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Abstract Objective: In this article, we reconstruct the hybrid data with hybrid principal component analysis
(HPCA) as a feature extraction step and modeling them with functional regression as a modeling step, and
comparing models and choosing the best number of HPCA based on the prediction accuracy as an evaluation step.
Method: We decompose the hybrid data to the eigencomponents with HPCA. The reconstructed data from HPCA
were divided into the training and testing dataset. The function-on-function signal compression and bayesian scalar-
on-function regressions were used. Three simulation scenarios and their applications in the neuroimaging datasets
(EEG-fMRI) were studied. The number of HPCA was selected with the mean squared prediction error (MSPE).
Result: One of the simulations shows that the raw data, reconstructed from the first and all HPCAs for the training
dataset has a median MSPE of 0.1001, 0.0028, and 0.0174 respectively, and the testing dataset has 0.3207, 0.1118,
and 0.2484 respectively. The EEG-fMRI suggests that in both auditory and visual tasks and standard and target
stimuli for a different region of the brain the first few HPCA has the smallest MSPE. Conclusions: We conclude
this method improves the prediction accuracy of the experiments with the EEG datasets. And we recommend that
instead of using the functional PCA on the desired dimension, reconstruct the data with HPCA and average it on
the other two dimensions for functional regression models.
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1. Introduction

The principal component regression (PCR) was based on the principal component analysis (PCA)
and it was used in the regression settings to tackle the collinearity problem among covariates[1, 2, 3].
By an introduction to the functional data[4], the functional extension of Principal Component Analysis
(FPCA) captured the underlying curves of data and reduced their dimensionality[5]. We count different
methods to estimate the number of FPCA such as the fraction of variance explained (FVE), comparing
the log-likelihood of different models with different numbers of FPCAs[6], Likelihood Ratio Test (LRT)[7],
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the mean square error (MSE), mean square prediction error (MSPE) [8] and Bayesian information
criteria (BIC)[9]. FPCA methods extend in different ways to deal with; for example, longitudinal
dimension[10, 11], multilevel structure[12], multidimensional[13], and spatially dimension [7, 14, 15, 16].
The scalar-on-function (SOF), function-on-scalar (FOS), and function-on-function (FOF) regression

and different supervised learning models use FPCA scores instead of functional data. [4, 5, 17]. Some
of them are adapted for predictions such as signal compression estimations for modeling EEG and
many regions of interest (ROI) of Functional magnetic resonance imaging (fMRI) [18, 19] and Bayesian
estimations with applications to the γ-power of electroencephalography (EEG) data and intraday physical
activity with many covariates in the sleep study [20, 21].
The hybrid PCA (HPCA) was introduced for situations that exist in both scalar and functional data,

called mixed or hybrid data, [4]. For example, the (EEG) data were analyzed with HPCA to extract the
functional, longitudinal, and regional dimensions: frequency or time domain ERPs, the repeating stimuli,
and the brain regions, respectively. The first two of them have functional characteristics, and the last one
is scalar. HPCA extracts the subject-specific scores and eigencomponents of hybrid data [22]. Among the
regression models which can deal with hybrid data, we can count covariate-adjusted HPCA [23], Semi-
functional partial linear regression [24, 25], FOF regression with signal compression [18], and functional
additive regression models [26].
In this research, first, we decompose the hybrid data with HPCA. Second, we reconstruct the hybrid

data with a minimum number of eigenfunctions and eigenvectors in each dimension (as a feature
selection extractions step). Third, we calculate the functional average along the desired dimension of
reconstructed hybrid data. Fourth, we use two functional regression models including FOF regression
with signal compression and Bayesian SOF regression (as a supervised learning step). Fifth, we calculate
the prediction accuracy (ACC) and mean square prediction error (MSPE) of the model in the training and
test dataset. Sixth, we repeat the first to fifth steps by adding one by one the number of eigenfunctions
and eigenvectors of each dimension. Seventh, we compare all models with ACC and MSE and we choose
the best number of HPCA that has the minimum MSPE in the FOF regression and we also compute
Deviance Information Criteria(DIC) and log pseudo-marginal likelihood (LPML) indices in the Bayesian
SOF regression. (as the model evaluation steps). Finally, we applied our methodology to the EEG-fMRI
dataset. The paper has the following sections, 1-introduction contains the problem definitions with some
background, 2- The functional regression with HPCA contains HPCA decomposition, FOF with multiple
functional covariates and Bayesian SOF, 3- The number of HPCA section contains a methodology to
choose the best number of HPCA according to the correlation, MSPE, etc., 4- Simulation section contains
three simulation scenarios, 5- Application to EEG-fMRI dataset, 6- Conclusion contains the comparative
study with some comments, and 7- References. Moreover, we provide supplementary materials, including
further analysis and R codes.

2. Functional Regression with HPCA

2.1. Functional PCA
The PCA is a multivariate method in statistics that is used for dimension reduction and it estimates

the eigenvectors and related scores. In recent advances, from one point by introducing high-dimensional
datasets in the application such as neuroimaging datasets, remote sensing, weather stations, etc., and from
other points developing the statistical methodologies, the multivariate methods are not well-adapted to
work with infinite dimension datasets. In this regard, the functional data analysis (FDA) proposed a
methodology that first interpolates (without measurement noise) or smoothing (with measurement noise)
functional data with basis functions such as B-Spline, Fourier ,etc. They estimate the coefficients and use
them in other methods and they introduce FPCA, Functional Regression, Functional ANOVA, Functional
Canonical Correlation Analysis and also provide to work with the derivatives of the smoothed datasets
like Phase-Plane plots and Principal Differential Analysis (PDA). The FPCA is estimated with different
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methodologies and it decomposes the dataset into eigenfunction and related scores. An adequate number
of FPCA is obtained with different methods such as the fraction of variance explained (FVE), Akaike
information criteria (AIC), and Bayesian information criteria (BIC) and it is a dimension reduction
methodology for functional data. [4].

