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Abstract In this study, we propose an new approach for solving a quadratic programming problem with an M-matrix and
simple constraints. This approach is based on the algorithms of Chandrasekaran, Luk and Pagano. These methods use the
fact that an M-matrix possesses a nonnegative inverse which allows to have a sequence of feasible points monotonically
increasing. Introducing the concept of support for an objective function developed by Gabasov et al. in 1987, our approach
leads to a more general condition which allows to have an initial feasible solution, related to a coordinator support and close
to the optimal solution. The programming of our method under MATLAB and that of Luk and Pagano have allowed us
to make a comparison between them, in the illustration of two practical examples. The numerical results indicate that our
approach is more efficient than the approach proposed by Chandrasekaran, Luk and Pagano.
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1. Introduction

In the literature, several approaches were suggested for solving a quadratic programming problem when the
associated matrix D is positive definite or semidefinite [35, 5, 36, 7, 13, 6, 10, 26, 3, 11, 4, 24]. However, it
is possible to exploit the special properties of an M-matrix to obtain more efficient special algorithms. The
M-matrices are known to have many applications in the modeling of the dynamic systems, in economic sciences
and ecology [2, 37]. Such problems include various types of Dirichlet problems with obstacles [28], and models
of the application of torsion to a bar [27]. Several of their properties are used in general to establish results of
stability for the dynamic systems [31, 32, 29]. Quadratic minimization with an M-matrix arises directly in a
variety of applications including portfolio optimization with transaction costs [23], and image segmentation [14].
Convex quadratic programming with an M-matrix is also studied on its own right [1, 12, 13, 19, 20, 33, 34, 22].
The M-matrices are also present in the obstacle problems [15], and active set methods are used to solve them [19],
a direct algorithm for the solution to the affine two-sided obstacle problem with an M-matrix is presented in [12],
another method for strictly convex quadratic problems is suggested in [13], this method presents an extension of
the external points method [18].

The main contribution of this paper lies in the proposal of a new and efficient algorithm for solving quadratic
programming problems with an M-matrix and simple constraints. This method takes advantage of the fact that
an M-matrix has a nonnegative inverse (all the elements of the matrix D−1 are nonnegative), which gives a
monotonically increasing sequence of feasible solutions [33, 34]. By introducing the concept of support for an
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objective function [16], our approach differs from the method presented by Chandrasekaran [8], Luk and Pagano
[20] by a more general condition that allows us to have an initial feasible solution, close to the optimal solution.
This characteristic facilitates faster convergence to the optimal solution, reducing thus the number of iterations
required compared with the Chandrasekaran, Luk and Pagano approaches.

The organization of the paper is as follows: in the second section, we present the problem and give some
definitions related to our approach. In section 3, the algorithm for solving the quadratic programming problem
with an M-matrix and simple constraints is presented. In Section 4, the programming of our method and that of
Luk and Pagano under MATLAB have allowed us to make a comparison between them, in the illustration of two
practical examples randomly generated, and this, by varying the number of variables. We finish the article by a
conclusion.

2. Position of the problem and definitions

Let us consider the following problem of quadratic programming with simple constraints: min
x∈Rn

F (x) = 1
2x

TDx+ cTx,

subject to x ≥ 0,
(1)

where c = c(J) = (cj , j ∈ J) and x = x(J) = (xj , j ∈ J) are real n-vectors, with J = {1, 2, · · · , n}. The matrix
D = D(J, J) is a nonsingular symmetric square M-matrix of order n.

Definition 1. [37]

A matrix D = (dij , 1 ≤ i, j ≤ n) is said to be an M-matrix if it satisfies the following properties:

dii > 0 dij ≤ 0, i ̸= j , D−1 ≥ 0,

where the symbol D−1 ≥ 0 denotes that all the elements of the matrix D−1 are nonnegative.

Remark 1. A symmetric M-matrix is always positive definite (xTDx > 0, ∀ x ̸= 0). Moreover, any submatrix of
an M-matrix is itself an M-matrix.

Definition 2.

A vector x ≥ 0 is called a feasible solution of the problem (1). A feasible solution x0 is said optimal if it gives to
the objective function of the problem (1) his minimum value.

