Quadratic programming method with an M-matrix

Katia Hassaini*, Mohand Ouamer Bibi
Research Unit LaMOS, Department of Operations Research, Faculty of the Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria

Abstract

In this study, we propose an new approach for solving a quadratic programming problem with an M-matrix and simple constraints. This approach is based on the algorithms of Chandrasekaran, Luk and Pagano. These methods use the fact that an M-matrix possesses a nonnegative inverse which allows to have a sequence of feasible points monotonically increasing. Introducing the concept of support for an objective function developed by Gabasov et al. in 1987, our approach leads to a more general condition which allows to have an initial feasible solution, related to a coordinator support and close to the optimal solution. The programming of our method under MATLAB and that of Luk and Pagano have allowed us to make a comparison between them, in the illustration of two practical examples. The numerical results indicate that our approach is more efficient than the approach proposed by Chandrasekaran, Luk and Pagano.

Keywords Convex Quadratic Programming, M-Matrices, Nonnegative Matrices, Projection Newton Method, Support Method.

AMS 2010 subject classifications $65 \mathrm{~K} 05,90 \mathrm{C} 2,90 \mathrm{C} 25,90 \mathrm{C} 30$.
DOI: 10.19139/soic-2310-5070-1399

1. Introduction

In the literature, several approaches were suggested for solving a quadratic programming problem when the associated matrix D is positive definite or semidefinite $[35,5,36,7,13,6,10,26,3,11,4,24]$. However, it is possible to exploit the special properties of an M-matrix to obtain more efficient special algorithms. The M-matrices are known to have many applications in the modeling of the dynamic systems, in economic sciences and ecology [2, 37]. Such problems include various types of Dirichlet problems with obstacles [28], and models of the application of torsion to a bar [27]. Several of their properties are used in general to establish results of stability for the dynamic systems [31, 32, 29]. Quadratic minimization with an M-matrix arises directly in a variety of applications including portfolio optimization with transaction costs [23], and image segmentation [14]. Convex quadratic programming with an M-matrix is also studied on its own right [1, 12, 13, 19, 20, 33, 34, 22]. The M-matrices are also present in the obstacle problems [15], and active set methods are used to solve them [19], a direct algorithm for the solution to the affine two-sided obstacle problem with an M-matrix is presented in [12], another method for strictly convex quadratic problems is suggested in [13], this method presents an extension of the external points method [18].

The main contribution of this paper lies in the proposal of a new and efficient algorithm for solving quadratic programming problems with an M-matrix and simple constraints. This method takes advantage of the fact that an M-matrix has a nonnegative inverse (all the elements of the matrix D^{-1} are nonnegative), which gives a monotonically increasing sequence of feasible solutions [33, 34]. By introducing the concept of support for an

[^0]ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2024 International Academic Press
objective function [16], our approach differs from the method presented by Chandrasekaran [8], Luk and Pagano [20] by a more general condition that allows us to have an initial feasible solution, close to the optimal solution. This characteristic facilitates faster convergence to the optimal solution, reducing thus the number of iterations required compared with the Chandrasekaran, Luk and Pagano approaches.

The organization of the paper is as follows: in the second section, we present the problem and give some definitions related to our approach. In section 3, the algorithm for solving the quadratic programming problem with an M-matrix and simple constraints is presented. In Section 4, the programming of our method and that of Luk and Pagano under MATLAB have allowed us to make a comparison between them, in the illustration of two practical examples randomly generated, and this, by varying the number of variables. We finish the article by a conclusion.

2. Position of the problem and definitions

Let us consider the following problem of quadratic programming with simple constraints:

$$
\left\{\begin{array}{lr}
\min _{x \in \mathbb{R}^{n}} F(x)=\frac{1}{2} x^{T} D x+c^{T} x \tag{1}\\
\text { subject to } & x \geq 0
\end{array}\right.
$$

where $c=c(J)=\left(c_{j}, j \in J\right)$ and $x=x(J)=\left(x_{j}, j \in J\right)$ are real n-vectors, with $J=\{1,2, \cdots, n\}$. The matrix $D=D(J, J)$ is a nonsingular symmetric square M-matrix of order n.

Definition 1. [37]

A matrix $D=\left(d_{i j}, 1 \leq i, j \leq n\right)$ is said to be an M-matrix if it satisfies the following properties:

$$
d_{i i}>0 \quad d_{i j} \leq 0, \quad i \neq j, \quad D^{-1} \geq 0
$$

where the symbol $D^{-1} \geq 0$ denotes that all the elements of the matrix D^{-1} are nonnegative.