2.2. HPCA Decomposition
By the same notation and methodology of [22], we mention HPCA decomposition briefly in this section.

Assume Yi(r, ω, s) has three dimensions of the de-mean observation for the subject i, {i = 1, ..., n}, the first
dimension has the scalar domain r, {r = 1, ..., R}, the second and third dimensions have the functional
domain ω , ω ∈ Ω and s, s ∈ S , respectively. We want to decompose Yi(r, ω, s) with HPCA to the
eigencomponents and subject-specific scores. In this regard, we first estimate the covariance matrices.
Because there are three-dimensional matrices, we can estimate the eigencomponents of each dimension
by marginal covariance and product them under the weak separability assumptions of covariances. In
practice, we have equation 1 :

Yi(r, ω, s) = Zi(r, ω, s) + ϵi(r, ω, s) ≈ ΣK
k=1Σ

L
l=1Σ

M
m=1ξi,klmVk(r)ϕl(ω)ψm(s) + ϵi(r, ω, s) (1)

Vk(r) is the marginal eigenvector of the first dimension which has a scalar domain, ϕl(ω) is the
marginal eigenfunction of the second dimension which has a functional domain and ψm(s) is the marginal
eigenfunction of three dimensions which has a functional domain. ξi,klm is the subject-specific scores
obtained using the following inner product, equation 2:

ξi,klm = ⟨Zi(r, ω, s), Vk(r)ϕl(ω)ψm(s)⟩ = ΣR
r=1

∫∫
Zi(r, ω, s)Vk(r)ϕl(ω)ψm(s) dω ds (2)

K , L, and M are the number of eigencomponents that marginally have at least 90% fraction
of variation (FVE) of each dimension. Therefore, it is truncated to the maximum number of KLM
eigencomponents. ϵi(r, ω, s) are error terms.[22]

2.3. Function-on-multiple-Functions Regression
In this section, we use FOF regression [19]; the response and covariates are functional data. For example,

Evoked Related Potential (ERP) curves on time or frequency domains. We first decompose hybrid data
with HPCA and then reconstruct them with different numbers of HPCAs. The reconstructed hybrid
data have three dimensions, and we merge them into one dimension with a functional domain. Many
applications work only with one dimension. For example, in the EEG dataset, Yi(r, ω, s), we are usually
only interested in values of ERP at the time domain, ω. The other two dimensions are the regions with
the scalar domain, r, and the longitudinal dimension, s, with the functional domain.
Therefore, we first reconstruct the dataset in equation 3 with the specified number of HPCA,

Yi(r, ω, s)HPCA_KLM . We use hat notation because it estimates the real observed value, Yi(r, ω, s)
and we subscript HPCA_KLM to show the number of HPCAs; for example, KLM. In this step, we
use the most variations of three dimensions (usually at least 90%), and we reconstruct the data based on
them; therefore, many unimportant variations were omitted. Second, we merge Yi(r, ω, s)HPCA_KLM on
other two dimensions; for example, on the first, r, and third, s, dimensions. As stated in equation 4, we
average point-wise on desired dimension domain, for example, the second dimension, ω.

ΣK
k=1Σ

L
l=1Σ

M
m=1ξi,klmVk(r)ϕl(ω)ψm(s) = Ŷi(r, ω, s)HPCA_KLM . (3)

1

R
ΣR

r=1

∫ ∞

−∞
Ŷi(r, ω, s)HPCA_KLM ds = Ŵi(ω)KLM . (4)

The advantage of this method instead of using only FPCA on the desired dimension, ω, is that our
method contains the most important variations of the other two dimensions in the dataset and it avoids
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considering the unimportant variations on the data which help reduce its complexity. The functional
variable, Ŵi(ω)KLM , with the functional domain, ω, and the number of HPCs, KLM , is calculated by
equation 4 for regression analysis in the next steps.
We assume that � Ŵi(ω)KLM in equation 4 is a response function in the following FOF regression [19]:

Ŵi(ω)KLM = m(ω) + Σp
j=1

∫ 1

0

χj(g)βj(g, ω) dg + ε(ω) (5)

χ1(g), ..., χp(g) are predictive functions and β1(g, ω), ..., βp(g, ω) are p-coefficient functions, m(ω) and
ε(ω) are intercept function and noise function. The focus of this model with signal compression methods
is predicting the response [19].

2.4. Scalar-on- Functions Bayesian Regression
In this section, we use the Bayesian scalar-on-function regression [20]. The response is from the

exponential distribution family and the functional covariate was obtained from HPCA decomposition.
We assume that [Ui, Ŵi(ω), ω ∈ Ω] is a classical SOF regression in which Ui is the outcome and has an
exponential family with the linear predictor vi and dispersion parameter a, EF (vi, a). The functional
covariates Ŵi are random curves that are obtained from merging Ŷi(r, ω, s)HPCA_KLM on r and ω,
equation 4.
We assume that � Ŵi(ω)KLM have three parts in equation 6: the first is µ̂(ω) which is the estimation

of population average, the second is the estimation of the underlying curve which is X̂i(ω) , and the
third is ε̂i(ω) which is an error term. We de-mean Ŵi(ω)KLM by Ŵi(ω)KLM = Ŵi(ω)KLM − µ̂(ω) ,
µ̂(ω) =

1

I

∑I
i=1 Ŵi(ω).