Thus, we have

Theorem 1. A feasible solution x0 of the problem (1) is optimal if and only if for all j ∈ J , the following conditions
of optimality are satisfied [16]: {

x0
j = 0 ⇒ gj(x

0) ≥ 0,

x0
j > 0 ⇒ gj(x

0) = 0, j ∈ J,
(2)

where g(x) = g(J) = Dx+ c is the gradient of the objective function F at the point x.
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Let us consider the quadratic program without constraints

min
x∈Rn

F (x) =
1

2
xTDx+ cTx, (3)

whose the optimal solution x̂ satisfies the equation

Dx̂+ c = 0 ⇐⇒ x̂ = −D−1c.

Let JS and JN be a partition of J : JS ∪ JN = J, JS ∩ JN = ∅. Then the gradient of the function F at point x
can be written in the following form:

g =

(
gS
gN

)
, gS = g(JS) = DSxS +DSNxN + cS , gN = g(JN ) = DNSxS +DNxN + cN ,

where

x =

(
xS

xN

)
, c =

(
cS
cN

)
, DS = D(JS , JS), DN = D(JN , JN ), DSN = D(JS , JN ).

For all subset JS in J , the following condition holds:

detDS = detD(JS , JS) ̸= 0.

Definition 3.

• The subset JS is called a support of the objective function and the pair Jp = {JS , JN} is a support of the
problem (1).

• The couple {x, JS}, comprising the feasible solution x and the support JS is called a support feasible
solution.

• A vector κ = κ(J) =
(
κ(JS), κ(JN )

)
satisfying{

κN = 0,

κS = −D−1
S cS ,

is called a pseudosolution of the problem (1). A pseudosolution verifies gS(κ) = 0.

• The support JP = {JS , JN} is called a coordinator support if there is a pseudosolution κ such that:

gj(κ) ≥ 0, j ∈ JN . (4)

In this case, we say that the pseudosolution κ is associated to the coordinator support JP .

Theorem 2. A pseudosolution κ associated to a coordinator support Jp is optimal in the problem (1) if and only if

κj ≥ 0, j ∈ JS . (5)

Remark 2. Any pseudosolution κ, associated to a coordinator support Jp, is a feasible solution for the dual of the
primal problem (1): {

F (κ) = − 1
2κ

TDκ −→ max,

Dκ+ c ≥ 0.
(6)
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Remark 3. As g(x̂) = 0, then the optimal solution x̂ of the problem without constraints (3) is a pseudosolution of
the problem (1), associated to the coordinator support Jp = {JS , JN}, where JS = J and JN = ∅. According to
the theorem 2, if x̂ ≥ 0, then x0 = x̂ is the optimal solution of the problem (1).

Let us recall the following lemma:

Lemma 1. [20].

(a) If c ≥ 0, then x0 = 0 solves the problem (1),

(b) If c ≤ 0, then x 0 = −D−1c solves the problem (1).

To eliminate these two trivial cases, let us consider the general one where the vector c contains both positive
and negative components, and construct the two following sets of indices:

JS = {j ∈ J : x̂j ≥ 0}, JN = {j ∈ J : x̂j < 0}, JS ∪ JN = J.

• If JS = J , then x0 = x̂ = −D−1c is the optimal solution of the problem (1).

• Else, let y be the projection of x̂ on the admissible set of the problem (1), where y = (yj , j ∈ J), yj =
max{0, x̂j}. Therefore we will have {

yN = 0 > x̂N ,

yS = x̂S .

For the construction of our algorithm, we have established the following lemmas:

Lemma 2. The following inequality holds:
gS(y) ≤ gS(x̂).

Proof. We have

gS(x̂) = DS x̂S +D(JS , JN ) x̂N + cS

= DS yS + cS + D(JS , JN ) x̂N

= gS(y) + D(JS , JN ) x̂N

≥ gS(y),

because D(JS , JN ) ≤ 0 and x̂N < 0. 2

Since gS(x̂) = 0, then by lemma 2 we deduce that gS(y) ≤ 0. Then we construct a vector x such that{
xN = yN = 0,

xS = −D−1
S cS .

(7)

Thus we have

gS(y) ≤ 0 and gS(x) = 0.

Lemma 3. The vectors y and x satisfy the following inequality:

xS ≥ yS ≥ 0.
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Proof. We have

DS (xS − yS) = DS xS + cS − (DS yS + cS).

As xN = yN = 0, gS(y) ≤ 0 and gS(x) = 0, then we deduce

DS (xS − yS) = gS(x)− gS(y) ≥ 0.

