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monotonically decreasing. Some of its relevant properties are discussed. Some characterizations based on: (i) the conditional
expectation of a certain function of the random variable and (ii) in terms of the reversed hazard function are presented.
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1. Introduction

A continuous failure time distribution can be employed for generating a corresponding discrete distributions.
If a continuous failure time random variable (RV) W has the survival function (SF) SW (w) = Pr [W > w], the
probability mass function (PMF) of the largest integer less than or equal to W , i.e., ⌊W ⌋, can be written as
FW (0) = Pr (⌊W ⌋ = 0), and

FW (w) = Pr (⌊W ⌋ = w) = Pr (w ≤ W ≤ 1 + w) = SW (w)− SW (1 + w) |w∈N∗ ,

where N∗ = N/ {0} and N = {0, 1, 2, . . . }. Thus, discretization of a continuous RV is an interesting and simple
approach to derive a discrete RV corresponding to the continuous one. A plethora of discrete distributions has been
introduced as a result of this approach. The most relevant of them include the poisson-Lindley (PLi) distribution by
Sankaran [29], discrete Weibull distribution by Nakagawa and Osaki [23], another discrete Weibull distribution by
Stein and Dattero [30], discrete Rayleigh (DR) distribution by Roy [28], discrete half-normal distribution by Kemp
[19], discrete Pareto (DPa) distribution by Krishna and Pundir [21], discrete inverse Weibull (DIW) distribution by
Jazi et al. [17], discrete generalized geometric (DGGc) distribution by Gomez-Déniz [11], discrete Lindley (DLi)
distribution by Gommez-Déniz and Calderin-Ojeda [12], discrete generalized exponential (DGE-II) distribution
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by Nekoukhou et al. [24], discrete additive Weibull (DAW) distribution by Bebbington et al. [3], discrete inverse
Rayleigh (DIR) distribution by Hussain and Ahmad [13], discrete Lomax (DLx) distribution by Para and Jan
[25], discrete log-logistic (DLL) distribution by Para and Jan [25], discrete Burr-XII (DBXII) distribution by
Para and Jan [26], discrete Lindley (DLi-II) distribution by Hussain and Aslam [14], discrete linear failure rate
(DLFR) distribution by Kumar et al. [22], discrete weighted Lindley (DWLi) distribution by Bodhisuwan and
Sangpoom [3], exponentiated discrete Lindley (EDLi) distribution by El-Morshedy et al. [9], discrete generalized
Burr-Hatke (DGBH) distribution by El-Morshedy et al. [10], discrete generalized Burr-Hatke (DGBH) distribution
by Yousof et al. [31], discrete Rayleigh G (DRG) family of distributions by Aboraya et al. [1] which contains
many sub-distributions such as the discrete Rayleigh Weibull, discrete Rayleigh exponential, discrete Rayleigh
Log-logistic, discrete Rayleigh Lomax, discrete Rayleigh Rayleigh, discrete Rayleigh Burr-XII, discrete Rayleigh
Fréchet, discrete Rayleigh inverse Rayleigh, discrete Rayleigh inverse exponential, discrete Rayleigh inverse
Lomax, discrete Rayleigh half-logistic, discrete Rayleigh Gumbel, discrete Rayleigh Lindley, discrete Rayleigh
Nadarajah-Haghighi, discrete Rayleigh Gompertz, discrete Rayleigh Dagum, discrete Rayleigh inverse flexible
Weibull, discrete Rayleigh inverse Gompertz, and the discrete analogue of the Weibull G family by Ibrahim et al.
[15], among others.

In reliability analysis, classification of lifetime distributions is defined in terms of their SFs and other related
reliability characteristics. For example, the class of the increasing (decreasing) hazard rate IHR (DHR), the class
of the new better (worse) than used NBU (NWU), the class of the new better (worse) than used in expectation
NBUE (NWUE), the class of the increasing (decreasing) hazard rate average IHRA (DHRA) and the class of the
increasing (decreasing) mean residual lifetime IMRL (DMRL), etc. (See Kemp [19], Kemp [18] and Krishna and
Pundir [21]). In this work, we derive a discrete inverse Burr (DIB) distribution using the general approach of
discretizing a continuous RV.