Ŵi(ω)KLM = µ̂(ω) + X̂i(ω) + ε̂i(ω) (6)

The linear predictor has the following form:

υi =

∫ 1

0

X̂i(ω)β(ω) dω (7)

The β(.) ∈ L2[0, 1] is a functional parameter. We assume that {ηd, d ≥ 1} is an orthonormal basis in
L2[0, 1] then we have X̂i(ω) =

∑
d≥1 ζidηd(ω), βi(ω) =

∑
d≥1 βdηd(ω) then formula 7 is υi =

∑
d≥1 ζidβd.

Therefore, we write them as the following mixed-effects model, equation 8:

Ui ∼ EF (υi, a);

υi =
∑

d≥1 ζidβd;

Ŵi(ω)KLM =
∑

d≥1 ζidηd(ω) + ε̂i(ω)

ζid ∼ N(0, λk)

εi(ω) ∼ N(0, σ2
ε)

(8)

The parameters were estimated with the Markov Chain Monte Carlo (MCMC) samplers.

3. The number of HPCA

The number of appropriate HPCA for Yi(r, ω, s) in equation 1 is discussed at [22] by estimating the
fraction of variance explained (FVE) in the mixed-effects models and the variance components estimations.
In this section, we propose a new method to select the number of HPCA due to the mean squared
prediction error (MSPE) of regression models. In equation 1, we have KLM eigencomponents, but instead
of using all of them in equation 3, we add each of them at each step in equation 9:
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ξi,1V1(r)ϕ1(ω)ψ1(s) = Ŷi(r, ω, s)HPCA_1

ξi,1V1(r)ϕ1(ω)ψ1(s) + ξi,2V2(r)ϕ2(ω)ψ2(s) = Ŷi(r, ω, s)HPCA_2

....

ΣK
k=1Σ

L
l=1Σ

M
m=1ξi,klmVk(r)ϕl(ω)ψm(s) = Ŷi(r, ω, s)HPCA_KLM .

(9)

Therefore, {Ŷi(r, ω, s)HPCA_q, 1 ≤ q ≤ KLM} are estimations due to the first q eigencomponents.
We transform each of them with equation 4 to {Ŵi(ω)HPCA_q, 1 ≤ q ≤ KLM}. For equation 5, we
fit the regression model to all KLM models with Ŵi(ω)HPCA_q as a response curve and we predict
{ ˆ̂
Wi(ω)HPCA_q, 1 ≤ i ≤ n, 1 ≤ q ≤ KLM} (Algorithm-1) (Table 1)

Algorithm 1 –FOF Regression
1-The HPCA decomposition Yi(r, ω, s) ≈ ΣK

k=1Σ
L
l=1Σ

M
m=1ξi,klmVk(r)ϕl(ω)ψm(s) + ϵi(r, ω, s) (eq. 1 )

2- for q = 1 to q = KLM

2-1 The reconstruction due to HPCA from 1 to q :
ΣK

k=1Σ
L
l=1Σ

M
m=1ξi,klmVk(r)ϕl(ω)ψm(s) ≈ Ŷi(r, ω, s) (eq. 3 )

2-2 Merging on two dimensions:
1

R
ΣR

r=1

∫∞
−∞ Ŷi(r, ω, s)HPCA_KLM ds = Ŵi(ω)KLM . (eq. 4 )

2-3 Fit FOF due Ŵi(ω)KLM

Ŵi(ω)KLM = m(ω) + Σp
j=1

∫ 1

0
χj(g)βj(g, ω) dg + ε(ω) (eq. 5 )

2-4 Predict ˆ̂
Wi(ω)HPCA_q within (2-3)

2-5 Calculate MSPE
Mean Squared Prediction Error

MSPE(q) =
1

(n×M)
Σn

i=1Σ
M
m=1(Ŵi(ωm)HPCA_q − ˆ̂

Wm(ωm)HPCA_q)
2

{i, 1 ≤ i ≤ n, number of subject}
{m, 1 ≤ m ≤M,number of observation in each curve}

3- Find the minimum MSPE(qmin) = min{ q = 0 or MSPE(q) , 1 ≤ q ≤ KLM}
4- The best number of HPCA is qmin

Table 1. Algorithm 1 - FOF Regression

For equation 8, we fit the regression model to all KLM models with � Ŵi(ω)HPCA_q as predictive curves
and we estimates {Ûi,HPCA_q, 1 ≤ i ≤ n, 1 ≤ q ≤ KLM} (Algorithm-2) (Table 2)
This methodology can be applied to any other regression problem which deals with the hybrid data.

4. Simulations

4.1. Simulation Scenario 1
In this scenario, we evaluate the effect of HPCA on the function-on-function regression in two small

and big sample size and complete and sparse observations for observed functions. We simulate dataset
in two steps: We first generate Yi(r, ω, s) with two sample size,1) {i, i = 1, , 20} and 2) {i, i = 1, , 140}
and two status for the 1) complete and 2) sparse observations for s as mentioned in the [22], then we
merge each of them with equations 1 to 5, as Ŵi(ω)HPCA_0. In the second step, we generate the fof
regression data as mentioned at [19] with 10 covariates functions, θ(g, ω) , and two status for coefficients
1) all 10 coefficients, θ(g, ω), have a value greater than 0 and 2) only 50% of θ(g, ω) have non-zero
value. Therefore, we have Ai(ω) = m(ω) +

∑10
j=1

∫ 1

0
χj(g)θj(g, ω)dg + ε(ω) . We combine the first and
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Algorithm 2 –Bayesian SOF Regression
1-The HPCA decomposition Yi(r, ω, s) ≈ ΣK

k=1Σ
L
l=1Σ

M
m=1ξi,klmVk(r)ϕl(ω)ψm(s) + ϵi(r, ω, s) (eq. 1 )