The submatrix DS is an M-matrix [20], that yields D−1
S ≥ 0. Consequently, from the above inequality, we obtain

xS ≥ yS ≥ 0. 2

By lemma 3, the constructed vector x (7) is a feasible solution of the problem (1). We have then the following
lemma:

Lemma 4.
F (x) ≤ F (y).

Proof. Let

2F (x) = xT
S DSxS + 2 cTS xS .

As xS = −D−1
S cS , we will have

2F (x) = cTS D−1
S cS − 2 cTS D−1

S cS = −cTS D−1
S cS .

Because the submatrix DS is positive definite, then we can write

2F (x) ≤ (yS − xS)
T DS(yS − xS)− cTS D−1

S cS

≤ yTS DS yS + xT
S DS xS − 2yTS DS xS − cTS D−1

S cS

≤ yTS DS yS + cTS D−1
S DS D−1

S cS + 2 yTS DS D−1
S cS − cTS D−1

S cS

≤ yTS DS yS + 2 cTS yS

≤ 2 F (y).

Hence
F (x) ≤ F (y). 2

Remark 4. The constructed vector x (7) satisfies thus the following inequality:

F (x̂) < F (x0) ≤ F (x) ≤ F (y), (8)

where y is the projection of x̂ on the admissible set of the problem (1).

We recall the following theorem
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Theorem 3. [20] Assume D−1
S cS ≤ 0 for some nonempty subset JS ⊂ J . Define a vector x with xS =

−D−1
S cS and xN = 0. Let J−

N and J+
N be two sets partitioning JN such that

J−
N = {j ∈ JN : gj(x) < 0}, J+

N = {j ∈ JN : gj(x) ≥ 0}.

If the set J−
N is empty, then

1. the vector x solves the problem (1), else

2. let JS := JS ∪ J−
N . Construct x with x(JS) = −D−1(JS , JS) c(JS) and x(J+

N ) = 0. We get

(a) x(JS) ≥ x(JS) ≥ 0, x(J−
N ) ≥ 0, x(J+

N ) = 0,

(b) gj(x) ≤ gj(x), j ∈ J+
N ,

(c) F (x) < F (x).

3. Algorithm of the method

Based on the previous theorem, we propose the following algorithm:

Begin

1. Compute the optimal solution x̂ of the problem (3):

g(x̂) = Dx̂+ c = 0 =⇒ x̂ = −D−1c.

2. If x̂ ≥ 0, then stop and the vector x0 = x̂ is the optimal solution of the problem (1).

3. Else, define the sets:
JS = {j ∈ J : x̂j ≥ 0}, JN = {j ∈ J : x̂j < 0}.

4. Construct x as follows:

xN = 0, xS = −D−1
S cS .

5. Let J−
N and J+

N be two sets partitioning JN such that

J−
N = {j ∈ JN : gj(x) < 0}, J+

N = {j ∈ JN : gj(x) ≥ 0}.

6. Repeat

1. Compute gN (x) = D(JN , JS) xS + cN ,

2. Let J−
N = {j ∈ JN : gj(x) < 0},

3. If J−
N is nonempty, then

(a) Let JS := JS ∪ J−
N and JN := JN \ J−

N ,

(b) Reconstruct x such that xN = 0 and xS = −D−1
S cS ,

until the set J−
N = ∅.

End.
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4. Experimental results

In this section, we have chosen two representative problems. The goal is to show the effectiveness of our
proposed algorithm in making a numerical comparison with the algorithm of Luk and Pagano [20]. All experiments
were conducted on a computer with Intel(R) Core(TM) i3-2350 CPU @ 2.30 GHz with 4.00Go of RAM,
working under Windows 7 operating system with MATLAB R2015a programming language. The criterion of
the comparison between the two methods is the average CPU time (Avr-CPU) in seconds and the average number
of iterations (Avr-Iter) necessary provided to obtain the optimal solution of the problem. All these tests were
conducted on the same computer. The values presented in the tables represent the averages of 5 test problems for
each value n. We define by

• Algorithm1: Chandrasekaran, Luk and Pagano method[20],

• Algorithm2: proposed algorithm,

• NJS : the number of elements in the support JS of the objective function, just after having calculated
x̂ = −D−1c,

• NJS : the number of elements in the support JS of the objective function , at the optimum,

• NP : the number of elements in the set P , at the initialization of x, with P = {j ∈ J ∈: cj ≤ 0} and
P = J \ P ,

• NP : the number of elements in the set P , at the optimum,

• Avr-Iter: the average number of iterations performed by each algorithm,

• Avr-CPU: the average CPU time in seconds necessary provided to obtain the optimal solution of the problem.