Remark 1. A symmetric M-matrix is always positive definite ($x^{T} D x>0, \forall x \neq 0$). Moreover, any submatrix of an M-matrix is itself an M-matrix.

Definition 2.

A vector $x \geq 0$ is called a feasible solution of the problem (1). A feasible solution x^{0} is said optimal if it gives to the objective function of the problem (1) his minimum value.

Thus, we have

Theorem 1. A feasible solution x^{0} of the problem (1) is optimal if and only if for all $j \in J$, the following conditions of optimality are satisfied [16]:

$$
\left\{\begin{align*}
x_{j}^{0}=0 & \Rightarrow \quad g_{j}\left(x^{0}\right) \geq 0 \tag{2}\\
x_{j}^{0}>0 & \Rightarrow \quad g_{j}\left(x^{0}\right)=0, \quad j \in J
\end{align*}\right.
$$

where $g(x)=g(J)=D x+c$ is the gradient of the objective function F at the point x.

Let us consider the quadratic program without constraints

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} F(x)=\frac{1}{2} x^{T} D x+c^{T} x, \tag{3}
\end{equation*}
$$

whose the optimal solution \widehat{x} satisfies the equation

$$
D \widehat{x}+c=0 \Longleftrightarrow \widehat{x}=-D^{-1} c .
$$

Let J_{S} and J_{N} be a partition of $J: J_{S} \cup J_{N}=J, \quad J_{S} \cap J_{N}=\emptyset$. Then the gradient of the function F at point x can be written in the following form:

$$
g=\left(\frac{g_{S}}{g_{N}}\right), \quad g_{S}=g\left(J_{S}\right)=D_{S} x_{S}+D_{S N} x_{N}+c_{S}, \quad g_{N}=g\left(J_{N}\right)=D_{N S} x_{S}+D_{N} x_{N}+c_{N}
$$

where

$$
x=\left(\frac{x_{S}}{x_{N}}\right), c=\left(\frac{c_{S}}{c_{N}}\right), \quad D_{S}=D\left(J_{S}, J_{S}\right), \quad D_{N}=D\left(J_{N}, J_{N}\right), \quad D_{S N}=D\left(J_{S}, J_{N}\right) .
$$

For all subset J_{S} in J, the following condition holds:

$$
\operatorname{det} D_{S}=\operatorname{det} D\left(J_{S}, J_{S}\right) \neq 0
$$

Definition 3.

- The subset J_{S} is called a support of the objective function and the pair $J_{p}=\left\{J_{S}, J_{N}\right\}$ is a support of the problem (1).
- The couple $\left\{x, J_{S}\right\}$, comprising the feasible solution x and the support J_{S} is called a support feasible solution.
- A vector $\kappa=\kappa(J)=\left(\kappa\left(J_{S}\right), \kappa\left(J_{N}\right)\right)$ satisfying

$$
\left\{\begin{array}{l}
\kappa_{N}=0, \\
\kappa_{S}=-D_{S}^{-1} c_{S}
\end{array}\right.
$$

is called a pseudosolution of the problem (1). A pseudosolution verifies $g_{S}(\kappa)=0$.

- The support $J_{P}=\left\{J_{S}, J_{N}\right\}$ is called a coordinator support if there is a pseudosolution κ such that:

$$
\begin{equation*}
g_{j}(\kappa) \geq 0, \quad j \in J_{N} \tag{4}
\end{equation*}
$$

In this case, we say that the pseudosolution κ is associated to the coordinator support J_{P}.
Theorem 2. A pseudosolution κ associated to a coordinator support J_{p} is optimal in the problem (1) if and only if

$$
\begin{equation*}
\kappa_{j} \geq 0, \quad j \in J_{S} \tag{5}
\end{equation*}
$$

Remark 2. Any pseudosolution κ, associated to a coordinator support J_{p}, is a feasible solution for the dual of the primal problem (1):

$$
\left\{\begin{array}{c}
F(\kappa)=-\frac{1}{2} \kappa^{T} D \kappa \longrightarrow \max \tag{6}\\
D \kappa+c \geq 0
\end{array}\right.
$$

Remark 3. As $g(\widehat{x})=0$, then the optimal solution \widehat{x} of the problem without constraints (3) is a pseudosolution of the problem (1), associated to the coordinator support $J_{p}=\left\{J_{S}, J_{N}\right\}$, where $J_{S}=J$ and $J_{N}=\emptyset$. According to the theorem 2, if $\widehat{x} \geq 0$, then $x^{0}=\widehat{x}$ is the optimal solution of the problem (1).