2- for q = 1 to q = KLM

2-1 The reconstruction due to HPCA from 1 to q :
ΣK

k=1Σ
L
l=1Σ

M
m=1ξi,klmVk(r)ϕl(ω)ψm(s) ≈ Ŷi(r, ω, s) (eq. 3)

2-2 Merging on two dimensions:
1

R
ΣR

r=1

∫∞
−∞ Ŷi(r, ω, s)HPCA_KLM ds = Ŵi(ω)KLM . (eq. 4)

2-3 Fit Bayesian SOF based on the Ŵi(s)HPCA_q

Ui ∼ EF (υi, a);

υi =
∑

d≥1 ζidβd;

{Wi} : Ŵi(ω)HPCA_q =
∑

d≥1 ζidηd(ω) + εi(ω)(eq.8)

ζid ∼ N(0, λk)

εi(s) ∼ N(0, σ2
ε)

2-4 Predict ÛiHPCA_q within (2-3)
2-5 Calculate MSPE

Mean Squared Prediction Error
MSPE(q) =

1

n
Σi=1

n (Ui,HPCA_q − Ûi,HPCA_q)
2

3- Find the minimum MSPE(qmin) = min{q = 0 or MSPE(q) , 1 ≤ q ≤ KLM }
4- The best number of HPCA is qmin

Table 2. Algorithm 2 - Bayesian Regression

second steps with Ŵi(ω)HPCA_0 +Ai(ω) = Di(ω)HPCA_0 and we fit the fof regression with the following
equation in equation 10 (like equation 6):

Di(ω)HPCA_0 = m(ω) + Σp
j=1

∫ 1

0

χj(g)βj(g, ω)dg + ε(ω) (10)

In each model, we split the data to the train (70%) and test (30%) and we fit the model on the training
dataset. We calculate the following summary statistics for coefficients ( equations 11 , 12 and 13 ):

MSEβ1(ω, t) =
1

n× Ω× T
Σn

i=1Σ
Ω
ω=1Σ

T
t=1(β1(ω, t)− β̂1(ω, t))

2

...
MSEβ10(ω, t) =

1

n× Ω× T
Σn

i=1Σ
Ω
ω=1Σ

T
t=1(β1(ω, t)− β̂10(ω, t))

2

(11)

For the prediction accuracy of model in the train and test, respectively:
MSPEPred(train) =

1

ntrain
Σntrain

i=1 ΣJ
j=1(Di,train(ωj)HPCA_0 − D̂i,train(ωj)HPCA_0)

2

MSPEPred(test) =
1

ntest
Σntest

i=1 ΣJ
j=1(Di,test(ωj)HPCA_0 − D̂i,test(ωj)HPCA_0)

2
(12)

{
CORPred(train) = COR(Di,train(ω)HPCA_0, D̂i,train(ω)HPCA_0)

CORPred(test) = COR(Di,test(ω)HPCA_0, D̂i,test(ω)HPCA_0)
(13)

Moreover, we compare the elapsed, system, and user time for computations. We repeat the iteration
100 times. The median (the first quartile, the third quartile) in all simulations were reported.
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Number of Subjects
s Complete , (n=20) Sparsity , (n=20) Complete, (n=140) Sparsity, (n=140)

β Complete 50% Sparsity Complete 50% Sparsity Complete 50% Sparsity Complete 50% Sparsity

MSEβ1(ω, t)
20.61

(9.94,33.4)
1.96

(0.03,22.18)
17.61

(8.59,34.25)
5.02

(0.08,19.23)
29.39

(18.05,46.26)
0.0132

(0,22.4816)
33.29

(19.93,48.03)
8.83

(0.003,32.637)

MSEβ2(ω, t)
1.5

(1.03,2.89)
0.5

(0.1,1.08)
1.47

(0.88,2.42)
0.58

(0.1,1.32)
0.18

(0.14,0.23)
0.0895

(0.0032,0.1596)
0.19

(0.15,0.22)
0.098

(0.001,0.186)

MSEβ3(ω, t)
2.75

(1.73,4.66)
0.99

(0.08,2.82)
2.86

(1.93,4.92)
1.14

(0.06,2.4)
1.46

(1.04,2.32)
0.018

(0.0001,1.1931)
1.59

(1.02,2.42)
0.042

(0.003,1.148)

MSEβ4(ω, t)
2.96

(1.86,5.29)
1.32

(0.13,2.85)
3.55

(1.95,5.54)
0.76

(0.04,2.59)
2.4

(1.71,3.7)
0.9192

(0.006,2.2836)
2.76

(1.83,4.06)
0.047

(0.003,2.845)

MSEβ5(ω, t)
4.03

(2.83,6.35)
1.23

(0.07,3.88)
3.3

(2.11,5.14)
1.15

(0.1,3.47)
2.94

(2.13,4.72)
0.8649

(0.0005,3.3766)
3.15

(2.01,4.3)
0.654

(0.009,3.227)

MSEβ6(ω, t)
3.93

(2.43,6.27)
0.57

(0.05,4.31)
3.7

(2.17,5.03)
1.17

(0.11,3.18)
3.33

(1.84,5.19)
1.1584

(0.0052,3.4304)
3.29

(2.2,4.68)
1.436

(0.004,4.286)

MSEβ7(ω, t)
3.73

(2.36,5.79)
0.45

(0.07,3.06)
3.93

(2.29,5.84)
1.09

(0.1,3.92)
2.99

(1.82,4.48)
1.0422

(0.0028,3.8262)
2.74

(1.87,5.23)
1.809

(0.012,3.895)