4.1. Example 1.

Let us consider the quadratic program (1): min
x∈Rn

F (x) = 1
2x

TDx+ cTx,

subject to x ≥ 0,
(9)

and, the matrix D is the matrix corresponding to the finite difference discretization of the one-dimensional Dirichlet
problem [38].

D =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


n×n

. (10)

We choose to generate the vector c in order to have three cases of the set JS . Let ri be a random number from
an uniform distribution ri ∈ U [0, 1]. The comparison criterion between the two methods is based on the average
CPU time (Avr-CPU) in seconds and the average number of iterations (Avr-Iter) necessary provided to obtain the
optimal solution of the problem. The results are presented in the tables below:
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4.1.1. Case 1. The vector c is generated so that to have NJS = n

ci = 11− 20 ri for i = 1, 2, . . . , n. (11)

Dimension Algorithm1 Algorithm2
n Avr-Iter NP NP Avr-CPU Avr-Iter NJS NJS Avr-CPU

500 07 280 500 0.0798 0 500 500 0.0048
1000 06 559 1000 0.1172 0 1000 1000 0.0067
1500 07 846 1500 0.1642 0 1500 1500 0.0091
2000 08 1077 2000 0.1867 0 2000 2000 0.0098
2500 08 1356 2500 0.1910 0 2500 2500 0.0111
3000 08 1625 3000 0.1999 0 3000 3000 0.0130
4000 09 2187 4000 0.2022 0 4000 4000 0.0193
5000 11 2742 5000 0.2153 0 5000 5000 0.0269

Table 1. The average CPU time in seconds and the average number of iterations performed by each algorithm with NJS = n.

4.1.2. Case 2. For NJS < n, the vector c is generated by

ci = 11− 22 ri for i = 1, 2, . . . , n. (12)

Dimension Algorithm1 Algorithm2
n Avr-Iter NP NP Avr-CPU Avr-Iter NJS NJS Avr-CPU

500 14 249 498 0.1099 06 420 498 0.0146
1000 21 499 999 0.1182 07 982 999 0.0165
1500 23 727 1487 0.1226 21 142 1487 0.0378
2000 26 1010 1960 0.1396 30 851 1960 0.0569
2500 22 1242 2454 0.1406 32 330 2454 0.0598
3000 26 1482 2923 0.1473 35 1074 2923 0.0621
4000 26 2001 3958 0.1914 40 1172 3958 0.1101
5000 26 2500 4969 0.1974 40 2237 4969 0.1230

Table 2. The average CPU time in seconds and the average number of iterations performed by each algorithm with NJS < n.

4.1.3. Case 3. For NJS = 0, one generates the vector c by

ci = 11− 25 ri for i = 1, 2, . . . , n. (13)
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Dimension Algorithm1 Algorithm2
n Avr-Iter NP NP Avr-CPU Avr-Iter NJS NJS Avr-CPU

500 07 199 335 0.1053 11 0 335 0.0167
1000 09 444 752 0.1099 12 0 752 0.0232
1500 09 648 1051 0.1106 13 0 1051 0.0287
2000 10 853 1444 0.1218 16 0 1444 0.0431
2500 11 1149 1894 0.1240 16 0 1894 0.0487
3000 08 1360 2272 0.1249 11 0 2272 0.0529
4000 09 1758 2862 0.1341 14 0 2862 0.0681
5000 08 2206 3660 0.1456 17 0 3660 0.0936

Table 3. The average CPU time in seconds and the average number of iterations performed by each algorithm with NJS = 0.

A comparison of the average CPU time for the proposed algorithm and the Luk and Pagano algorithm [20], is
showed in Figure 1.
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Figure 1. The average CPU time (Avr-CPU) in seconds performed by each algorithm for example 1

In this example, we see that our approach is more efficient in machine time than the approach of Chandrasekaran,
Luk and Pagano. And that, whatever the number of elements in the support JS of the objective function at the initial
step of the algorithm.

4.2. Example 2.

In this second example, the matrix D of the problem is chosen as a 5−point finite difference Laplacian operator[38]:

D =



B −I 0 · · · 0

−I B −I
. . .

...

