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Abstract A histogram-valued observation is a specific type of symbolic objects that represents its value by a list of bins
(intervals) along with their corresponding relative frequencies or probabilities. In the literature, the raw data in bins of all
histogram-valued data have been assumed to be uniformly distributed. A new representation of such observations is proposed
in this paper by assuming that the raw data in each bin are linearly distributed, which are called trapezoid-valued data.
Moreover, new definitions of union and intersection between trapezoid-valued observations are made. This study proposes
the k-nearest neighbour technique for classifying histogram-valued data using various dissimilarity measures. Further, the
limiting behaviour of the computational complexities based on the performed dissimilarity measures are compared. To study
the effect of using a distance instead of a dissimilarity measure, the Wasserstein distance is also used and the accuracy of
the classification is compared. Some simulations are done to study the performance of the proposed procedures. Also, the
results are applied to three various real data sets. Eventually, some conclusions are stated.
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1. Introduction

In classical data analysis, one usually describes a unit of data as a single (numerical, ordinal, or nominal) value for
each variable. On the other side, symbolic data analysis (SDA) introduced many other alternatives of representing
a unit of data with some more detailed descriptions than some single-valued variables. Such structured descriptions
are commonly called symbolic objects (SOs). One of the well-known types of SO introduced at the early era of
SDA is the interval-valued data, in which each variable contains a pair of upper and lower bounds. The interested
reader may refer to the key books by [10, 9]; see, also [8]. Global computerization of data gathering causes data
sets growing much more massive. Some data sets can naturally consist of some SOs. Meanwhile, many SOs can
result from some pre-defined aggregations from extra-large classical data sets into more manageable smaller data
sets. Nowadays, it is common to do some pre-defined aggregations or pre-clusterings of raw data to explore as
much information as possible from such massive data. Usually, the specific scientific questions of interests play
a significant role in determining the rules in pre-defined aggregations. A histogram-valued variable is a specific
type of SOs, which represents its values by a list of intervals along with their corresponding relative frequencies
or probabilities. Therefore, it is obvious that an interval-valued variable is a particular case of a histogram-valued
variable, where the list contains just one interval with the consequence probability of one. A more general form
of SOs is modal-valued variable, which consists of a list of qualitative or quantitative categories along with their
corresponding relative frequencies or probabilities.
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In practice, we can naturally find data in the form of HVD. For example, in collecting financial data, usually
the survey forms consists of ranges such as income, expenditure, etc. When the data are grouped by multiple
measurements or institutions, then we will have a list of ranges along with the corresponding relative frequencies.
In many experiments, accurate measurements may be difficult, but one can specify an interval for each subject, and
the ratio of the number of times the subject is placed in that interval is also known. For various technical, political,
or economic reasons, we might not have the access to obtain the raw data and only have summary data in the form
of histograms.

We can also view the act of building HVD as a data reduction technique. Aside from reducing the size of the
data, there may be some other analytical reasons behind the act of building HVD. For example, if the subject
of interest is in the form of groups of observations such as countries, institutions, or other forms of grouped
measurements, the HVD may be built. Kejzar et al. [24] brought an interesting example which consists of modal-
valued variables. Specifically, one of them is in the form of histogram-valued variable. They aimed to cluster the
European household patterns using three variables: “gender”, “category of household members” and “age-groups
of household members”. For every household, the variable “age-groups of household members” was represented by
histograms consisting nine 10-year groups along with their corresponding relative frequency. Obviously, presenting
the variable in the form of HVD provides much more information than presenting it with just a real value such as
mean. On the other hand, presenting all the raw data will make the data size much larger. Therefore, building HVD
can also be viewed as a dimensionality reduction.

There are some interesting researches on HVD learning in both supervised and unsupervised learning. In
supervised learning, there are some studies about the classification of HVD using learning random-forest [19]
and learning decision trees [18]. There are also some researches studying linear regression of histogram-valued
variables such as [23] and [13]. Some related works have been proposed in the fields of k-Nearest Neighbor
(k-NN) method for forecasting histogram time series [5, 16], smoothing method for histogram time series [3],
and k-NN regression on a classic dependent variable but using histograms for representing the observations [4].
However, there are some studies in unsupervised learning methods such as principal component analysis [29] and
clustering [25, 27] of HVD. More recently, there are some works in discriminant analysis, such as discriminant
analysis for interval-valued data [15, 32], distance based discriminant analysis for interval-valued data [31], and
discriminant analysis of distributional data via fractional programming [14]. Verde et al. [33] have also studied the
dimensionality reduction for distributional symbolic data. Different pattern classifiers for interval data based on
the logistic regression methodology have been introduced by [12]. A nonlinear regression model to interval-valued
data has been studied by [28]. Beyaztas et al. [7] introduced the functional forms of some well-known regression
models for interval-valued data.

This work focuses on the classification method for HVD using the k-NN method. This method is a specific type
of non-parametric classification method that is simple but effective in many cases [20]. The k-NN is a well-known
algorithm used not only in classification but also regression [34, 2]. In classification, each training observation
consists of a vector of features and its associated class label as its target value. Given a new observation, the k-NN
finds its k-most similar training observations, called k-nearest neighbours, according to any chosen distance metric
such as the Wasserstein distance or any dissimilarity measures such as those that will be presented in the next
section. After that, the k-NN predicts its value or class label as an aggregation of the target values associated with
its nearest neighbours. Usually, in classification, the class label will be the plurality vote of its neighbors. Hence, the
k-NN classification assigns the new observation to the most common class label among its k-nearest neighbours.
Despite its high computational query time, the k-NN can outperform the other classifiers and can take a role in a
variety of applications such as text categorization [17], economic forecasting [21], stock market prediction [1], and
genetics [35].

As a new point of view, a new representation of successive bins with associated frequencies is defined in this
paper. Note that in HVD, it is assumed that the observations in each bin are uniformly distributed. This assumption
may be extended in different ways to arise analogous but different representations of HVD. Precisely, we assume
that the observations in each bin are linearly distributed, and call such data as trapezoid-valued data (TVD). The
classification accuracy of both HVD and TVD will then be compared via simulation and real data sets. To compute
dissimilarity measures between trapezoid-valued observations, new definitions for the union and intersection are
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proposed. Further, the limiting behaviour of the computational complexities of the k-NN method is compared
using different dissimilarity measures. To study the effect of using a distance instead of a dissimilarity measure,
the Wasserstein distance is also used and the accuracy of the classification is compared for both of HVD and TVD.