Let us recall the following lemma:
Lemma 1. [20].
(a) If $c \geq 0$, then $x^{0}=0$ solves the problem (1),
(b) If $c \leq 0$, then $x^{0}=-D^{-1} c$ solves the problem (1).

To eliminate these two trivial cases, let us consider the general one where the vector contains both positive and negative components, and construct the two following sets of indices:

$$
J_{S}=\left\{j \in J: \widehat{x}_{j} \geq 0\right\}, \quad J_{N}=\left\{j \in J: \widehat{x}_{j}<0\right\}, \quad J_{S} \cup J_{N}=J
$$

- If $J_{S}=J$, then $x^{0}=\widehat{x}=-D^{-1} c \quad$ is the optimal solution of the problem (1).
- Else, let y be the projection of \widehat{x} on the admissible set of the problem (1), where $y=\left(y_{j}, j \in J\right), \quad y_{j}=$ $\max \left\{0, \widehat{x}_{j}\right\}$. Therefore we will have

$$
\left\{\begin{array}{l}
y_{N}=0>\widehat{x}_{N} \\
y_{S}=\widehat{x}_{S}
\end{array}\right.
$$

For the construction of our algorithm, we have established the following lemmas:
Lemma 2. The following inequality holds:

$$
g_{S}(y) \leq g_{S}(\widehat{x})
$$

Proof. We have

$$
\begin{aligned}
g_{S}(\widehat{x}) & =D_{S} \widehat{x}_{S}+D\left(J_{S}, J_{N}\right) \widehat{x}_{N}+c_{S} \\
& =D_{S} y_{S}+c_{S}+D\left(J_{S}, J_{N}\right) \widehat{x}_{N} \\
& =g_{S}(y)+D\left(J_{S}, J_{N}\right) \widehat{x}_{N} \\
& \geq g_{S}(y)
\end{aligned}
$$

because $D\left(J_{S}, J_{N}\right) \leq 0$ and $\widehat{x}_{N}<0$.
Since $g_{S}(\widehat{x})=0$, then by lemma 2 we deduce that $g_{S}(y) \leq 0$. Then we construct a vector x such that

$$
\left\{\begin{array}{l}
x_{N}=y_{N}=0 \tag{7}\\
x_{S}=-D_{S}^{-1} c_{S}
\end{array}\right.
$$

Thus we have

$$
g_{S}(y) \leq 0 \quad \text { and } \quad g_{S}(x)=0
$$

Lemma 3. The vectors y and x satisfy the following inequality:

$$
x_{S} \geq y_{S} \geq 0
$$

Proof. We have

$$
D_{S}\left(x_{S}-y_{S}\right)=D_{S} x_{S}+c_{S}-\left(D_{S} y_{S}+c_{S}\right)
$$

As $x_{N}=y_{N}=0, g_{S}(y) \leq 0$ and $g_{S}(x)=0$, then we deduce

$$
D_{S}\left(x_{S}-y_{S}\right)=g_{S}(x)-g_{S}(y) \geq 0
$$

The submatrix D_{S} is an M-matrix [20], that yields $D_{S}^{-1} \geq 0$. Consequently, from the above inequality, we obtain

$$
x_{S} \geq y_{S} \geq 0
$$

By lemma 3, the constructed vector x (7) is a feasible solution of the problem (1). We have then the following lemma:

Lemma 4.

$$
F(x) \leq F(y)
$$

Proof. Let

$$
2 F(x)=x_{S}^{T} D_{S} x_{S}+2 c_{S}^{T} x_{S}
$$

As $x_{S}=-D_{S}^{-1} c_{S}$, we will have

$$
2 F(x)=c_{S}^{T} D_{S}^{-1} c_{S}-2 c_{S}^{T} D_{S}^{-1} c_{S}=-c_{S}^{T} D_{S}^{-1} c_{S}
$$

Because the submatrix D_{S} is positive definite, then we can write

$$
\begin{aligned}
2 F(x) & \leq\left(y_{S}-x_{S}\right)^{T} D_{S}\left(y_{S}-x_{S}\right)-c_{S}^{T} D_{S}^{-1} c_{S} \\
& \leq y_{S}^{T} D_{S} y_{S}+x_{S}^{T} D_{S} x_{S}-2 y_{S}^{T} D_{S} x_{S}-c_{S}^{T} D_{S}^{-1} c_{S} \\
& \leq y_{S}^{T} D_{S} y_{S}+c_{S}^{T} D_{S}^{-1} D_{S} D_{S}^{-1} c_{S}+2 y_{S}^{T} D_{S} D_{S}^{-1} c_{S}-c_{S}^{T} D_{S}^{-1} c_{S} \\
& \leq y_{S}^{T} D_{S} y_{S}+2 c_{S}^{T} y_{S} \\
& \leq 2 F(y)
\end{aligned}
$$

Hence

$$
F(x) \leq F(y)
$$

Remark 4. The constructed vector x (7) satisfies thus the following inequality:

$$
\begin{equation*}
F(\widehat{x})<F\left(x^{0}\right) \leq F(x) \leq F(y) \tag{8}
\end{equation*}
$$

where y is the projection of \widehat{x} on the admissible set of the problem (1).