0
. . . . . . . . . 0

...
. . . −I B −I

0 · · · 0 −I B


m2×m2

, B =



4 −1 0 · · · 0

−1 4 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 4 −1

0 · · · 0 −1 4


m×m

, (14)

with n = m2. The matrix I is the identity matrix.

We choose to generate the vector c in order to have three cases of the set JS as in the previous example. The
comparison criterion between the two methods is based on the average CPU time (Avr-CPU) in seconds and the
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average number of iterations (Avr-Iter) necessary provided to obtain the optimal solution of the problem. The
results obtained are presented in the tables below:

4.2.1. Case 1. The vector c is generated by

ci = 8− 10 ri for i = 1, 2, . . . , n. (15)

Dimension Algorithm1 Algorithm2
n = m×m Avr-Iter NP NP Avr-CPU Avr-Iter NJS NJS Avr-CPU
20× 20 01 393 400 0.0768 0 400 400 0.0053
30× 30 01 813 900 0.0791 0 900 900 0.0070
40× 40 01 1222 1600 0.0801 0 1600 1600 0.0081
50× 50 01 1603 2500 0.0891 0 2500 2500 0.0100
60× 60 01 2387 3600 0.0960 0 3600 3600 0.0146
70× 70 01 3207 4900 0.1320 0 4900 4900 0.0225

Table 4. The average CPU time in seconds and the average number of iterations performed by each algorithm with NJS = n.

4.2.2. Case 2. The vector c is generated by

ci = 8− 16 ri for i = 1, 2, . . . , n. (16)

Dimension Algorithm1 Algorithm2
n× n Avr-Iter NP NP Avr-CPU Avr-Iter NJS NJS Avr-CPU
20× 20 12 198 380 0.1093 15 46 380 0.0179
30× 30 12 441 882 0.1143 15 453 882 0.0233
40× 40 15 849 1590 0.1199 17 895 1590 0.0283
50× 50 16 1253 2498 0.1323 18 2464 2498 0.0353
60× 60 19 1792 3522 0.1492 24 590 3522 0.0653
70× 70 24 2360 4860 0.1734 22 2948 4890 0.0679

Table 5. The average CPU time in seconds and the average number of iterations performed by each algorithm with NJS < n.

4.2.3. Case 3. The vector c is generated by

ci = 8− 20 ri for i = 1, 2, . . . , n. (17)
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Dimension Algorithm1 Algorithm2
n× n Avr-Iter NP NP Avr-CPU Avr-Iter NJS NJS Avr-CPU
20× 20 04 154 219 0.1037 06 0 219 0.0141
30× 30 05 339 506 0.1079 07 0 506 0.0204
40× 40 05 64 7 937 0.1108 07 0 937 0.0259
50× 50 04 899 1221 0.1139 05 0 1221 0.0306
60× 60 04 1277 1740 0.1199 05 0 1740 0.0458
70× 70 06 1891 2592 0.1401 07 0 2592 0.0628

Table 6. The average CPU time in seconds and the average number of iterations performed by each algorithm NJS = 0.

A comparison of the average CPU time for the proposed algorithm, the Luk and Pagano algorithm [20], is
showed in Figure 2. And that, whatever the number of elements in the support JS of the objective function at the
initial step of the algorithm.
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Figure 2. The average CPU time (Avr-CPU) in seconds performed by each algorithm for the example 2.

From the numerical examples above, our approach often requires less average CPU time than Chandrasekaran,
Luk and Pagano’s approach. This is true whatever the number of elements in the support JS of the objective
function at the initial step of the algorithm.

5. Conclusion

The lemmas 2, 3 and 4 allowed us to start the algorithm with a feasible solution x checking the conditions of
the theorem 3 and the inequality (8). If the matrix of our objective function D = I , where I is the identity matrix ,
then we have

JS = {j ∈ J : cj ≤ 0}, JN = {j ∈ J : cj > 0},

and we find the conditions of the initialization of the algorithms of Chandrasekaran, Luk and Pagano [8, 20]. Let
us notice that their algorithms finish with JN or J−

N empty, while ours always finishes with J−
N = ∅ and JN ̸= ∅,

and this, because of our initialization. Indeed, the case JN = ∅ corresponds to the optimal solution x0 = x̂.
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From the two numerical examples, we see that our approach is more efficient in machine time than the approach
of Chandrasekaran, Luk and Pagano. This is true for both examples, whatever the number of elements in the support
JS of the objective function at the initial step of the algorithm.
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