The rest of this paper is organized as follows. In Section 2, the discrete analogue of inverse Burr distribution is
developed and some of its distributional properties are studied. In Section 3, we present certain characterizations
of DIB distribution based on: (i) the conditional expectation of certain function of a RV and (ii) in terms of
the reversed hazard function. A graphical and numerical analysis is presented in Section 4. In Section 5, non-
Bayesian and Bayesian estimation methods are considered. Section 6 deals with some numerical simulation results
for comparing Bayesian and non-Bayesian estimation methods. Two application under the carious teeth and counts
of cysts of kidneys data sets are considered in Section 7 for comparing Bayesian and non-Bayesian estimation
methods. In Section 8, the DIB model is considered for modeling the carious teeth and counts of cysts of kidneys
data sets using the maximum likelihood estimation method and also compared with many competitive models.
Some concluding remarks are given in Section 9.

2. The new model

A RV X is said to have the inverse Burr (IB) distribution with parameter π̃ if its cumulative distribution function
(CDF) is given by

Fπ̃ (x) |(π̃>0 and x>0) =

(
1 +

1

x

)−π̃

.

Based on this function, the CDF of the discrete inverse Burr (DIB) distribution with parameter π̃ can be expressed
as

Fπ̃ (x) |(π̃>0 and x∈N) = Fπ̃ (1 + x) =

(
1 +

1

1 + x

)−π̃

=

(
1 + x

2 + x

)π̃

. (1)

An immediate property of this CDF is the following first-order stochastic ordering property: for any π̃1 ≤ π̃2, the
following inequality is fulfilled: Fπ̃2

(x) ≤ Fπ̃1
(x), meaning the DIB distribution with parameter π̃2 first-order

stochastically dominates the DIB distribution with parameter π̃1. As another remark, we can write the CDF under
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the following power function form:

Fπ̃ (x) = πg(x),

where π = exp(−π̃) ∈ (0, 1) and g(x) = log [1 + 1/ (1 + x)]. Following the “geometric distribution spirit” and for
practical reasons, in the rest of the paper, we will sometimes refer to the parameter π instead of π̃.

As another function of importance, the associated SF can be written as

Sπ̃ (x) |(π̃>0 and x∈N) = 1− Fπ̃ (x) = 1−
(
1 + x

2 + x

)π̃

.

Also, the PMF of the DIB distribution satisfies: Fπ̃ (0) = Fπ̃ (0) = (1/2)π̃ and

Fπ̃ (x) = Sπ̃ (x− 1)− Sπ̃ (x) |(π̃>0 and x∈N∗),

which can be written as

Fπ̃ (x) |(π̃>0 and x∈N∗) =

(
1 + x

2 + x

)π̃

−
( x

1 + x

)π̃

. (2)

Let us now discuss the mode of the DIB distribution. For determining the mode of the DIB distribution, the
following two inequalities are useful:

Fπ̃ (1 + x) /Fπ̃ (x) ≤ 1, Fπ̃ (x) /Fπ̃ (x− 1) ≥ 1.

If x = κπ̃ (1 + x, x) is the minimum value of x satisfying the first inequality, and x = κπ̃ (x, x− 1) the maximum
value of x satisfying the second inequality, respectively, then the mode of the DIB distribution, say Mx, can
be obtained from κπ̃ (1 + x, x) ≤ ⌊Mx⌋ ≤ κπ̃ (x, x− 1). Clearly, it is not easy to to find κπ̃ (1 + x, x) and
κπ̃ (x, x− 1) theoretically. The quantities κπ̃ (1 + x, x) and κπ̃ (x, x− 1), however, depend on the parameter π̃
which enables the numerical and graphical solutions to work. Hence, the numerical and the graphical approaches
are required for obtaining the mode for different parameter values.

The identifiability of the DIB distribution is also an interesting property that deserves discussion. Theoretically,
it is difficult to ensure. Ideally, to prove this property, we need to prove that, for any x ∈ N, the equality
Fπ̃∗ (x) = Fπ̃ (x) implies that π̃∗ = π̃. This equality is clear for x = 0. However, for the other cases, the complexity
of the PMF is a significant handicap to demonstrating it in full rigor. Our practical investigations, however, have
revealed no problem of this kind, but the rigorous proof still remains a strong mathematical challenge in many
cases.

As a more “dynamic and fingerprint function” of the DIB distribution, the hazard rate function (HRF) is specified
by

hπ̃ (x) |(π̃>0 and x∈N∗) =
Fπ̃ (x)

Sπ̃ (x− 1)
=

[(1 + x)/(2 + x)]
π̃ − [x/(1 + x)]

π̃

1− [x/(1 + x)]
π̃

.