MSEβ8(ω, t)
3.56

(2.04,5.43)
0.91

(0.08,3.9)
3.91

(2.61,6.84)
0.56

(0.03,3.47)
3.41

(1.94,5.47)
0.0603

(0.0025,3.5484)
4.02

(2,5.93)
0.037

(0.001,2.989)

MSEβ9(ω, t)
4.2

(2.76,6.67)
0.4

(0.03,3.55)
4.02

(2.44,5.95)
1.07

(0.07,3.53)
3.41

(2.29,5.51)
1.7362

(0.0086,3.9769)
4.1

(2.14,6.39)
0.051

(0.003,3.411)

MSEβ10(ω, t)
3.4

(2.1,6.17)
2.05

(0.1,5.22)
3.72

(2.12,6.06)
1.13

(0.05,3.74)
4.1

(2.52,6.52)
0.0398

(0.001,3.2849)
3.75

(2.32,6.28)
0.671

(0.004,4.251)

MSPEPred(train)
0.09

(0.07,0.12)
0.09

(0.08,0.11)
0.09

(0.07,0.12)
0.09

(0.07,0.1)
0.09

(0.09,0.1)
0.0975

(0.0933,0.1012)
0.1

(0.09,0.1)
0.098

(0.096,0.102)

MSPEPred(test)
0.37

(0.25,0.5)
0.19

(0.14,0.32)
0.33

(0.25,0.54)
0.21

(0.15,0.33)
0.12

(0.11,0.13)
0.1101

(0.1045,0.1182)
0.12

(0.11,0.13)
0.114

(0.106,0.12)

CORPred(train)
0.98

(0.98,0.99)
0.97

(0.96,0.98)
0.98

(0.98,0.99)
0.97

(0.96,0.98)
0.98

(0.98,0.99)
0.9613

(0.9559,0.9784)
0.98

(0.98,0.99)
0.97

(0.957,0.983)

CORPred(test)
0.94

(0.9,0.96)
0.94

(0.92,0.96)
0.94

(0.9,0.97)
0.94

(0.91,0.96)
0.98

(0.97,0.98)
0.9564

(0.9511,0.971)
0.98

(0.97,0.98)
0.964

(0.952,0.979)

Timeuser
48.33

(35.55,70.02)
101.98

(55.02,133.85)
51.64

(37.22,74.64)
102.54

(53.44,136.38)
95.5

(79.82,120.1)
322.955

(105.965,381.245)
97.94

(79.59,123.5)
169.76

(88.53,385.28)

TimeSystem
0.07

(0.05,0.09)
0.09

(0.07,0.13)
0.06

(0.04,0.09)
0.07

(0.05,0.11)
0.24

(0.18,0.3)
0.415

(0.32,0.51)
0.11

(0.07,0.14)
0.11

(0.08,0.15)

Timeelapsed
48.4

(35.59,70.1)
102.11

(55.1,133.98)
51.66

(37.26,74.71)
102.69

(53.56,136.51)
95.94

(80.28,120.36)
323.425

(106.585,381.8525)
98.27

(79.93,123.84)
170.01

(88.78,385.73)
Table 3. Percentiles 50% (25%, 75%) of the simulation scenario 1 of MSE of coefficients, MSPE and correlation
of prediction and running time group by the number of subject (n), the longitudinal status s and the coefficients
status β.

We briefly explain the result: in Table 3, the MSEβ1(ω, t) , ... , MSEβ10(ω, t) is greater for the
complete rather than 50 % sparsity of β. The � MSPEPred(train) are not very different in all situations
with each other, but MSPEPred(test)� are different. The first difference is MSPEPred(test) for complete
β are greater than the 50 % sparsity of β. The second difference is by increasing the sample size, their
values are getting smaller than the big sample size. But its value for the sparsity for s is not different
from others. The CorrPred(train) are negligibly bigger than CorrPred(test) and they are not very different
among scenarios. The elapsed time for 50 % sparsity of β is greater than complete β and they increase
significantly with the number sample size. This behavior is not observed for system time. Therefore, the
sparsity of β will affect the model performance, and the sparsity of s don’t have any significant effect on
them.

4.2. Simulation Scenario 2
This simulation scenario is very similar to simulation scenario 1, but in this one, we study the number

of HPCA. Furthermore, we first generate Yi(r, ω, s)i, i = 1, ..., 20 as mentioned in the [22], then we merge
them with equation 4 in three ways: 1) Without HPCA decomposition, as Ŵi(ω)HPCA_0 , 2) by only
the first HPCA decomposition, as Ŵi(ω)HPCA_1,3) by All HPCA decomposing, as Ŵi(ω)HPCA_All (All
HPCA has 90% FVE on each dimension). Furthermore, we generate fof regression data as mentioned at
[19] with 10 covariates functions, θ(g, ω), and two statuses for coefficients 1) all 10 coefficients, θ(g, ω),

Stat., Optim. Inf. Comput. Vol. 10, June 2022



MOHAMMAD FAYAZ,ALIREZA ABADI AND SOHEILA KHODAKARIM 897

have the value greater than 0 and 2) only 50% of θ(g, ω) have the non-zero value. Therefore, we have
Ai(ω) = m(ω) + Σ10

j=1

∫ 1

0
χj(g)θj(g, ω), dg + ϵ(ω). We define in equation 14:

Ŵi(ω)HPCA_0 +Ai(ω) = Di(ω)HPCA_0

Di(ω)HPCA_0 = m(ω) +
∑p

j=1

∫ 1

0
χjβj(g, ω), dg + ϵ(ω)

Ŵi(ω)HPCA_1 +Ai(ω) = Di(ω)HPCA_1

Di(ω)HPCA_1 = m(ω) +
∑p

j=1

∫ 1

0
χjβj(g, ω), dg + ϵ(ω)