The rest of this paper is organized as follows. Some preliminaries are presented in Section 2. The TVD is defined
in Section 3, and some of its properties are studied. Section 4 proposes the k-NN classification for HVD and TVD
based on different dissimilarity measures; the computational complexities of these measures are also discussed.
Section 5 contains a simulation study to compare the accuracy of the classification using given dissimilarity
and distance measures. The proposed method is applied to some real data sets in Section 6. Eventually, some
conclusions are stated in Section 7.

2. Preliminaries

2.1. Histogram-valued variables

Let X = (X1, . . . , Xm) be an m-dimensional random variable, and let X1, . . . ,Xn be n copies of X. For
i = 1, . . . , n, an outcome or observation of the Xi = (Xi1, . . . , Xim) is represented as

xi = {xij ; j = 1, . . . ,m} = {[bijk, bij(k+1)), pijk; j = 1, . . . ,m, k = 1, . . . , tij}, (1)

where tij is the number of bins in xij and [bijk, bij(k+1)) stands for the kth bin; note that
∑tij

k=1 pijk = 1.
A HVD can also be represented by its quantile function. The quantile function of a histogram-valued random

variable is basically the inverse of its cumulative distribution function (cdf). By assuming that the observations
in each bin of the histogram-valued random variable are uniformly distributed, the Xij in (4) has the following
probability density function (pdf)

fij(x) =


pij1, bij1 ≤ x < bij2,

pij2, bij2 ≤ x < bij3,
...
pijtj , bijtj ≤ x < bij(tj+1).

Therefore, the cdf of Xij is given by

Fij(x) =



0, x < bij1,

zij0 + pij1

(
x−bij2
bij2−bij1

)
, bij1 ≤ x < bij2,

zij1 + pij2

(
x−bij2
bij3−bij2

)
, bij2 ≤ x < bij3,

...

zij(tj−1) + pijtj

(
x−bijtj

bij(tj+1)−bijtj

)
, bijtj ≤ x < bij(tj+1),

1 x ≥ bij(tj+1),

where

zij` =

{
0, if ` = 0,∑`

h=1 pijh, if ` = 1, . . . , tij .
(2)
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It is not hard to show that the quantile function of Xij is

Qij(q) =



bj1 +
q−zij0
pij1

(bij2 − bij1), 0 ≤ q < zij1,

bj2 +
q−zij1
pij2

(bij3 − bij2), zij1 ≤ q < zij2,
...
bj(l+1) +

q−zijl
pij(l+1)

(bij(l+1) − bijl), zijl ≤ q < zij(l+1),

...
bj(tj+1) +

q−zijtj
pij(tj+1)

(bij(tj+1) − bijtj ), zijtj ≤ q < zij(tj+1).

(3)

The representation of a HVD based on its quantile function may be used to calculate the Wasserstein distance.

2.2. Dissimilarity and distance measures for HVD

Usually, the dissimilarity measures for continuous classical type of data are interpreted as the distance between two
observations based on their location in p-dimensional space. Contrasting with this fact, even when the center of two
histogram-valued variables are located at the same position in p-dimensional space, their dispersion degrees might
be different. Kim and Billard [26] introduced some extension of dissimilarity measures for HVD which reflect both
their location and dispersion. Some of their proposed dissimilarity measures include the extended Gowda-Diday
DGD, the generalized Minkowski distance Dq

M , the extended DeCarvalho’s measure DDC , and the normalized
cumulative distribution function measure DNCDF .

To compute the dissimilarity measures between two HVDs, they must have the same length and number of
bins. From (1), it is observed that each HVD is assumed to have different lengths and different numbers of bins
across i and j. Histogram-valued observations can be aggregated from classical raw data if they are given. By
first pre-specifying the same bins and then assigning the corresponding relative frequencies, one can obtain the
aggregated histogram data having common bins with the same lengths and the same number of bins for each
variable. However, there are some situations that raw data are not available. For example, suppose that we want
to compare some districts by the distribution of companies considering the features such as asset, total wage, and
the number of employees. These data might originate from statistical tables published by each district, where these
tables might be of the histogram form. Since the data might be from different sources, the lengths and numbers
of bins might be different across districts. It is not easy to computationally handle histogram data obtained in this
case. To solve this, we can consider a transformation of such data to obtain common bins across observations.
More details can be found in the Appendix of [26]. Based on their idea, histogram-valued observations in (1) can
be transformed such that all HVDs have common bin lengths and the same number of bins for each observation.
That is

xi = {xij ; j = 1, . . . ,m} = {[bjk, bj(k+1)), pijk; j = 1, . . . ,m, k = 1, . . . , tj}, (4)

where the bins are non-overlapped for given j across k; in this case
∑tj

k=1 pijk = 1.
In the sequel, to compute the dissimilarity measures, we use the transformed HVD as presented in (4). Denote

by Mij and Sij the empirical mean and standard deviation of the HVD xij , as defined by Billard and Diday [9],
respectively. Then, the dissimilarity measures DNCDF , DGD, D

q
M and DDC between two transformed HVDs xi1

and xi2 are briefly described as

DNCDF (xi1 ,xi2) =

m∑
j=1

{
1

bj(tj+1) − bj1

tj∑
k=1

(
(bj(k+1) − bjk)

∣∣∣∣ k∑
`=1

pi1j` −
k∑
`=1

pi2j`

∣∣∣∣)
}
,

DGD(xi1 ,xi2) =

m∑
j=1

{
|Si1j − Si2j |
Si1j + Si2j

+
Si1j + Si2j − 2S(i1∩i2)j

Si1j + Si2j
+
|Mi1j −Mi2j |
bj(tj+1) − bj1

}
,
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Dq
M (xi1 ,xi2) =

{
m∑
j=1

(
S(i1∪i2)j − S(i1∩i2)j + γ

(
2S(i1∩i2)j − Si1j − Si2j

))q}1/q

and

DDC(xi1 ,xi2) = π(xi1∪i2)− π(xi1∩i2) + γ

(
2π(xi1∩i2)− π(xi1)− π(xi2)

)
,

respectively, where γ is a prespecified constant such that 0 ≤ γ ≤ 0.5, and π(xi) = Πm
j=1Sij ; also, S(i1∪i2)j and

S(i1∩i2)j stand for the standard deviation of the union and intersection of the xi1j and xi2j , respectively. The
dissimilarity measure DNCDF has a value between 0 and m, where m is the number of variables. For more details
see [26].