The quantile function (QF) of the DIB distribution is defined as

Qπ̃ (π) |(π̃>0 and π∈(0,1)) = inf {x ∈ N : Fπ̃ (x) ≥ π}

= inf

{
x ∈ N : x ≥ 2π1/π̃ − 1

1− π1/π̃

}
=

⌈
2π1/π̃ − 1

1− π1/π̃

⌉
.

Thus, the QF can be calculated in any situation
Let us now emphasize with the moment properties of the DIB distribution. First, we can note that, as x → +∞,

we have Fπ̃ (x) ∼ π̃/x2. Therefore, the ordinary moments of X do not exist by the Riemann series theorem. The
same holds for the negative moments since the support of the DIB distribution is N. However, for a real number
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a ∈ (0, 1), E(Xa) exists and can be theoretically expanded as

E(Xa) =
∑
x∈N

xaFπ̃ (x) =
∑
x∈N

[xa − (1 + x)a]

(
1 + x

2 + x

)π̃

.

The DIB distribution is also a heavy-tailed discrete distribution; for any t > 0, since Fπ̃ (x) ∼ π̃/x2 when
x → +∞, we have ∑

x∈N

etxFπ̃ (x) = +∞.

The discrete heavy-tailed property is particularly demanded for the analysis of data with an underlying PMF which
appears to decay very slowly when the value of the variable increases.

Also, the probability generating function (PGF) is convergent here, and can be defined as

Gπ̃ (s) |(π̃>0 and s∈(0,1)) = E(sX) =
∑
x∈N

sxFπ̃ (x) = (1− s)
∑
x∈N

sx
(
1 + x

2 + x

)π̃

.

Therefore, moments of the form sX are quite manageable as series expansions, provided that s ∈ (0, 1).
Now, some distributional properties of the order statistics of the DIB distribution are presented. We recall that the

ith order statistic is defined as the ith greatest RV among n independent and identically distributed RVs X1, . . . , Xn.
In particular, by using a well-established general result, the CDF of the ith order statistic of the DIB distribution
can be expressed as

Fπ̃,i:n(x)|(π̃>0 and x∈N) =

n∑
κ=i

(
n

κ

)
[Fπ̃(x)]

κ
[Sπ̃(x)]

n−κ

=

n∑
κ=i

n−κ∑
j=0

(
n

κ

)(
n− κ

j

)
(−1)j [Fπ̃(x)]

κ+j

=

n∑
κ=i

n−κ∑
j=0

(
n

κ

)(
n− κ

j

)
(−1)j

(
1 + x

2 + x

)π̃(κ+j)

.

The associated PMF immediately follows as

Fπ̃,i:n(x)|(π̃>0 and x∈N) = Fπ̃,i:n(x)− Fπ̃,i:n (x− 1)

=

n∑
κ=i

n−κ∑
j=0

(
n

κ

)(
n− κ

j

)
(−1)j

[(
1 + x

2 + x

)π̃(κ+j)

−
( x

1 + x

)π̃(κ+j)
]
.

This expression is the basis for more properties of the order statistics of the DIB distribution. The next section is
about important mathematical characterizations of the DIB distribution.

3. Characterizations

Characterizations of distributions is an important part of distribution theory which has attracted the attention
of a good number of researchers in applied sciences, where an investigator is interested in knowing if their model
follows the right distribution. Therefore, the investigator relies on conditions under which their model would follow,
specifically the chosen distribution. In this section, certain characterizations of the DIB distribution are presented
in terms of (i) the conditional expectation of certain function of the RV and (ii) the reversed HRF.
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Proposition 1
Let X : Ω → N be a RV. The PMF of X is (2) if and only if

E

{[(
1 +X

2 +X

)π̃

−
(

X

1 +X

)π̃
]
|X ≤ k

}
=

(
1 + k

2 + k

)π̃

, k ∈ N. (3)

Proof. If X has PMF (2), then we have

E

{[(
1 +X

2 +X

)π̃

−
(

X

1 +X

)π̃
]
|X ≤ k

}
=

1

Fπ̃ (k)

k∑
x=0

{[(
1 + x

2 + x

)2π̃

−
( x

1 + x

)2π̃
]}

=

(
2 + k

1 + k

)π̃ k∑
x=0

{[(
1 + x

2 + x

)2π̃

−
( x

1 + x

)2π̃
]}

=

(
2 + k

1 + k

)π̃ (
1 + k

2 + k

)2π̃

=

(
1 + k

2 + k

)π̃

.