Ŵi(ω)HPCA_ALL +Ai(ω) = Di(ω)HPCA_ALL

Di(ω)HPCA_ALL = m(ω) +
∑p

j=1

∫ 1

0
χjβj(g, ω), dg + ϵ(ω)

(14)

In each model, Di(ω)HPCA_0, Di(ω)HPCA_1 and Di(ω)HPCA_ALL, �we split the data to the train
(70%) and test (30%), and we fit the models on the training dataset. We calculate the summary statistics
as mentioned in scenario 2. We repeat the iteration 100 times. The median (the first quartile, the third
quartile) in all simulations were reported.
We briefly explain the result: in (Table 4), the most of MSEβ1(ω, t) , ... , MSEβ10(ω, t) are greater

for the complete rather than 50 % sparsity of β. � MSPEPred(train) are 0.1001 (0.084, 0.1294) for
without HPCA, 0.0028 (0.0001,0.0176) with the first HPCA and 0.0174 (0.0024,0.0409) for all HPCA in
the complete β settings. It stated that the first HPCA has the lowest MSPE among others (2% and
16% of without HPCA and with all HPCA, respectively). The same pattern exists for � MSPEPred(test).
� CORPred(train) and �� CORPred(test) are high (more than 90%), and the differences are negligible. The
elapsed time is the lowest for the first HPCA model among others.

4.3. Simulation Scenario 3
The Bayesian Scalar-on-Function: in this scenario, we first generate the Yi(r, ω, s) with i, i = 1, , 15 as

mentioned in the [22], then we follow equations 1 to 5 to decompose, reconstruct and merge them, in three
ways: 1) Without HPCA decomposition, as Ŵi(s)HPCA_0 , 2) With only the first HPCA decomposition
,as Ŵi(s)HPCA_1, 3) With All HPCA decomposition, as � Ŵi(s)HPCA_All.

We generate the beta coefficient with the following function, β(ω) = cos(

√
π × ω

3
) and

error term ai Normal(µ = 0, σ = 0.4). We calculate the real scalar response as: Ui =∫
β(ω)× Ŵi(ω)HPCA_0 × 0.01 + ai. Then, we run the Bayesian Scalar-on-Function in three settings:

the response scalar Ui and the functional covariates 1) Ŵi(ω)HPCA_0 , 2) � Ŵi(ω)HPCA_1 and 3)
� Ŵi(ω)HPCA_All. We also compare ten models in each of them from υi = ζi1β(1) to υi =

∑10
d=1 ζidβ(d).

In each model, we calculate the following summary statistics [27] , Deviance, Deviance Information Criteria
(DIC), log pseudo-marginal likelihood (LPML) which contains Conditional predictive ordinate (CPO),
and pseudo-marginal likelihood is f̂(y|M), Mean Square Error for Mean (MSEmean) and correlation
� (CORmean) ( equation 15 ):

D(θ) ≡ −2log[L(θ)] + C(#Parameters)

DIC ≡ 2E[D(θ)|y]−D[θ̂]

CPOi = fi(yi|y−i,M),ModelM

(y |M) =
∏n

i=1 fi(yi|y−i,M)

LPML =
∑n

i=1 log(CPOi)

MSEmean = 1
n

∑n
i=1(Ui − Ûi,mean)

2

CORmean = COR(Ui, Ûi,mean)

(15)

We also compare the elapsed, system, and user time for computations. The MCMC algorithm has 5,000
samples with the first 1,000 are burn-out and the thin is 1. We repeat the simulations 100 times and report
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HPCA NO HPCA First HPCA All HPCA
Bet Complete 50% Sparsity Complete 50% Sparsity Complete 50% Sparsity

MSE Beta 1 14.5112
(8.3463,27.4955)

19.1862
(10.6082,27.8363)

14.6201
(7.2417,25.9006)

16.317
(10.498,27.322)

15.925
(8.7129,30.6679)

19.0602
(11.577,28.7054)

MSE Beta 2 1.4757
(0.8491,2.6039)

0.6611
(0.0946,1.3561)

3.0187
(1.6888,4.1153)

0.94
(0.042,2.369)

2.0448
(1.0246,2.8579)

0.7309
(0.0696,1.5715)

MSE Beta 3 2.6643
(1.6905,4.3293)

0.783
(0.0967,2.6223)

3.4721
(2.1247,5.1566)

0.873
(0.026,3.042)

2.8849
(1.6589,4.6093)

0.8535
(0.1357,2.6239)

MSE Beta 4 3.0949
(2.0827,6.0484)

0.4074
(0.0523,2.5258)

3.2804
(2.2413,5.7897)

0.134
(0.003,2.313)

3.0776
(2.0219,5.9766)

0.4004
(0.0257,2.015)

MSE Beta 5 3.9203
(2.3426,5.7395)

1.0133
(0.1678,3.2986)

4.0012
(2.4556,6.741)

0.439
(0.094,3.171)

3.9086
(2.6642,6.2414)

0.9969
(0.129,3.2651)

MSE Beta 6 4.221
(2.3879,6.6958)

1.4369
(0.122,4.3104)

3.8636
(2.4522,6.0266)

1.366
(0.085,4.27)

3.7442
(2.4925,6.9392)

1.592
(0.1351,4.2872)

MSE Beta 7 3.3584
(2.2642,5.8811)

0.426
(0.0373,2.8341)

3.3409
(2.1588,5.1684)

0.385
(0.007,3.052)

3.3756
(2.2225,4.9557)

0.5478
(0.0369,2.944)

MSE Beta 8 3.8073
(2.389,5.5397)

0.7336
(0.083,3.8915)

3.6125
(2.5294,5.5124)

0.423
(0.018,3.47)

