · · , n.

As explained in [1], consider a probability sampling design, where the random subset s of n sampling units is
obtained from the surveyed population with inclusion probability πi, i = 1, · · · , n. Under the probability sampling
design, the pseudo-likelihood function, an estimate of the log-likelihood function, l(α, µ, σ), is defined by

l̂(α, µ, σ) =
∑
i∈s

wi log h(yi;α, µ, σ),

where the sampling weights wi = 1/πi, i = 1, · · · , n are chosen such that E(l̂) = l.

In real-world applications, zero-inflated data is complex to analyze due to a spike at zero with addition skewness
in nonzero component. To address the issue, this paper considers the nonzero component to follow a log-normal
distribution in the two-component model (1). The pdf of the log-normal component of the model (1) is

f(y;µ, σ) =
1

y
√
2πσ2

e−
(ln y−ξ)2

2σ2 , y > 0,

where µ = E(Y |Y > 0) = exp(ξ + σ2

2 ). The pseudo-likelihood function and the estimation of parameters for the
zero-inflated log-normal population is given below.

l̂(α, µ, σ) =
∑
i∈s

wi log h(yi;α, µ, σ)

=
∑
i∈s

wi log{αf(yi;µ, σ)I(yi ̸=0) + (1− α)I(yi=0)}

=

n−m∑
i=1

wi log{αf(yi;µ, σ)I(yi ̸=0)}+
n∑

i=n−m+1

wi log{(1− α)I(yi=0)}

=

n−m∑
i=1

wi logα+

n−m∑
i=1

wi log

{
1

yi
√
2πσ2

e−
(ln yi−ξ)2

2σ2

}
+

n∑
i=n−m+1

wi log(1− α)

=

n−m∑
i=1

wi logα+

n∑
i=n−m+1

wi log(1− α) +

n−m∑
i=1

wi log

{
1

yiσ
√
2π

}
−

n−m∑
i=1

wi(ln yi − ξ)2

2σ2

= w+ logα+ w0 log(1− α)− w+ log σ −
n−m∑
i=1

wi(ln yi − ξ)2

2σ2
+ C,

where

w+ =

n−m∑
i=1

wi and w0 =

n∑
i=n−m+1

wi.
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Pseudo-Likelihood Estimates of Parameters:

By Setting up
∂l̂

∂α
= 0, the estimate of the proportion of non-zeros, α, is given by

α̂ =
w+

w+ + w0
.

We derive the estimate of ξ by setting up
∂l̂

∂ξ
= 0. So,

1

σ2

[ n−m∑
i=1

wi ln yi −
n−m∑
i=1

wiξ

]
= 0

n−m∑
i=1

wi ln yi − w+ξ = 0.

Therefore,

ξ̂ =
1

w+

n−m∑
i=1

wi ln yi.

Similarly, the estimate of σ2 is derived as below.

∂l̂

∂σ
=

∂

∂σ

[
w+ logα+ w0 log(1− α)− w+ log σ −

n−m∑
i=1

wi(ln yi − ξ)2

2σ2
+ C

]

= 0 +
∂

∂σ

[
− w+ log σ −

n−m∑
i=1

wi(ln yi − ξ)2

2σ2

]
+ 0

= −w+

σ
+

1

σ3

n−m∑
i=1

wi(ln yi − ξ)2.

Then, by setting
∂l̂

∂σ
= 0,

σ̂2 =
1

w+

n−m∑
i=1

wi(ln yi − ξ)2.

In summary, the pseudo-likelihood estimates of the parameters under the log-normal model are given by

α̂ =
w+

w+ + w0
(2)

ξ̂ =
1

w+

n−m∑
i=1

wi ln yi (3)

σ̂2 =
1

w+

n−m∑
i=1

wi(ln yi − ξ)2 (4)

µ̂ = exp
(
ξ̂ +

σ̂2

2

)
(5)

Thus, the pseudo-likelihood estimate of the mean of the zero-inflated log-normal population is given by

θ̂ = E(Y ) = α̂µ̂ (6)
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3. Bootstrap Estimation and Simulation Results

The bootstrap technique was introduced by Efron [5], and further developments are found in Efron [6, 7]. The
bootstrap technique’s logic is that computing-based methods’ power can overcome the complexity of standard
statistical approaches [8]. This paper uses the bootstrap approach where the data follow a specified two-component
mixture model as detailed in the model (1). This paper also presents the simulation results of parametric and
nonparametric bootstrap estimates. We conduct simulation studies to calculate percentile bootstrap confidence
intervals of θ = αµ, the mean of zero-inflated populations. It uses the empirical distribution of bootstrap replicates
as the reference sampling distribution of θ̂, pseudo-likelihood estimation under complex probability sampling
designs given in equation (6) and B(= 10, 000) bootstrap replicates θ̂1, · · · , θ̂B of θ̂ are computed. Based on the
bootstrap replicates, 95% bootstrap percentile intervals are computed with the quantiles θ̂0.025 and θ̂0.975 as lower
and upper bounds, respectively. Different values of α (proportion of nonzero observations) are considered in
simulations.