Conversely, if (3) holds, then the following equalities hold:

k∑
x=0

{[(
1 + x

2 + x

)π̃

−
( x

1 + x

)π̃
]
Fπ̃ (x)

}
= Fπ̃ (k)

(
1 + k

2 + k

)π̃

= [Fπ̃ (1 + k)−Fπ̃ (1 + k)]

(
1 + k

2 + k

)π̃

. (4)

From (4), we also have

1+k∑
x=0

{[(
1 + x

2 + x

)π̃

−
( x

1 + x

)π̃
]
Fπ̃ (x)

}
= Fπ̃ (1 + k)

(
2 + k

3 + k

)π̃

. (5)

Now, subtracting (4) from (5), we arrive at

Fπ̃ (1 + k)

[(
2 + k

3 + k

)π̃

−
(
1 + k

2 + k

)π̃
]
+

(
1 + k

2 + k

)π̃

Fπ̃ (1 + k)

=

[(
2 + k

3 + k

)π̃

+

(
1 + k

2 + k

)π̃
]
Fπ̃ (1 + k) ,

or

Fπ̃ (1 + k)

[(
2 + k

3 + k

)π̃

−
(
1 + k

2 + k

)π̃
]
=

(
2 + k

3 + k

)π̃

Fπ̃ (1 + k) .

From the last equality, we have

rFπ̃
(1 + k) =

Fπ̃ (1 + k)

Fπ̃ (1 + k)
= 1−

(
(1 + k) (3 + k)

(2 + k)
2

)π̃

,

which is the reversed HRF related to the PMF in (2). The proof of Proposition 1 is now complete. �
Proposition 2
Let X : Ω → N be a RV. The PMF of X is (2) if and only if its reversed HRF, rFπ̃

(k), satisfies the following
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difference equation:

rFπ̃
(1 + k)− rFπ̃

(k) =

(
k (2 + k)

(1 + k)
2

)π̃

−
(
(1 + k) (3 + k)

(2 + k)
2

)π̃

, k ∈ N∗, (10)

with the initial condition rFπ̃
(0) = 1.

Proof. Clearly, if X has PMF (2), then (10) holds. Now, if (10) holds, then

k∑
x=0

{rFπ̃
(1 + x)− rFπ̃

(x)} =

k∑
x=0

{[
x (2 + x)

(1 + x)
2

]π̃
−
[
(1 + x) (3 + x)

(2 + x)
2

]π̃}
,

or

rFπ̃
(1 + k)− rFπ̃

(0) = − 1

(2 + k)
2π̃

(1 + k)
π̃
(3 + k)

π̃
,

or, in view of the initial condition rFπ̃
(0) = 1, we have

rFπ̃
(1 + k) = 1− 1

(2 + k)
2π̃

(1 + k)
π̃
(3 + k)

π̃
,

which is the reversed HRF corresponding to PMF in (2). Proposition 2 is established. �

4. Graphical and numerical analysis

To avoid complicated theoretical treatments, we analyze the effect of adding the new additional parameter
π̃|π̃=− ln(π) to the PMF, HRF, skewness and kurtosis measures. Figure 1 below gives some plots of the PMF of
the DIB distribution. Some plots of the HRF of the DIB distribution are shown in Figure 2. These plots show the
relationship between the parameter and the measure. Following the spirit of the distribution with no moments,
we consider a “highly truncated” RV and investigates sime of its moment properties. Hence, for the truncated
RV X∗ = X for X ≤ 1000000, and X∗ = 0 otherwise, Table 1 gives the associated mean (E(X∗)), variance
(V(X∗)), skewness (S (X∗)), kurtosis (K (X∗)) and Index of dispersion (Dindex(X∗)). Based on Figure 1, it is
noted that the shape of the PMF can be ”unimodal right skewed” with different shapes. Based on Figure 2, the
corresponding HRF can be ”monotonically decreasing” with different shapes. According to Table 1, S (X∗) is
positive for all possible parameter values and can range in the interval (≃ 49.4,≃ ∞), the spread for its K (X∗) is
ranging from 3255.456 to ≃ ∞. As anticipated, we have Dindex (X∗) > 1 for all possible parameter values. Thus,
the new DIB distribution could be useful in modeling the over-dispersed count data. Furthermore, it is noted that
the mean, variance, skewness and kurtosis of X∗ decrease as π increases. This claim is naturally useless for the
DIB distribution since moments of order superior or equal to 1 dont exist.
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Figure 1. The PMF plots of the DIB distribution.
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Figure 2. The HRF plots of the DIB distribution.
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Table 1. E(X∗), V(X∗), S (X∗), K (X∗) and Dindex(X∗) for a RV X∗ which is a “hightly truncated” version of a RV with
the DIB distribution.