To study the effect of using a distance instead of a dissimilarity measure, the Wasserstein distance is also used
in the paper. This distance for two histogram-valued random variables Xij and Xlj is defined by

DW (Xij , Xlj) =

√∫ 1

0

(
Qij(t)−Qlj(t)

)2
dt, (5)

where Qij(·) is as defined in (3). For more details see [22] and [23].

3. Trapezoid-valued data

In this section, we define a trapezoid-valued observation, which is in fact an analogous representation of a
histogram-valued observation. Note that a HVD contains more information which will produce more accurate
results than those obtained by interval data. The only information one may obtain from a HVD is a list of bins or
intervals and their corresponding relative frequencies. The common assumption on the bins of the HVD is that the
raw data are distributed uniformly in each bin. Here, we change this assumption such that the raw data in each bin
are linearly distributed. In this case, an observation looks like a set of trapezoidal stems and hence it is named as
trapezoid-valued data (TVD). The constant and slope of a linear function in each bin are computed based on the
information of the adjacent bins. Of course, it is also possible to assume other kinds of distributions for the raw data
in different bins rather than the linear one like normal or skew-normal distributions. In any way, any assumption
about a possible distribution rather than the uniform needs other additional, external or expert information about
the data distribution inside the bins.

The definition as well as some characteristics and properties of the TVD are presented in the sequel. Generally
we proceed with the case that there are n observations each containing m features such that the jth feature has
the number of tj bins. Also, we assume that the data are transformed to have common bins across each observation.

Definition 1
Let xi be a transformed observation as defined in (1). Then, it is said to be a TVD if the raw data in each bin are
distributed linearly with the pdf

fijk(x) = αijk + βijkx, bijk ≤ x < bij(k+1), i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , tij , (6)

where αijk and βijk are real constants, such that for given i, j and k,∫ bij(k+1)

bijk

fijk(x) dx = 1. (7)

Note that the distribution of the data on each bin depend on the frequencies of available data in that bin and
it’s adjacent bins. In other words, if the relative frequency of data at the (k + 1)th bin is more (less) than the kth
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bin, then it is reasonable to assume that the data are concentrated at the end of the jth bin with larger (smaller)
probability. This information must be considered to determine the slope of each bin. Hence, for fixed values of i and
j (i = 1, . . . , n; j = 1, . . . ,m), it is logical to consider the average of slopes of both the (k − 1)th and the (k + 1)th
bins as the slope of the pdf assumed on the kth bin (k = 1, . . . , tij). Hence, for i = 1, . . . , n, j = 1, . . . ,m and
k = 1, . . . , tij , we get

βijk =
1

2

(
pij(k+1) − pijk
mij(k+1) −mijk

+
pijk − pij(k−1)
mijk −mij(k−1)

)
, (8)

where pijk and mijk stand for the relative frequency and midpoint of data included in the kth bin of the jth feature
of the ith observation, respectively, such that pij0 = pij(tij+1) = 0. Since, all observations are assumed to have
same bins for each feature, the midpoints are also the same for all observations, that is, for i = 1, . . . , n, we get
mijk = mjk, such that

mj0 = bij1 −
bij2 − bij1

2
,

mjk =
bijk + bij(k+1)

2
, k = 1, . . . , tij − 1,

mjtij = bij(tij+1) +
bij(tij+1) − bijtij

2
.

Therefore, (8) can be rewritten as

βijk =
1

2

(
pij(k+1) − pijk
bij(k+2) − bijk

+
pijk − pij(k−1)

bij(k+1) − bij(k−1)

)
,

where

bij0 = bij1 − (bij2 − bij1) = 2bij1 − bij2,
bij(tij+2) = bij(tij+1) + (bij(tij+1) − bijtij ) = 2bij(tij+1) − bijtij .

Now, the constants in (6) are determined such that they satisfy the condition (7). Therefore, for i = 1, . . . , n, j =
1, . . . ,m and k = 1, . . . , tij , by doing some algebraic calculation, we obtain

αijk =
pijk

bij(k+1) − bijk
− βijk

2
(bij(k+1) + bijk).

To more clarification about the proposed data, let us compare the representations of both HVD and TVD for the
special case of one observation containing one feature with four bins, that is i = j = 1 and t1 = 4. For example,
consider the symbolic observation below

{[0, 1), 0.1, [1, 2), 0.4, [2, 3), 0.3, [3, 4), 0.2} .

Note that assuming uniform or linear distribution for the raw data in each bin leads to different representations of
the either HVD or TVD, respectively, which are plotted in Figure 1.

Lemma 1
The mean and standard deviation of the jth feature (j = 1, . . . ,m) of the ith (i = 1, . . . , n) TVD are given by

Mij =

tij∑
k=1

pijk

(
αijk

(b2ij(k+1) − b
2
ijk)

2
+ βijk

(b3ij(k+1) − b
3
ijk)

3

)
(9)

and

Sij =

{
tij∑
k=1

pijk

(
αijk

(b3ij(k+1) − b
3
ijk)

3
+ βijk

(b4ij(k+1) − b
4
ijk)

4

)
− (Mij)

2

} 1
2

, (10)

respectively.
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Figure 1. Examples of HVD and TVD representations.

Proof
Let us denote the pdf of the jth feature of the ith sample observation by fij(·), and denote the corresponding
random variable by Xij . Moreover, let us define

fijk(x) = P (Xij = x|bijk ≤ Xij < bij(k+1)).