For the simulation studies of the zero-inflated log-normal model, finite populations of size 10, 000(N = 10, 000)

are randomly generated and divided into four (k = 4) strata of sizes 500, 1500, 3000, and 5000. For a
random sample of size n = 500, the inclusion probability for each stratum is set to π1 = 140/500, π2 =

120/1500, π3 = 130/3000, and π4 = 110/5000. The corresponding weights for each stratum are set
to w1 = 500/140, w2 = 1500/120, w3 = 3000/130 and w4 = 5000/110, respectively. A random size
nj , j = 1, · · · , 4, is drawn from each stratum using simple random sampling without replacement.

In the first population condition, the nonzero component is generated using µ = 100 and σ = 30. Table 1 and
Figure 1 present the resulting bootstrap CIs and distributions, respectively. We find that the parametric bootstrap
method results in narrower intervals across all levels of nonzero proportion, α. At low levels α, bootstrap percentile
intervals are less centered on the population value compared to those at high levels of α. In the second population
condition, the nonzero component is generated using µ = 50 and σ = 25. Table 2 and Figure 2 present the resulting
bootstrap CIs and distributions, respectively. Results are similar to the first condition. A notable difference is that
the nonparametric bootstrap CIs are more heavily weighted towards zero. The tendency toward zero meant all CI
for the nonparametric approach is shifted to the left of the population value even though the intervals still contained
the parameter of interest. In the final population condition, the nonzero component is generated using µ = 20

and σ = 15, and results are presented in Table 3 and Figure 3. Results are similar to the previous conditions. For
α = 0.50, we observe a narrow overlap between the nonparametric and parametric bootstrap CIs which can be
seen in the bootstrap distributions presented in Figure 3. Caution may be needed in interpreting bootstrap intervals
in populations with a small mean.

In tables 1, 2, and 3 presented below, θ̂ is the pseudo-maximum likelihood estimate from simulated data, LL.025

and UL.975 represents the lower-limit and upper-limit, respectively, of the confidence intervals, and X̄ is the
bootstrap sample mean. Similarly, in figures 1, 2, and 3 displayed below, vertical dashed lines represent the true
value of θ at each level of α.
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Table 1. 95% Bootstrap confidence intervals of θ for given µ = 100 (location = 4.56) and σ = 25
(shape = 0.29) at α = 0.05, 0.10, 0.20, and 0.50.

Nonparametric Parametric

α True Value θ θ̂ LL.025 UL.975 X̄ LL.025 UL.975 X̄

0.05 5 3.924 1.634 6.612 3.878 3.305 5.307 4.209
0.10 10 8.936 6.169 11.898 8.926 8.414 10.574 9.440
0.20 20 18.940 14.303 24.012 18.960 18.321 21.708 19.937
0.50 50 48.252 42.183 54.518 48.288 47.982 52.553 50.186

alpha=0.05 alpha=0.10 alpha=0.20 alpha=0.50
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Figure 1. Bootstrap distribution of θ̂ for given µ = 100 (location = 4.56) and σ = 25 (shape = 0.29) at α = 0.05, 0.10, 0.20,
and 0.50.
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Table 2. 95% Bootstrap confidence intervals of θ for given µ =50 (location=3.80) and σ =25
(shape=0.47) at α = 0.05, 0.10, 0.20, and 0.50.

Nonparametric Parametric

α True Value θ θ̂ LL.025 UL.975 X̄ LL.025 UL.975 X̄

0.05 2.5 2.231 1.222 3.386 2.222 1.966 3.246 2.541
0.10 5 4.365 2.857 6.033 4.368 4.056 5.430 4.698
0.20 10 9.308 7.049 11.754 9.320 9.223 12.274 10.671
0.50 25 22.708 19.322 26.370 22.721 23.380 27.537 25.398

alpha=0.05 alpha=0.10 alpha=0.20 alpha=0.50
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Figure 2. Bootstrap distribution of θ̂ for given µ = 50 (location = 3.80)and σ = 25 (shape = 0.47) at α = 0.05, 0.10, 0.20,
and 0.50.
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Table 3. 95% Bootstrap confidence intervals of θ for given µ =20 (location=2.77) and σ = 15
(shape = 0.67) at α = 0.05, 0.10, 0.20, and 0.50.

Nonparametric Parametric

α True Value θ θ̂ LL.025 UL.975 X̄ LL.025 UL.975 X̄

0.05 1 0.862 0.416 1.416 0.861 0.732 1.323 0.990
0.10 2 1.676 1.016 2.427 1.674 1.579 2.402 1.945
0.20 4 3.502 2.548 4.534 3.497 3.607 5.307 4.373
0.50 10 8.936 7.498 10.492 8.940 9.687 12.049 10.825

alpha=0.05 alpha=0.10 alpha=0.20 alpha=0.50
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Figure 3. Bootstrap distribution of θ̂ for given µ = 20 (location = 2.77), σ =15 (shape= 0.67) at α = 0.05, 0.10, 0.20, and
0.50.
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In the simulation study, the coverage rates of bootstrap confidence intervals were investigated using the
population described above. For conditions, we varied the proportion of nonzero values (α) among 0.05, 0.1,
0.2, and 0.5. For sample size, we varied the number of cases randomly sampled from each stratum. The estimated
coverage rates for nonparametric percentile CIs are given in Table 4; the coverage rates increase consistently well
when the proportion of non-zero values (α) gets higher (e.g., when α = 0.5, recovery was at approximately nominal
levels).