We recall the following theorem

Theorem 3. [20] Assume $D_{S}^{-1} c_{S} \leq 0$ for some nonempty subset $J_{S} \subset J$. Define a vector x with $x_{S}=$ $-D_{S}^{-1} c_{S}$ and $x_{N}=0$. Let J_{N}^{-}and J_{N}^{+}be two sets partitioning J_{N} such that

$$
J_{N}^{-}=\left\{j \in J_{N}: g_{j}(x)<0\right\}, \quad J_{N}^{+}=\left\{j \in J_{N}: g_{j}(x) \geq 0\right\}
$$

If the set J_{N}^{-}is empty, then

1. the vector x solves the problem (1), else
2. let $\overline{J_{S}}:=J_{S} \cup J_{N}^{-}$. Construct \bar{x} with $\bar{x}\left(\overline{J_{S}}\right)=-D^{-1}\left(\overline{J_{S}}, \overline{J_{S}}\right) c\left(\overline{J_{S}}\right)$ and $\bar{x}\left(J_{N}^{+}\right)=0$. We get
(a) $\bar{x}\left(J_{S}\right) \geq x\left(J_{S}\right) \geq 0, \quad \bar{x}\left(J_{N}^{-}\right) \geq 0, \quad \bar{x}\left(J_{N}^{+}\right)=0$,
(b) $g_{j}(\bar{x}) \leq g_{j}(x), \quad j \in J_{N}^{+}$,
(c) $F(\bar{x})<F(x)$.

3. Algorithm of the method

Based on the previous theorem, we propose the following algorithm:

Begin

1. Compute the optimal solution \widehat{x} of the problem (3):

$$
g(\widehat{x})=D \widehat{x}+c=0 \Longrightarrow \widehat{x}=-D^{-1} c
$$

2. If $\widehat{x} \geq 0$, then stop and the vector $x^{0}=\widehat{x}$ is the optimal solution of the problem (1).
3. Else, define the sets:

$$
J_{S}=\left\{j \in J: \quad \widehat{x}_{j} \geq 0\right\}, \quad J_{N}=\left\{j \in J: \widehat{x}_{j}<0\right\}
$$

4. Construct x as follows:

$$
x_{N}=0, \quad x_{S}=-D_{S}^{-1} c_{S}
$$

5. Let J_{N}^{-}and J_{N}^{+}be two sets partitioning J_{N} such that

$$
J_{N}^{-}=\left\{j \in J_{N}: g_{j}(x)<0\right\}, \quad J_{N}^{+}=\left\{j \in J_{N}: g_{j}(x) \geq 0\right\}
$$

6. Repeat

1. Compute $g_{N}(x)=D\left(J_{N}, J_{S}\right) x_{S}+c_{N}$,
2. Let $J_{N}^{-}=\left\{j \in J_{N}: g_{j}(x)<0\right\}$,
3. If J_{N}^{-}is nonempty, then
(a) Let $J_{S}:=J_{S} \cup J_{N}^{-}$and $J_{N}:=J_{N} \backslash J_{N}^{-}$,
(b) Reconstruct x such that $x_{N}=0$ and $x_{S}=-D_{S}^{-1} c_{S}$,
until the set $J_{N}^{-}=\emptyset$.
End.

4. Experimental results

In this section, we have chosen two representative problems. The goal is to show the effectiveness of our proposed algorithm in making a numerical comparison with the algorithm of Luk and Pagano [20]. All experiments were conducted on a computer with $\operatorname{Intel}(\mathrm{R})$ Core(TM) i3-2350 CPU @ 2.30 GHz with 4.00 Go of RAM, working under Windows 7 operating system with MATLAB R2015a programming language. The criterion of the comparison between the two methods is the average CPU time (Avr-CPU) in seconds and the average number of iterations (Avr-Iter) necessary provided to obtain the optimal solution of the problem. All these tests were conducted on the same computer. The values presented in the tables represent the averages of 5 test problems for each value n. We define by