Since all of consecutive bins constitute a partition for the domain of Xij , we get

fij(x) =

tij∑
k=1

P (Xij = x|bijk ≤ Xij < bij(k+1))P (bijk ≤ Xij < bij(k+1))

=

tij∑
k=1

pijkfijk(x)I
(
x ∈ [bijk, bij(k+1))

)
, (11)

where I(·) is an indicator function. From (7), we easily get
∫∞
−∞ fij(x)dx = 1. Therefore, the expectation of Xij

may be obtained as follows:

Mij = E(Xij) =

∫ ∞
−∞

xfij(x) dx

=

tij∑
k=1

pijk

∫ bij(k+1)

bijk

xfijk(x) dx

=

tij∑
k=1

pijk

∫ bij(k+1)

bijk

x(αijk + βijkx) dx

=

tij∑
k=1

pijk

(
αijk

(b2ij(k+1) − b
2
ijk)

2
+ βijk

(b3ij(k+1) − b
3
ijk)

3

)
.
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The variance is also derived as

S2
ij = Var(Xij) = E(X2

ij)− (E(Xij))
2

=

tij∑
k=1

pijk

∫ bij(k+1)

bijk

x2fijk(x) dx− (Mij)
2

=

tij∑
k=1

pijk

∫ bij(k+1)

bijk

x2(αijk + βijkx) dx− (Mij)
2

=

tij∑
k=1

pijk

(
αijk

(b3ij(k+1) − b
3
ijk)

3
+ βijk

(b4ij(k+1) − b
4
ijk)

4

)
− (Mij)

2.

So, the proof is complete.

Remark 1
Note that the HVD is a special case of the TVD. Indeed, if βijk = 0 in equation (6), then by (7), we get αijk = 1,
hence, a TVD turns to a HVD. Therefore, all the results obtained above for the TVD are satisfied for the HVD by
considering the mentioned changes. Of course in this case, the quantile function (3) is used. Though, if βijk 6= 0,
the quantile function is a bit different which is presented in the following Lemma.

Lemma 2
Let the jth feature of the ith TVD by Xij . Then, the cdf and quantile function of Xij are given by

Fij(x) =

tij∑
k=1

{
zij(k−1) + pijkαijk(x− bijk) +

βijk
2

(x2 − b2ijk)
}
I(bijk ≤ x < bij(k+1)), (12)

where I(·) stands for the indicator function, and zijk is as defined in (2). Also, the quantile function of Xij is given
by

Qij(q) =

tij∑
k=1

1

βijk

(
− αijk + sgn(βijk)wijk(q)

)
I(zij(k−1) ≤ q < zijk), (13)

provided that βijk 6= 0 (1 ≤ k ≤ tij), where

sgn(βijk) =

{
−1, βijk < 0,

1, βijk > 0,

and

wijk(q) =

(
α2
ijk + 2βijk

(q − zij(k−1)
pijk

+ αijkbijk +
βijk

2
b2ijk
)) 1

2

.

Proof
Using (11) and doing some algebraic calculations, it can be shown that the cdf of Xij is as follows

Fij(x) =



0, x < bij1,

pij1
∫ x
bij1

fij1(w) dw, bij1 ≤ x < bij2,

zij1 + pij2
∫ x
bij2

fij2(w) dw, bij2 ≤ x < bij3,

...
zij(tij−1) + pijtij

∫ x
bijtij

fijtij (w) dw bijtij ≤ x < bij(tij+1),

1 x ≥ bij(tj+1).
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It is easy to rewrite the cdf as

Fij(x) =

tij∑
k=1

[
zij(k−1) + pijk

∫ x

bijk

fijk(w) dw

]
I(bijk ≤ x < bij(k+1))

=

tij∑
k=1

[
zij(k−1) + pijk

{
αijk(x− bijk) +

βijk
2

(x2 − b2ijk)
}]
I(bijk ≤ x < bij(k+1)).

By solving the equation q = Fij(x) for bijk ≤ x < bij(k+1) and zij(k−1) ≤ q < zijk, we get the quadratic equation

bijk
2

x2 + αijk x =
q − zij(k−1)

pijk
+ αijkbijk +

βijk
2
b2ijk.

Hence, for zij(k−1) ≤ q < zijk, the inverse of the cdf is obtained as

F−1ij (q) = x =
−αijk + sgn(βijk)

√
α2
ijk + 2βijk(

q−zij(k−1)

pijk
+ αijkbijk +

βijk
2 b2ijk)

βijk
,

where sgn(βijk) guarantees the quantile function to be increasing. Considering this function for different values of
0 < q < 1, the the quantile function (13) is obtained. Hence, the proof is complete.

Note that in the first glance, it seems that the same dissimilarity measures as those used for the HVD may be also
used for the TVD by the difference that the means and standard deviations in the associated formulas are replaced
by (9) and (10), respectively. But, this has the unfortunate consequence of leading to the possibility of negative
values of variances of the trapezoid-valued observations, as computed by the extant formulas for these variances.
To cope with this problem, we propose new definitions for the union and intersection between two trapezoid-
valued observations. The proposed definitions formed on the basis of the principles of probability theory regarding
the intersection and union between two independent events A and B, such that the probabilities of intersection and
union are given by P (A ∩B) = P (A)P (B) and P (A ∪B) = P (A) + P (B)− P (A)P (B), respectively.

Definition 2
Let xi1 and xi2 be two independent transformed TVDs of the form (4). Then, the intersection of these observations
is defined as

xi1∩i2 = {[bjk, bj(k+1)), p(i1∩i2)jk; j = 1, . . . ,m, k = 1, . . . , tj},

where
p(i1∩i2)jk = pi1jkpi2jk, k = 1, . . . , tj . (14)

Further, the union of xi1 and xi2 is given by:

xi1∪i2 = {[bjk, bj(k+1)), p(i1∪i2)jk; j = 1, . . . ,m, k = 1, . . . , tj},

where
p(i1∪i2)jk = pi1jk + pi2jk − pi1jkpi2jk, k = 1, . . . , tj . (15)

Note that for given i1, i2 and j, we get
∑tj

k=1 p(i1∩i2)jk ≤ 1 and
∑tj

k=1 p(i1∪i2)jk ≥ 1. So, the frequencies
p(i1∩i2)jk and p(i1∪i2)jk could not be used to measure the mean of xi1∩i2 and xi1∪i2 , respectively. Thus, p(i1∩i2)jk
and p(i1∪i2)jk need to be standardized by dividing them by

∑tj
k=1 p(i1∩i2)jk and

∑tj
k=1 p(i1∪i2)jk, respectively.