Table 4. Coverage rates of 95% percentile bootstrap confidence
intervals of θ

Proportion of nonzero values (α)

µ nj α = 0.05 α = 0.10 α = 0.20 α = 0.50

20 50 0.852 0.874 .905 .942
100 0.897 0.913 .940 .940
200 0.910 0.935 .934 .948

50 50 0.891 0.936 .942 .939
100 0.923 0.932 .939 .949
200 0.939 0.946 .947 .959

100 50 0.916 0.936 .949 .939
100 0.932 0.925 .949 .944
200 0.939 0.940 .951 .950

4. Application

Due to the complexity of applying the pseudo-likelihood function detailed in the methodology, we apply the
bootstrapping method to the Canadian Labour Force Survey – 2000 for Ontario [1]. We looked at employees’
overtime hours, which can either be paid or unpaid hours worked outside the main job’s work schedule. The data
provides information of 17,415 participants; overtime hours are highly skewed. As shown in Table 5, the six strata
vary greatly in means and sizes, indicating that inclusion probability is highly associated with the response.In the
data, only 3,677 respondents have nonzero overtime hours with a mean of 92.15, which results in the nonzero
proportion α = 0.211 and the mean θ = αµ = 19.46. As stated in [1], we also view the data set as the underlying
population with θ = 19.46 for the illustration purpose. A random sample of sizes 110, 110, 70, 70, 40, and 40 was
taken from each of the six strata, respectively; the inclusion probabilities are listed in Table 5 . A similar approach
is taken as in the simulation, pseudo-likelihood estimates are generated, and nonparametric and parametric
bootstrap confidence intervals are constructed. The point estimate is 21.09, and the 95% percentile confidence
intervals are (14.79, 28.19) and (16.12, 25.90) for the nonparametric and parametric methods, respectively. Figure
4 gives the bootstrap distributions for both techniques, parametric and nonparametric. Note. The vertical dashed
lines in Figure 4 represent the 95% CIs of each bootstrap distribution of θ̂ and the middle (red) line represents the
population mean of interest.

The paper illustrates a bootstrap procedure (both mathematically and computationally simple) to the maximum
pseudo-likelihood approach under complex sampling designs developed in [1], it is worth comparing the confidence
intervals under the bootstrap procedure, and the existing approach developed in [1]. 95% confidence interval of
θ(= 19.46) under the existing approach [1] is estimated to be (9.47, 24.16). Bootstrap distribution of θ̂ estimates
that 95% percentile confidence intervals are (14.79, 28.19) and (16.12, 25.90), respectively, for nonparametric and

Stat., Optim. Inf. Comput. Vol. 10, September 2022



K. PANERU, R.N. PADGETT AND H. CHEN 1053

parametric methods. The application shows that the new simpler approach gives a consistent and more symmetric
confidence interval as compared to the existing method.

Table 5. Summary characteristics and inclusion probabilities for the six strata
P1, ..., P6 in the Canadian Labour Force Survey–2000 for Ontario

P1 P2 P3 P4 P5 P6

Mean (Over time hours) 23.14 20.15 14.25 19.42 23.61 11.45
Size 9910 1220 206 554 656 4869
Sample Size 110 110 70 70 40 40
Inclusion Probability 0.011 0.090 0.340 0.126 0.061 0.008
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Figure 4. Bootstrap distribution of θ̂ for Canadian Labour Force-2000, θ = 19.46.

5. Conclusion

Paneru et al. [18] describe the bootstrap method as an alternative approach to compute confidence intervals of
a zero-inflated population mean; the approach overcomes the complexity of maximum pseudo-likelihood ratio
statistic and the asymptotic distribution. Paneru et al. [18] only provide an application to the normal model where
the nonzero component is symmetrically distributed. However, it is common to work with data that is not normally
distributed in a real-life situation. This paper extends the bootstrap approach where the nonzero part in the two-
component model follows a log-normal distribution. Since the pseudo-likelihood function used in the methodology
assumes a known probability distribution for the nonzero component, we recommend parametric bootstrap for
the application. We also compute nonparametric bootstrap confidence intervals for the comparison. Under the
assumption of a nonzero log-normal component, the parametric bootstrap method gives narrower confidence
intervals than the nonparametric bootstrap method. Simulations results show that both bootstrap confidence
intervals, parametric and nonparametric, consistently capture the true population mean. The bootstrap method
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was applied to the real data of the Canadian Labour Force Survey – 2000 for Ontario. Although, as with the
application to the Labour Force data, the pseudo-likelihood function is constrained by the sample sizes and
inclusion probabilities. Caution should be kept in mind when selecting sample sizes, and careful consideration
of the variation of inclusion probabilities allows for the constructed bootstrap distributions to be symmetrical.
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