- Algorithm1: Chandrasekaran, Luk and Pagano method[20],
- Algorithm2: proposed algorithm,
- $N J_{S}$: the number of elements in the support J_{S} of the objective function, just after having calculated $\widehat{x}=-D^{-1} c$,
- $\overline{N J_{S}}$: the number of elements in the support J_{S} of the objective function, at the optimum,
- $N P$: the number of elements in the set P, at the initialization of x, with $P=\left\{j \in J \in: c_{j} \leq 0\right\}$ and $\bar{P}=J \backslash P$,
- $\overline{N P}$: the number of elements in the set P, at the optimum,
- Avr-Iter: the average number of iterations performed by each algorithm,
- Avr-CPU: the average CPU time in seconds necessary provided to obtain the optimal solution of the problem.

4.1. Example 1.

Let us consider the quadratic program (1):

$$
\left\{\begin{array}{l}
\min _{x \in \mathbb{R}^{n}} F(x)=\frac{1}{2} x^{T} D x+c^{T} x, \tag{9}\\
\text { subject to } \quad x \geq 0,
\end{array}\right.
$$

and, the matrix D is the matrix corresponding to the finite difference discretization of the one-dimensional Dirichlet problem [38].

$$
D=\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \tag{10}\\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right)_{n \times n}
$$

We choose to generate the vector c in order to have three cases of the set J_{S}. Let r_{i} be a random number from an uniform distribution $r_{i} \in U[0,1]$. The comparison criterion between the two methods is based on the average CPU time (Avr-CPU) in seconds and the average number of iterations (Avr-Iter) necessary provided to obtain the optimal solution of the problem. The results are presented in the tables below:
4.1.1. Case 1. The vector c is generated so that to have $N J_{S}=n$

$$
\begin{equation*}
c_{i}=11-20 r_{i} \quad \text { for } \quad i=1,2, \ldots, n \tag{11}
\end{equation*}
$$

Dimension	Algorithm1				Algorithm2			
n	Avr-Iter	NP	$\overline{N P}$	Avr-CPU	Avr-Iter	$N J_{S}$	$\overline{N J_{S}}$	Avr-CPU
500	07	280	500	0.0798	0	500	500	0.0048
1000	06	559	1000	0.1172	0	1000	1000	0.0067
1500	07	846	1500	0.1642	0	1500	1500	0.0091
2000	08	1077	2000	0.1867	0	2000	2000	0.0098
2500	08	1356	2500	0.1910	0	2500	2500	0.0111
3000	08	1625	3000	0.1999	0	3000	3000	0.0130
4000	09	2187	4000	0.2022	0	4000	4000	0.0193
5000	11	2742	5000	0.2153	0	5000	5000	0.0269

Table 1. The average CPU time in seconds and the average number of iterations performed by each algorithm with $N J_{S}=n$.
4.1.2. Case 2. For $N J_{S}<n$, the vector c is generated by

$$
\begin{equation*}
c_{i}=11-22 r_{i} \quad \text { for } \quad i=1,2, \ldots, n \tag{12}
\end{equation*}
$$

Dimension	Algorithm1				Algorithm2			
n	Avr-Iter	NP	$\overline{N P}$	Avr-CPU	Avr-Iter	$N J_{S}$	$\overline{N J_{S}}$	Avr-CPU
500	14	249	498	0.1099	06	420	498	0.0146
1000	21	499	999	0.1182	07	982	999	0.0165
1500	23	727	1487	0.1226	21	142	1487	0.0378
2000	26	1010	1960	0.1396	30	851	1960	0.0569
2500	22	1242	2454	0.1406	32	330	2454	0.0598
3000	26	1482	2923	0.1473	35	1074	2923	0.0621
4000	26	2001	3958	0.1914	40	1172	3958	0.1101
5000	26	2500	4969	0.1974	40	2237	4969	0.1230

Table 2. The average CPU time in seconds and the average number of iterations performed by each algorithm with $N J_{S}<n$.
4.1.3. Case 3. For $N J_{S}=0$, one generates the vector c by

$$
\begin{equation*}
c_{i}=11-25 r_{i} \quad \text { for } \quad i=1,2, \ldots, n \tag{13}
\end{equation*}
$$

Dimension	Algorithm1				Algorithm2			
n	Avr-Iter	NP	$\overline{N P}$	Avr-CPU	Avr-Iter	$N J_{S}$	$\overline{N J_{S}}$	Avr-CPU
500	07	199	335	0.1053	11	0	335	0.0167
1000	09	444	752	0.1099	12	0	752	0.0232
1500	09	648	1051	0.1106	13	0	1051	0.0287
2000	10	853	1444	0.1218	16	0	1444	0.0431
2500	11	1149	1894	0.1240	16	0	1894	0.0487
3000	08	1360	2272	0.1249	11	0	2272	0.0529
4000	09	1758	2862	0.1341	14	0	2862	0.0681
5000	08	2206	3660	0.1456	17	0	3660	0.0936

Table 3. The average CPU time in seconds and the average number of iterations performed by each algorithm with $N J_{S}=0$.