This problem was also occurred in the definition of the union and intersection of two HVDs introduced by [26].
It is also worthwhile to note that the standard deviations of both union and intersection satisfy the conditions
S(i1∪i2)j ≥ max{Si1j , Si2j} and S(i1∩i2)j ≤ min{Si1j , Si2j}, respectively. So, they may be used to compute the
dissimilarity measures and guarantee the non-negative values for them.
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Remark 2
The frequencies (14) and (15) proposed in Definition 2 may be used to define the intersection and union of two
HVDs. Accordingly, the dissimilarity measures between two HVDs may be computed by using the new definitions
instead of the traditional ones used by [26].

4. The k-NN method

Let (yi,xi), for i = 1, . . . , n, be a learning sample, where xi is either a histogram- or trapezoid-valued observation
with the corresponding label yi. Moreover, let x∗ be a given observation with unknown class membership y∗, and
let D(· , · ) denote a metric. Then, the observations are ordered such that

D(x∗,x(1)) ≤ · · · ≤ D(x∗,x(k)) ≤ · · · ≤ D(x∗,x(n)).

Now, define the neighborhood N (x∗) of the k nearest neighbors of x∗ by

N (x∗) = {xj : D(x∗,xj) ≤ D(x∗,x(k))}. (16)

Assuming there are c different classes, the estimated probability π̂g that the covariate x∗ belongs to class g is given
by

π̂g =
1

k

∑
xj∈N (x∗)

I(yj = g), g = 1, . . . , c, (17)

where I(· ) stands for the indicator function. The unknown y∗ is assigned to the class that is most frequent within
the neighborhood N (x∗), i.e., to the class of highest predicted probability, that is, y∗ = arg maxg(π̂g).

Since different dissimilarity measures are used to construct the neighborhood (16), comparing the computational
complexity of them may be of great interest, which is discussed in the following proposition.

Proposition 3
Consider the transformed HVDs or TVDs as presented in (4). Let OD(·) be the limiting behaviour of the
computational complexity of the k-NN algorithm using the dissimilarity measure D, when the number of
observations n, the number of features m and the number of bins for the jth feature tj , tends towards a particular
value or infinity. Then, for both of HVD and TVD, we have

(i) The limiting computational complexity is of order O(n(k + (
∑m

j=1 tj)
2)) when one of the dissimilarity

measures DGD, D1
M , D2

M or DDC is used.

(ii) The limiting computational complexity is of order O(n(k +
∑m

j=1 tj)) when the algorithm uses the
dissimilarity measure DNCDF .

Proof
First consider the k-NN algorithm for some m-dimensional HVD with the number of tj bins for the jth variable,
j = 1, . . . ,m. For each single observation x∗ having unknown label y, with n training samples, a k-NN function
returning k selected indices of k nearest neighbor should have the following algorithm:

1. Initialize selectedi = 0 for each observation xi in the training set;
2. For each observation xi in the training set, compute D(x∗,xi), the distance between a new given observation

x∗ and xi;
3. For 1 to k, loop through all observations in the training set to select the index i with the smallest value of
D(x∗,xi). Select this observation to be included in the k-nearest neighbour by setting selectedi = 1;

4. Return the k selected indices.
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Note that, in the second step of the algorithm mentioned above, each dissimilarity measure has its own
computational complexity, which differs with the others. From Definition 3.1-3.7 in [26], clearly, DGD, Dq

M , and
DDC are computationally more complex than DNCDF . Namely, each dissimilarity measure including the union
and intersection between histograms adds more complexity, both in computation time and space. Meanwhile, the
dissimilarity measure DNCDF doesn’t need any descriptive statistics to compute. The complexity of including
union and intersection measures is O(tj) for the jth variable, j = 1, . . . ,m. Hence, the computational complexity
of DGD, Dq

M , and DDC for the jth variable in the second step is O((
∑m

j=1 tj)
2), while the complexity of DNCDF

is O(
∑m

j=1 tj). Moreover, for each iteration in the third step, we perform O(n) operations by looping through the
training set observations, so the step overall requires O(nk) operations. Further, the first and fourth steps only
require O(n) operations, so we get O(n(k +

∑m
j=1 tj)) runtime if we use DNCDF and O(n(k + (

∑m
j=1 tj)

2)) if
we use the other dissimilarity measures.

For the TVD, additional computation of the slopes and the constants of the pdf are needed before computing all
dissimilarity measures. Hence, the limiting computational complexity is of order O(n

∑m
j=1 tj). Therefore, if one

of DGD, Dq
M (q = 1, 2) or DDC is used, then the limiting behavior of the computational complexity is of order

O(n(k + (
∑m

j=1 tj)
2) + n

∑m
j=1 tj) = O(n(k + (

∑m
j=1 tj)

2)). Also, the computational complexity of the distance
DNCDF in classification algorithm is O(n(k +

∑m
j=1 tj) + n

∑m
j=1 tj) = O(n(k +

∑m
j=1 tj)). So, the proof is

complete.

Corollary 4
From Proposition 3, it is easy to see that if the numbers of bins of all features are the same, i.e., tj = t, for
j = 1, . . . ,m, then, for both of HVD and TVD, we have

(i) If one of the dissimilarity measures DGD, D1
M , D2

M or DDC is used, then, the limiting computational
complexity is of order O(n(k +m2t2);

(ii) If the algorithm uses the distance DNCDF , then, the computational complexity is of order O(n(k +mt)).