3.7223
(2.4792,5.6815)

0.962
(0.0842,3.6444)

MSE Beta 9 3.48
(2.471,5.5648)

0.4391
(0.063,2.4887)

3.4562
(2.3211,5.3077)

0.236
(0.007,2.724)

3.5074
(2.3809,5.748)

0.4747
(0.1196,2.7758)

MSE Beta 10 3.7703
(2.2949,5.2103)

1.1676
(0.1598,3.8849)

3.5595
(2.3031,5.6235)

1.239
(0.034,3.666)

3.7815
(2.3975,5.914)

1.3054
(0.1028,4.0518)

MSPE Train 0.1001
(0.084,0.1294)

0.0953
(0.0753,0.1118)

0.0028
(0.0001,0.0176)

0.004
(0.001,0.009)

0.0174
(0.0024,0.0409)

0.0109
(0.0037,0.029)

MSPE Test 0.3207
(0.2452,0.5342)

0.2967
(0.2107,0.4604)

0.1118
(0.0439,0.2274)

0.087
(0.044,0.27)

0.2484
(0.1498,0.4314)

0.2529
(0.1223,0.4378)

COR Train 0.9801
(0.9691,0.9873)

0.9829
(0.9755,0.9884)

0.9994
(0.9962,1)

0.999
(0.998,1)

0.9971
(0.9922,0.9996)

0.9979
(0.9942,0.9994)

COR Test 0.9334
(0.9005,0.9647)

0.942
(0.915,0.9684)

0.9801
(0.9502,0.9928)

0.982
(0.958,0.993)

0.962
(0.9265,0.9765)

0.955
(0.9277,0.9792)

Time User 58.095
(42.135,83.1375)

55.82
(39.2425,82.46)

15.44
(14.305,17.685)

14.89
(12.83,17.863)

34.72
(30.61,41.42)

33.67
(28.37,40.185)

Time System 0.05
(0.03,0.08)

0.05
(0.03,0.06)

0.05
(0.03,0.0825)

0.04
(0.02,0.11)

0.08
(0.05,0.11)

0.05
(0.03,0.08)

Time Elapsed 58.14
(42.24,83.2425)

55.87
(39.2775,82.515)

15.61
(14.4425,17.815)

14.935
(12.868,18.265)

34.89
(30.765,41.7125)

33.75
(28.54,40.27)

Table 4. Percentiles 50% (25%, 75%) of the simulation scenario 2 of MSE of coefficients, MSPE and correlation of
prediction and running time group by HPCA status and the coefficients status β.Number of iteration 100 times,
* has 96 iteration and ** has 99 iterations.

the median (first quantile – third quantile) of each parameter in the tables. (Tables A, B and C are in
the Appendix)
We explain briefly the result: in table A, the MSPEmean is decreased as FPCA grows and reach to 0

with 6 FPCAs with DIC -2884 (-2920.89,-2851.35). The MSPEmean for 6 FPCA in table B and C are
0.000006 (0.000005,0.000007 ) and 0.000006 (0.000005,0.000007 ) with the DIC -4494.56 (-4523.2,-4463.96
) and -4439.42 (-4478.33,-4411.17 ), respectively. The � MSPEmean, Elapsed time and user time are not
very different in these tables, but the DIC values are the lowest and LPML are the greatest for the first
HPCA (table-B in the Appendix). Therefore, we conclude that the model with the first HPCA has the
best model performance (table-B in the Appendix) while their prediction accuracy are the same as the
models with no HPCA (table-A in the Appendix) and with All HPCAs (table-C in the Appendix).

5. Application to the EEG-fMRI dataset

In this application, we use EEG-fMRI dataset, which was analyzed with HPCA and signal compression
FOF regression separately, previously at [19, 28]. The novelty of this new analysis is included: 1) We
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analyze the Evoked Related Potential (ERP) with the time instead of frequency domain as response
function and 2) we also study the effect of HPCA on the prediction accuracy of FOF regression. The
dataset is related to an experiment to study the brain’s internal attention with 17 participants (6 females,
mean age is 27.7 years) [29]. There are two tasks for each experiment, including auditory and visual
stimuli. There are two stimuli in each task, standard and target. The auditory task includes standard
stimuli (390 Hz tone) and target stimuli (laser gun sound). The visual task includes standard stimuli
(small green circle on isoluminant grey background, 1.5-degree visual angle) and target stimuli (large
red circle on isoluminant grey background, 3.45-degree visual angle). The dataset was downloaded from
openneuro.org. EEG was captured due to 64 channels, and the pre-processing steps are artifact removal,
baseline correction, and epoching (-200 to 800 milliseconds of each stimulus) that which were done with
EEGLAB [30] . The fMRI dataset was captured with 3 Tesla Philips scanner and the dataset was pre-
processed through slice timing correction (SCT), normalization, coregistering, smoothing, and region
of interest (ROI) extraction with SPM 12 toolbox (http://www.fil.ion.ucl.ac.uk/spm/). ERP waves are
response functions and ROI time series for different Brodmann Areas in the brain are functional covariates
[19]. We conduct two analyses: the first one chooses the best number of HPCA based on the MSPE and
Correlation, and the second is FOF regression for EEG-fMRI by brain region.
We first decompose ERP curves with HPCA from first to the total number of HPCAs for standard visual

tasks. KML is 14 which captures 90% of FVE in each dimension. Then, we fit the model with equation
5 on the training samples and compare it to the test. We do this procedure 100 times with different
training/testing samples. Finally, we compare MSPEPred(train), MSPEPred(test), � CORPred(train),
� CORPred(test) and � Timeelapsed for different number of HPCAs. We see the first HPCA has the lowest
MSPE in both trains/tests. By increasing the number of HPCA, MSPE increases. The model without
HPCA has the largest MSPE. The same pattern is seen in the correlation and the elapsed time. (Figure-1)
Therefore, we use the first HPCA and analyze the whole dataset. In this regard, we analyze the whole