A comparison of the average CPU time for the proposed algorithm and the Luk and Pagano algorithm [20], is showed in Figure 1.

Figure 1. The average CPU time (Avr-CPU) in seconds performed by each algorithm for example 1
In this example, we see that our approach is more efficient in machine time than the approach of Chandrasekaran, Luk and Pagano. And that, whatever the number of elements in the support J_{S} of the objective function at the initial step of the algorithm.

4.2. Example 2.

In this second example, the matrix D of the problem is chosen as a 5 - point finite difference Laplacian operator[38]:

$$
D=\left(\begin{array}{ccccc}
B & -I & 0 & \cdots & 0 \tag{14}\\
-I & B & -I & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -I & B & -I \\
0 & \cdots & 0 & -I & B
\end{array}\right)_{m^{2} \times m^{2}} \quad, B=\left(\begin{array}{ccccc}
4 & -1 & 0 & \cdots & 0 \\
-1 & 4 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 4 & -1 \\
0 & \cdots & 0 & -1 & 4
\end{array}\right)_{m \times m}
$$

with $n=m^{2}$. The matrix I is the identity matrix.
We choose to generate the vector c in order to have three cases of the set J_{S} as in the previous example. The comparison criterion between the two methods is based on the average CPU time (Avr-CPU) in seconds and the
average number of iterations (Avr-Iter) necessary provided to obtain the optimal solution of the problem. The results obtained are presented in the tables below:
4.2.1. Case 1. The vector c is generated by

$$
\begin{equation*}
c_{i}=8-10 r_{i} \quad \text { for } \quad i=1,2, \ldots, n . \tag{15}
\end{equation*}
$$

Dimension	Algorithm1				Algorithm2			
$n=m \times m$	Avr-Iter	NP	$\overline{N P}$	Avr-CPU	Avr-Iter	$N J_{S}$	$\overline{N J_{S}}$	Avr-CPU
20×20	01	393	400	0.0768	0	400	400	0.0053
30×30	01	813	900	0.0791	0	900	900	0.0070
40×40	01	1222	1600	0.0801	0	1600	1600	0.0081
50×50	01	1603	2500	0.0891	0	2500	2500	0.0100
60×60	01	2387	3600	0.0960	0	3600	3600	0.0146
70×70	01	3207	4900	0.1320	0	4900	4900	0.0225

Table 4. The average CPU time in seconds and the average number of iterations performed by each algorithm with $N J_{S}=n$.
4.2.2. Case 2. The vector c is generated by

$$
\begin{equation*}
c_{i}=8-16 r_{i} \quad \text { for } \quad i=1,2, \ldots, n . \tag{16}
\end{equation*}
$$

Dimension	Algorithm1				Algorithm2			
$n \times n$	Avr-Iter	NP	$\overline{N P}$	Avr-CPU	Avr-Iter	$N J_{S}$	$\overline{N J_{S}}$	Avr-CPU
20×20	12	198	380	0.1093	15	46	380	0.0179
30×30	12	441	882	0.1143	15	453	882	0.0233
40×40	15	849	1590	0.1199	17	895	1590	0.0283
50×50	16	1253	2498	0.1323	18	2464	2498	0.0353
60×60	19	1792	3522	0.1492	24	590	3522	0.0653
70×70	24	2360	4860	0.1734	22	2948	4890	0.0679

Table 5. The average CPU time in seconds and the average number of iterations performed by each algorithm with $N J_{S}<n$.
4.2.3. Case 3. The vector c is generated by

$$
\begin{equation*}
c_{i}=8-20 r_{i} \quad \text { for } \quad i=1,2, \ldots, n . \tag{17}
\end{equation*}
$$

Dimension	Algorithm1				Algorithm2			
$n \times n$	Avr-Iter	NP	$\overline{N P}$	Avr-CPU	Avr-Iter	$N J_{S}$	$\overline{N J_{S}}$	Avr-CPU
20×20	04	154	219	0.1037	06	0	219	0.0141
30×30	05	339	506	0.1079	07	0	506	0.0204
40×40	05	647	937	0.1108	07	0	937	0.0259
50×50	04	899	1221	0.1139	05	0	1221	0.0306
60×60	04	1277	1740	0.1199	05	0	1740	0.0458
70×70	06	1891	2592	0.1401	07	0	2592	0.0628

Table 6. The average CPU time in seconds and the average number of iterations performed by each algorithm $N J_{S}=0$.