5. Simulation study

To investigate the accuracy of the classification algorithm in both of HVDs and TVDs, we do a simulation study in
this section. In a binary classification problem, we first generate the numbers of N1 and N2 observations from two
classes, labeled by C1 and C2, respectively, each having a specific distribution. The classes C1 and C2 are studied
for different levels of dissimilarity to analyze the behaviour of our method. Then, the distinctions between classes
C1 and C2 are made by taking into account of both parameters of the distributions. The data from C1 are generated
from various parametric distributions, each of them having two parameters. Then, the data from the other class, C2

are generated from the same distribution as C1 with a θ1% increase on the first parameter and a θ2% increase on the
second parameter. For example, if the class C1 consists of normally distributed samples with mean µ and variance
σ2, denoted by N(µ, σ2), then the distribution of class C2 will be N(µ+ θ1, σ

2), where θ1 is the percentage of the
change on the first parameter. In the same manner, the class C2 can also be taken from N(µ, σ2 + θ2), where θ2 is
the percentage of the change on the second parameter.

In the second step, we build the number of Nk
SO symbolic observations of the form (4) from some groups of

observations in class k (k = 1, 2), such that NSO = N1
SO +N2

SO stands for the total number of SOs. Here, we
assume that all SOs have the number of ten bins with the same bin lengths. After obtaining these data with binary
class labels, we assume that the raw data are not available and we only have access to the SOs. Then, we consider
the uniform and linear distributions for the raw data in each bin to get two kinds of HVD and TVD representations
of SOs, respectively. To compute the accuracies of the k-NN classification, let us choose randomly 80% of NSO
as the training set, and the remaining data as the test set. To study the variety of distributions, four different cases
are considered as below. In all cases, the observations of class C1 are denoted by Xi (i = 1, . . . , N1), and the
observations of class C2 are denoted by Yj (j = 1, . . . , N2).
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• Case 1 (Normal distribution): Let Xi ∼ N(µ, σ2), where N(µ, σ2) stands for the normal distribution with
the probability density function (pdf)

f(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
,

where µ is the mean of the distribution and σ is the standard deviation. To study the effect of change in the
mean and standard deviation, we consider Yj ∼ N((1 + θ1)µ, σ2) and Yj ∼ N(µ, σ2 + θ2σ

2), respectively.
So, the mean is shifted by 100θ1% and the variance is enlarged by 100θ2%.

• Case 2 (Gamma distribution): Assume Xi ∼ Γ(α, β), where Γ(α, β) denotes the Gamma distribution with
shape parameter α and scale parameter β, which has the pdf

f(x) =
1

βαΓ(α)
xα−1e−

x
β , x > 0, α > 0, β > 0,

where Γ(·) is the complete gamma function. The class C2 is drawn from either Γ((1 + θ1)α, β) or
Γ(α, (1 + θ2)β) distributions, where θ1 and θ2 show the amount of increase in the shape and scale parameters,
respectively.

• Case 3 (Beta distribution): Suppose that Xi ∼ Beta(α, β), where Beta(α, β) stands for the beta distribution
with shape parameters α and β, and the pdf

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)

β−1
, 0 < x < 1, α > 0, β > 0.

To investigate the effect of changes in parameters, we consider either Yj ∼ Beta((1 + θ1)α, β) or Yj ∼
Beta(α, (1 + θ2)β), where θ1 and θ2 show the amount of changes on the shape parameters.

• Case 4 (LN distribution): LetXi ∼ LN(µ, σ), where LN(µ, σ) shows the Log-normal (LN) distribution with
the pdf

f(x) =
1√

2πσx
exp

{
− (log x− µ)

2

2πσ2

}
.

The class C2 is drawn from either LN((1 + θ1)µ, σ) or LN(µ, (1 + θ2)σ) distributions to study the effect of
changes in the location or scale parameters, respectively.

Some one-dimensional (one feature) cases with various distributions and some selected values of θ1 and θ2
are simulated for both kinds of HVD and TVD for SOs. Here, the values of θ1 and θ2 are considered to be
20%, 50% and 100%. The accuracies of the k-NN classification using six different dissimilarity measures have
been calculated based on 1000 iterations of the simulation algorithm, and the results are presented in Table 1 for
N1
SO = N2

SO = 500.
From Table 1, it is deduced that:

1. In most of the cases, the bigger θ1 and θ2 result on the higher accuracies. This means that the proposed
methods can recognize the different classes well.

2. The accuracy of the classification based on the TVD is always more than or equal to that based on the HVD
for all dissimilarity and distance measures.

3. The accuracies obtained by using the distance DNCDF for both HVD and TVD are always the same. This
is trivial, since this measure uses neither the union nor intersection. Also, the distribution of the raw data in
each bin does not affect on this distance.

4. The accuracies based on D1
M , D2

M and DDC are almost the same for all cases.
5. Usually, one of the either Gowda-Diday dissimilarity measureDGD or Wasserstein distanceDW outperforms

the other measures.
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Class Dissimilarity measure
C1 C2 DGD D1

M D2
M DDC DNCDF DW

N(1,1) N(1.2,1) HVD 0.8115 0.7479 0.7446 0.7351 0.8299 0.8266
TVD 0.8470 0.7834 0.7801 0.7706 0.8299 0.8621

N(1.5,1) HVD 0.9884 0.7929 0.7929 0.7929 0.9940 0.9940
TVD 0.9907 0.9886 0.9885 0.9849 0.9940 0.9922

N(2,1) HVD 1.0000 0.9971 0.9971 0.9971 1.0000 1.0000
TVD 1.0000 0.9971 0.9971 0.9971 1.0000 1.0000

N(1,1.2) HVD 0.8870 0.5037 0.5053 0.4990 0.5214 0.8799
TVD 0.9012 1.0000 1.0000 1.0000 0.5214 0.8369

N(1,1.5) HVD 0.9963 0.4995 0.5046 0.4950 0.5317 0.9961
TVD 0.9984 1.0000 1.0000 1.0000 0.5317 0.9982

N(1,2) HVD 0.9990 0.5019 0.5017 0.4970 0.6454 1.0000
TVD 1.0000 1.0000 1.0000 1.0000 0.6454 1.0000

Gamma(1,1) Gamma(1.2,1) HVD 0.5811 0.6205 0.6467 0.6439 0.8169 0.7366
TVD 0.8320 0.8879 0.8879 0.8879 0.8169 0.8321

Gamma(1.5,1) HVD 0.9158 0.8432 0.8377 0.8510 0.9842 0.9871
TVD 0.9884 0.9988 0.9988 0.9988 0.9842 0.9896