brain and different regions and compare MSPE and Correlation in the train/test for the auditory and
visual tasks. MSPE for the auditory in all brain regions for standard and target stimuli are 0.00007 and
0.01337 , and for visually are 0.00235 and 0.41549. The result is also provided by the different regions of
the brain. (Table 5). The further analysis includes 10 iterations for each task and each stimuli group by
brain regions and train/test were done in supplementary 1. The result of them showed the same pattern
exists in most of them and the first HPCA has the lowest MSPE and highest correlation among others.
This analysis doesn’t have HPCA settings and starts from the first to the KLM HPCAs.
All computations are done with R x64 4.0.2 and RStudio version Version 1.2.5042 in the server with

24 GB RAM, 64-bit Operating System, Intel® Xeon® CPU, X5670 @ 2.93 GHz 2.93 GHz (2 processors)
from Turin Cloud Services (turin.ipm.ir).

6. Conclusion

We propose a method to use HPCA in the functional regressions and choose the best number of HPCA.
In this regard, we first decompose the hybrid data with HPCA, then we reconstruct the observation
due to HPCA eigencomponents. This method helps us reconstruct the data with the most important
eigencomponents of each dimension and eliminate noise and other negligible variations. Note that the
various functional regressions due to the type of estimations, responses, and covariates are studied, and
we use two of them which were previously published with the EEG-fMRI dataset [19] .
This functional regression works with a one-dimensional function; for example, it is common to use

ERP over time or frequency in an EEG dataset. We propose a method to convert the hybrid data
to one-dimensional data by pooling and averaging the other two dimensions of reconstructed data as
mentioned in the functional regression models. Note that instead of using observed hybrid data, we use
the reconstructed data from HPCA eigencomponents. Furthermore, we find the best number of HPCA
due to functional regression MSPE.
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(a)

(b)

(c)

Figure 1. (a)-(b): The 50% (25%-75%) quantile for train (black) and test (red) of MSPE and correlation by the
number of HPCA in training/test samples in 100 iterations. (c): The 50% (25%-75%) quantile of elapsed time by
the number of HPCA in training/test samples in 100 iterations.

In the supplementary file, the simulations and real-world application with the EEG-fMRI show that
only the first few eigencomponents in the most different scenarios achieved the best performance of the
regression in the training and testing dataset. We can count the following reasons to explain this situation;
first, the simulations are designed to show EEG structure of the data which has three dimensions, and
most of the variations from other two dimensions are captured with the first few HPCA; second, the higher
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Tasks Regions Stimuli MSPE Correlation
Train Test Train Test

Auditory All Standard 0.00007 0.07061 0.99997 0.96444
Target 0.01337 0.16030 0.99329 0.91817

Frontal Standard 0.00008 0.12564 0.99996 0.93640
Target 0.00174 0.19295 0.99913 0.90111

Central Standard 0.00004 0.04605 0.99998 0.97686
Target 0.00177 0.23528 0.99911 0.87700

Occipital Standard 0.00014 0.00123 0.99993 0.99939
Target 0.00024 0.00178 0.99988 0.99911

Parietal Standard 0.00018 0.03787 0.99991 0.98092
Target 0.02034 0.15549 0.98977 0.92011

Left Temporal Standard 0.00116 0.02427 0.99942 0.98784
Target 0.00005 0.00062 0.99998 0.99969

Right Temporal Standard 0.00040 0.06260 0.99980 0.96833
Target 0.02455 0.12669 0.98763 0.93528

Visual All Standard 0.00235 0.14560 0.99882 0.92580
Target 0.41549 0.52133 0.79498 0.72420

Frontal Standard 0.01259 0.08244 0.99368 0.95795
Target 0.06498 0.17451 0.96734 0.91379

Central Standard 0.00009 0.09191 0.99995 0.95308
Target 0.53342 0.64774 0.71244 0.61246

Occipital Standard 0.00015 0.00149 0.99993 0.99926
Target 0.00041 0.00186 0.99980 0.99907

Parietal Standard 0.00008 0.06213 0.99996 0.96845
Target 0.32912 0.39895 0.83103 0.78537

Left Temporal Standard 0.00460 0.04253 0.99769 0.97848
Target 0.02002 0.07749 0.98993 0.96081

Right Temporal Standard 0.00132 0.05436 0.99934 0.97249
Target 0.11777 0.23887 0.93919 0.88745

Table 5. The MSPE and correlation of FOF result from EEG-fMRI Dataset group by tasks, stimuli and the region
of the brain

number of HPCA was used in the reconstructed data, it gets closer to the observed data; therefore, their
complexity increases which this matter affects the prediction accuracy in the functional regression.
The proposed method’s future direction is 1) using other indices than MSPE of regression to choose the

number of HPCA like Log pseudo-marginal likelihood (LPML) and Deviance information criteria (DIC)
in Bayesian setting [27, 2] using different types of functional regressions, and applying the methodology
on their applications other than EEG structure and 3) using in the offline and online estimates in Brain-
Computer Interface (BCI) applications and comparing with the prediction accuracy in feature selections
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extractions methods like common spatial pattern (CSP) and supervised models like Variational Bayesian
logistic regression [31] .
Finally, we conclude that our methodology improves the prediction accuracy of the experiments with

EEG datasets. We recommend that instead of using functional PCA on desired dimension; for example,
ERP over time or frequency, reconstruct the data with HPCA and average it on other two dimensions
for functional regression models.
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