A comparison of the average CPU time for the proposed algorithm, the Luk and Pagano algorithm [20], is showed in Figure 2. And that, whatever the number of elements in the support J_{S} of the objective function at the initial step of the algorithm.

Figure 2. The average CPU time (Avr-CPU) in seconds performed by each algorithm for the example 2.

From the numerical examples above, our approach often requires less average CPU time than Chandrasekaran, Luk and Pagano's approach. This is true whatever the number of elements in the support J_{S} of the objective function at the initial step of the algorithm.

5. Conclusion

The lemmas 2,3 and 4 allowed us to start the algorithm with a feasible solution x checking the conditions of the theorem 3 and the inequality (8). If the matrix of our objective function $D=I$, where I is the identity matrix , then we have

$$
J_{S}=\left\{j \in J: c_{j} \leq 0\right\}, \quad J_{N}=\left\{j \in J: c_{j}>0\right\}
$$

and we find the conditions of the initialization of the algorithms of Chandrasekaran, Luk and Pagano [8, 20]. Let us notice that their algorithms finish with J_{N} or J_{N}^{-}empty, while ours always finishes with $J_{N}^{-}=\emptyset$ and $J_{N} \neq \emptyset$, and this, because of our initialization. Indeed, the case $J_{N}=\emptyset$ corresponds to the optimal solution $x^{0}=\widehat{x}$.

From the two numerical examples, we see that our approach is more efficient in machine time than the approach of Chandrasekaran, Luk and Pagano. This is true for both examples, whatever the number of elements in the support J_{S} of the objective function at the initial step of the algorithm.