Gamma(2,1) HVD 0.9974 0.9962 0.9959 0.9960 1.0000 0.9999
TVD 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

Gamma(1,1.2) HVD 0.7689 0.5110 0.5034 0.5033 0.6782 0.6630
TVD 0.8523 0.5179 0.5184 0.5128 0.6782 0.7802

Gamma(1,1.5) HVD 0.9475 0.5139 0.5046 0.5031 0.9497 0.9477
TVD 0.9844 0.5638 0.5816 0.5724 0.9497 0.9683

Gamma(1,2) HVD 0.9960 0.5806 0.5765 0.5801 0.9968 0.9962
TVD 0.9988 0.6005 0.5866 0.5893 0.9968 0.9992

Beta(2,5) Beta(2.4,5) HVD 0.8040 0.7590 0.7590 0.7590 0.8057 0.8229
TVD 0.8745 0.8238 0.8198 0.8123 0.8057 0.8838

Beta(3,5) HVD 0.9921 0.9810 0.9810 0.9810 0.9935 0.9961
TVD 0.9961 0.9922 0.9926 0.9930 0.9935 0.9971

Beta(4,5) HVD 1.0000 0.9955 0.9955 0.9955 1.0000 1.0000
TVD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Beta(2,6) HVD 0.8525 0.5276 0.5469 0.5410 0.8669 0.7963
TVD 0.9841 0.5619 0.5460 0.5470 0.8669 0.8702

Beta(2,7.5) HVD 0.9841 0.6926 0.6990 0.6961 0.9943 0.9914
TVD 0.9998 0.7944 0.7912 0.7880 0.9943 0.9953

Beta(2,10) HVD 0.9995 0.9238 0.9287 0.9198 1.0000 1.0000
TVD 1.0000 0.9473 0.9448 0.9485 1.0000 1.0000

LN(0.25,0.44) LN(0.3,0.44) HVD 0.6597 0.5553 0.5664 0.5571 0.6846 0.4768
TVD 0.6969 0.8133 0.8133 0.8133 0.6846 0.6790

LN(0.375,0.44) HVD 0.7077 0.6241 0.6270 0.6204 0.9052 0.8513
TVD 0.8898 0.9978 0.9978 0.9978 0.9052 0.9025

LN(0.5,0.44) HVD 0.9768 0.8265 0.8363 0.8244 0.9961 0.9925
TVD 0.9891 1.0000 1.0000 1.0000 0.9961 0.9965

LN(0.25,0.308) HVD 0.8166 0.4988 0.4915 0.4828 0.5596 0.7552
TVD 0.9691 1.0000 1.0000 1.0000 0.5596 0.8309

LN(0.25,0.66) HVD 0.9732 0.5027 0.4978 0.4995 0.7878 0.9785
TVD 0.9996 1.0000 1.0000 1.0000 0.7878 0.9876

LN(0.25,0.88) HVD 0.9986 0.5003 0.5039 0.5148 0.9912 0.9982
TVD 1.0000 1.0000 1.0000 1.0000 0.9912 0.9996

Table 1. Simulation accuracies of k-NN classification in one-dimensional HVD and TVD.
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Class Dissimilarity measure
C1 C2 DGD D1

M D2
M DDC DNCDF DW

Feature 1: N(1,1) N(1.2,1.2) HVD 0.9309 0.498 0.5069 0.5111 0.8087 0.462
Feature 2: Gamma(1,1) Gamma(1.2,1.2) TVD 0.992 0.918 0.884 0.999 0.8087 0.661
Feature 1: N(1,1) N(1.5,1.5) HVD 0.9993 0.9753 0.9747 0.9997 0.965 0.9185
Feature 2: Gamma(1,1) Gamma(1.5,1.5) TVD 0.999 1 1 1 0.965 0.9997
Feature 1: Gamma(1,1) Gamma(1,1) HVD 0.8082 0.5138 0.4962 0.5085 0.7738 0.8321
Feature 2: LN(0.25,0.44) LN(0.3,0.528) TVD 0.894 1 1 0.9994 0.7738 0.8709
Feature 1: Gamma(1,1) Gamma(1.5,1.5) HVD 0.993 0.5047 0.5038 0.5808 0.9362 0.9874
Feature 2: LN(0.25,0.44) LN(0.375,0.66) TVD 0.9938 1 1 1 0.9362 0.9909
Feature 1: N(1,1) N(1.2,1.2) HVD 0.7053 0.5051 0.4929 0.5043 0.8718 0.9535
Feature 2: Gamma(1,1) Gamma(1.2,1.2) TVD 0.9649 1 1 1 0.8718 0.9604
Feature 3: Beta(2,5) Beta(2.4,6)
Feature 4: LN(0.25,0.44) LN(0.3, 0.528)
Feature 1: N(1,1) N(1.5,1.5) HVD 0.9876 0.5029 0.4986 0.492 0.99 0.9998
Feature 2: Gamma(1,1) Gamma(1.5,1.5) TVD 1 1 1 1 0.99 1
Feature 3: Beta(2,5) Beta(3,7.5)
Feature 4: LN(0.25,0.44) LN(0.375, 0.66)

Table 2. Simulation accuracies of k-NN classification in the case of multidimensional HVD and TVD.

Dissimilarity measure
DGD D1

M D2
M DDC DNCDF DW

HVD 0.42 0.33 0.34 0.35 0.11 2.12
TVD 1.09 0.91 0.89 1.16 0.11 2.33

Table 3. CPU time for k-NN classification using various dissimilarity measures for HVD and TVD.

Remark 3
As previously mentioned in Remark 2, both of new and traditional definitions of union and intersection have been
used to classify the HVDs. Our simulated results show that the new definitions have no effect on the accuracies of
HVDs.

To study the case of multidimensional (more than one feature) binary classification problem, a bit simulation is
also done with 1000 iterations when there are two or four features with various distributions and different changes
on the first and second parameters θ1 and θ2. The accuracies of k-NN classification method are presented in Table
2. It is observed that all the results deduced from Table 1 are also true for the multidimensional case.

Table 3 contains the CPU time for running the classification algorithm for the HVD and TVD one time in one-
dimensional case for given dissimilarity and distance measures. The running time is recorded in minutes. From this
table, it is deuced that:

1. TheDNCDF always performs faster than the other measures. This is clear because of its lower computational
complexity, which was proved in Proposition 3.

2. For all measures, running the classification algorithm for the TVD needs more time than HVD.
3. The running time for the distance DW is more than all given dissimilarity measures.

From the results above, it can be concluded that the distances and dissimilarity measures have their own
characteristics. If one wants to obtain the most precise solution, one can use them altogether by using ensemble
technique or by comparing these measures. However, sometimes there exists a condition that the computational
time is limited. In this case, one can choose the suitable measure based on the available time and desired accuracy.
It is also worth to note that even though in some cases the distance DW works better than all given dissimilarity
measures, it’s computational time is more than twice longer than the others. Moreover, even though TVD can boost
the performance of the given measures significantly, it does not change significantly the computational time for the
distance DW , but it changes computational time for other dissimilarity measures.

Stat., Optim. Inf. Comput. Vol. 10, September 2022



F. AL-MA’SHUMAH, M. RAZMKHAH, S. EFFATI 1201

Data set Ndata NSO Nmember Nbins Ntrain Ntest Class labels
Computers 360000 500 720 20 450 50 Desktop\Laptop

Worms 232200 258 900 11 181 77 Mutant\Non−mutant
Wafer 76000 500 152 10 400 100 Normal\Abnormal

Table 4. Summary of the real data sets.

6. Applications to real data sets

Here, we use three data sets to perform binomial classification of the proposed SO representations. The data are
taken from [6]. To study the performance of the proposed procedure in the paper, these data are transformed into
both of HVD and TVD. Let us denote the number of raw data byNdata, in which everyNmember of observations are
grouped to build number of NSO symbolic observations of any kind of HVD or TVD, each containing Nbins bins,
such that they are split into training and test sets containing Ntrain and Ntest symbolic observations, respectively.
All three data sets are categorized into two classes. The summarized description of the data sets are reported in
Table 4.

In the sequel some brief descriptions of the data sets are presented.

1. Computers data set
These data are recorded as a part of a government-sponsored study called Powering the Nation. The aim was
to collect behavioral data about how consumers use electricity in their houses to help reduce the country’s
carbon footprint. The data contains electricity readings from 251 households, sampled in two-minute
intervals over a month. Hence, each observation contains a group of 720 measurements (24 hours of
readings taken every 2 minutes). The two classes are either Desktop or Laptop. This way, without surveying
one-by-one, hopefully, we can know how many consumers uses the desktop or laptop only from the records
of their electricity.

2. Worms data set
Caenorhabditis elegans is a special type of worm commonly used as a model organism in the study of
genetics. The movement of these worms is known to be a useful indicator for understanding behavioral
genetics. [11] described a system for recording the traces of the worms’ motions. They captured these traces
by four scalars representing the amplitudes along each dimension based on four “eigenworms”. The data
report 258 traces of worms converted into four eigenworm series. The eigenworm data are of the lengths
from 17984 to 100674 (sampled at 30 Hz, so from 10 minutes to 1 hour) and in four dimensions (eigenworm
1 to 4). There are five classes: N2, goa-1, unc-1, unc-38, and un63, such that N2 is wildtype (i.e., normal)
and the others are mutant strains. This data set is a two-class version: mutant vs non-mutant.

3. Wafer data set
Wafer data set relates to the fabrication of semiconductor microelectronics. This data set is a record of the
inline process control measurements through various sensors during the processing of silicon wafers for the
fabrication of semiconductors. [30] formatted this data set as a part of his thesis. The formatted version
constitutes the wafer database, in which each data set contains the measurements during the processing of
one wafer by one tool recorded by one sensor. The two-class labels are normal and abnormal, having a large
imbalance between normal and abnormal (10.7% of the training set and 12.1% of the test set are abnormal).

The k-NN classification method proposed in the paper has been done for the mentioned data sets above. The
accuracies of different schemes have been presented in Table 5 for given dissimilarity and distance measures. The
results show that:

1. Classifying the TVD is more accurate than HVD for all data sets.
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Dissimilarity measure
Data set DGD D1

M D2
M DDC DNCDF DW

Computers HVD 0.692 0.86 0.86 0.86 0.819 0.68
TVD 0.78 0.94 0.89 0.94 0.819 0.694

Worms HVD 0.64 0.59 0.59 0.6 0.644 0.58
TVD 0.67 0.63 0.63 0.63 0.644 0.68

Wafer HVD 0.92 0.852 0.852 0.852 0.91 0.94
TVD 0.93 0.903 0.903 0.903 0.91 0.959

Table 5. The accuracies of k-NN classification for the real data sets.

2. For the Computers data set, D1
M and DDC perform better than the other measures, and the accuracy for the

TVD improves significantly.
3. For the Worms data set, it is better to use either DGD or DNCDF for HVD, and it is suggested to use either
DGD or DW for TVD.

4. For the Wafer data set, using the distanceDW leads to more accurate classification than the other dissimilarity
measures for both HVD and TVD.

7. Conclusion

In this paper a TVD representation was proposed for a symbolic observation consisting of different bins with
the associated frequencies by assuming the linear distribution for the raw data in each bin. However, the HVD
representation for the same observation had been previously used. The problem of classifying both types of
HVD and TVD was studied using the k-NN technique based on some dissimilarity and distance measures. To
classify the HVDs and TVDs, the suitable measures were investigated for different distributions using a simulation
study. It was shown that the dissimilarity measure DNCDF has a significantly lower computational complexity
compared to the others. Therefore, this distance can be a suitable choice for classifying the HVDs or TVDs if the
resources are limited and a fast running-time is needed. Also, from the experimental results, it was deduced that
the TVD improves the accuracy of the classification rather than HVD, however, the TVD has higher computational
complexity than HVD. Hence, using TVD is preferred if improving the accuracies of the classification is of interest,
but the HVD is suggested if the resources do not support high-cost computations.

Some future researches on the field of k-NN classification of HVD or TVD include the usage of other
dissimilarity measures or distances. Moreover, other assumptions for distribution of the raw data in each bin rather
than uniform or linear distributions may be of interest.
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