REFERENCES

1. A. Atamtürk, and A. Gómez, Strong formulations for quadratic optimization with M-matrices and indicator variables, Math. Program, vol. 170, no. 1, p. 141-176., 2018.
2. A. Berman, and R. J. Plemmons, Nonnegative Matrices in Mathematical Sciences, Academic Press, New York, 1979.
3. D. P. Bertsekas, Projected Newton Method for Optimization Problems with Simple Constraints, SIAM Journal on Control and Optimization, vol. 20, no 2, p. 221-246, 1982.
4. B. Brahmi and M. O. Bibi, Dual Support method for solving convex quadratic programs, Optimization, Vol. 59, n. 6, p. 851-872, 2010.
5. A. Bounceur, S. Djemai, B. Brahmi, M. O. Bibi, and R. Euler, A Classification Approach for an Accurate Analog/RF BIST Evaluation Based on the Process Parameters, Journal of Electronic Testing, Vol. 34, 321-335, 2018.
6. M. O. Bibi, N. Ikheneche, and M. Bentobache, A hybrid direction algorithm for solving a convex quadratic problem, International Journal Mathematics in Operations Research, Vol. 16, No. 2, pp. 159-178, 2020.
7. R. Cambini, and C. Sodini, A sequential method for a class of box constrained quadratic programming problems, Mathematical Methods of Operations Research, vol. 67, no 2, p. 223-243, 2008.
8. R. Chandrasekaran, A special case of the complementary pivot problem, Opsearch, vol. 7, p. 263-268, 1970.
9. G. Cimatti, On a problem of the theory of lubrication governed by a variational inequality, Applied Mathematics and Optimization, vol. 3, no. 2-3, pp. 227-242, 1976.
10. A. N. Daryina, and A. F. Izmailov, On Active-Set Methods for the Quadratic Programming Problem, Computational Mathematics and Mathematical Physics, vol. 52, p. 512-523, 2012.
11. A. Friedlander, J. Martinez, and M. Raydan, A new method for large-scale box constrained convex quadratic minimization problems, Optimization Methods and Software, vol. 5, no. 1, p. 57-74, 1995.
12. Y. J. Jiang, and J. P. Zeng, Direct algorithm for the solution of two-sided obstacle problems with M-matrix, Numerical Linear Algebra with Applications, vol. 18, no. 1, p. 167-173. 2011.
13. P. Hungerländer, and F. Rendl, A feasible active set method for strictly convex quadratic problems with simple bounds, SIAM Journal on Optimization, 25(3), 1633-1659, 2017.
14. D.S. Hochbaum, Multi-label markov random fields as an efficient and effective tool for image segmentation, total variations and regularization, Numer. Math. Theory Methods Appl, Vol. 6, no. 1, 169-198, 2013.
15. Y.C. Hsieh, D. L. Bricker, Solving obstacle problems by using a new infeasible interior point algorithm, Journal of the Chinese Institute of Industrial Engineers, vol. 16, no. 6, 771-780, 1999.
16. R. Gabasov, F. M. Kirillova, O. I. Kostyukova, and V.M. Raketsky, Constructive methods of optimization, volume 4: Convex Problems, University Press, Minsk (1987).
17. R. Glowinski, Lectures on numerical methods for non-linear variational problems, Springer Science \& Business Media, Berlin, New York, 2008.
18. K. Kunish, and F. Rendl, An infeasible active set method for convex problems with simple bounds, SIAM Journal on Optimization, vol. 14, no 1, p. 35-52, 2003.
19. T. Kärkkäinen, K. Kunisch, and P. Tarvainen, Augmented Lagrangian Active Set Methods for Obstacle Problems, Journal of optimization theory and applications, vol. 119, no.3, p. 499-533, 2003.
20. F. T. Luk and M. Pagano, Quadratic programming with M-Matrices, Linear Algebra and Its Applications, vol. 33, p. 15-40, 1980.
21. Y. Lin, and C. W. Ciyer, An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems, Applied Mathematics and Optimization, vol. 13, no. 1, p. 1-17, 1985.
22. L. Li and Y. Kobayashi, A block recursive algorithm for the linear complementarity problem with an M-matrix, International Journal of Innovative, Computing, Information and Control, Vol. 2, N. 6, 1327-1335, 2006.
23. M.S, Lobo, F. M. azel, and S. Boyd, Portfolio optimization with linear and fixed transaction costs, Annals of Operations Research, vol. 152, 341-365, 2007.
24. M. Pakdaman, and S. Effati, Bounds for convex quadratic programming problems and some important applications, International Journal of Operational Research, vol. 30, no. 2, 277-287, 2017.
25. E. Polak, Computational Methods in Optimization: A Unified Approach, Mathematics in Science and Engineering, London, Academic Press, 1971.
26. S. Radjef, and M. O. Bibi, An Effective Generalization of the Direct Support Method in Quadratic Convex Programming, Applied Mathematical Sciences, vol. 6, no 31, p. 1525-1540, 2012.
27. J. F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, New York, 1987.
28. F. Scarpini, Some algorithms solving the unilateral Dirichlet problems with two constraints, Calcolo, vol. 12, no. 2, pp. 113-149, 1975.
29. Q. Song, F. Liu, J. Cao, and W. Yu. M-matrix strategies for pinning-controlled leader-following consensus in multiagent systems with nonlinear dynamics, IEEE Trans Cybern, vol. 43, no. 6, p. 1688-1697, 2013.
30. D. D. Šiljak, Large-scale Dynamic Systems: Stability and Structure, North-Holland, New York, 1978.
31. D. M. Stipanovic, and D. D. Šiljak, Stability of polytopic systems via convex M-matrices and parameter-dependent Liapunov functions, Nonlinear Analysis, Theory, Methods and Applications, vol. 40, no. 1, p. 589-609, 2000.
32. D. M. Stipanovic, S. Shankaran, and C.J. Tomlin, Multi-agent avoidance control using an M-matrix property, The Electronic Journal of Linear Algebra, vol. 12, p. 64-72, 2005.
33. A. Stachurski, An Equivalence between two algorithms for a class of quadratic programming problems with M-matrices, Optimization, vol. 21, no 6, p. 871-878, 1990.
34. A. Stachurski, Monotone sequences of feasible solutions for quadratic programming problems with M-matrices and box constraints, In: System Modelling and Optimization: Proceedings of 12th IFIP Conference, Budapest, Hungary, September 2-6, 1985. Berlin, Heidelberg : Springer Berlin Heidelberg, p. 896-902, 2006.
35. A. Stachurski, On a conjugate directions method for solving strictly convex QP problem, Mathematical Methods of Operations Research, vol. 86, no. 3, p. 523-548, 2017.
36. B. Schofield, On Active Set Algorithms for Solving Bound-Constrained Least Squares Control Allocation Problems, In: Proceedings of the American Control Conference, 2597-2602. Seattle, Washington, USA, 2008, June.
37. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J, 1962.
38. G. Windisch, M-matrices in Numerical Analysis, Springer-Verlag, German, 2013.

[^0]: *Correspondence to: Katia Hassaini (Email: katia.hassaini@univ-bejaia.dz). Research Unit LaMOS (Modelling and Optimization of Systems), Department of Operations Research, Faculty of the Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria.