π E(X∗) V(X∗) S (X∗) K (X∗) Dindex(X∗)

10−24 889.8635 102719803 49.48966 3255.456 115433.2
10−12 273.0858 27547603 95.39052 12116.52 100875.3
10−6 145.6234 13791817 134.7449 24188.76 94708.80
10−4 100.4884 9199035 164.9534 36257.79 91543.23
10−2 52.94871 4601997 233.1594 72458.62 86914.25
0.15 22.95495 1896500 363.1388 175794.8 82618.36
0.25 16.99379 1385946 424.7752 240544.6 81556.03
0.50 8.671137 693048.1 600.6561 481009.6 79925.86
0.75 3.648086 287660.3 932.2919 1158835 78852.38
0.95 0.6560745 51291.5 2207.799 6498994 78179.38
0.99 0.1287509 10050.06 4987.652 33168152 78058.13

5. Estimation

In this section, non-Bayesian and Bayesian estimation methods are considered. In the first subsection, we will
consider the maximum likelihood estimation (MLE) method, ordinary least squared estimation (OLSE) method,
and weighted least squared estimation (WLSE) method. In the second subsection, the Bayesian estimation method
under the squared error loss function (SELF) is considered. All non-Bayesian estimation methods are discussed in
the statistical literature in more detail.

5.1. Non-Bayesian estimation methods

5.1.1. The MLE method Let x1, x2, . . . , xn be n observations from a random sample (RS) from the DIB
distribution. The log-likelihood function is given by

ℓ = ℓn(π̃) =

n∑
i=1

ln

[(
1 + xi

2 + xi

)π̃

−
(

xi

1 + xi

)π̃
]
|(π∈(0,1) and xi∈N)

which can be maximized either using the statistical programs or by solving the nonlinear system obtained from
ℓ(π̃) by differentiation. The components of the score vector U (π̃) = (∂ℓ(π̃)/∂π̃)

ᵀ can be easily derived. Setting
∂ℓ(π̃)/∂π̃ = 0 and solving it yields the MLE for the DIB parameter. The Newton-Raphson algorithm is employed
for numerically solving in such cases. As is customary under regularity conditions, the properties of consistency
and asymptotic normality, among others, are satisfied. Last but not least, note that the the MLE of π̃ implies the
MLE of π via the invariance property; all the established theory on consistency and asymptotic normality can be
applied to the MLE of π with slight modifications. We refer the reader to Casella and Berger [5].

5.1.2. OLSE method Let Fπ̃ (x) denotes the CDF of the DIB distribution as described in (1), and let x1 < x2 <
· · · < xn be the n ordered values of a RS from the DIB distribution. The OLSE is obtained upon minimizing

OLSE(π̃) =

n∑
i=1

[
Fπ̃ (xi)− ς

[1]
(i,n)

]2
,
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with respect to π̃. Note that we have

OLSE(π̃) =

n∑
i=1

[(
1 + xi

2 + xi

)π̃

− ς
[1]
(i,n)

]2

,

where ς
[1]
(i,n) = i/(n+ 1). The OLSE is obtained via solving the following non-linear equation:

0 =

n∑
i=1

[(
1 + xi

2 + xi

)π̃

− ς
[1]
(i,n)

]
d(π̃) (xi) ,

where

d(π̃) (xi) = log

(
1 + xi

2 + xi

)(
1 + xi

2 + xi

)π̃

.

5.1.3. WLSE method The WLSE is obtained by minimizing the function WLSE(π̃) with respect to π̃, where

WLSE(π̃) =

n∑
i=1

ς
[2]
(i,n)

[
Fπ̃ (xi)− ς

[1]
(i,n)

]2
,

where ς
[2]
(i,n) =

[
(1 + n)2(2 + n)

]
/ [i(1 + n− i)]. The WLSE is obtained by solving the following non-linear

equation:

0 =

n∑
i=1

ς
[2]
(i,n)

[(
1 + xi

2 + xi

)π̃

− ς
[1]
(i,n)

]
d(π̃) (xi) .

5.2. Bayesian estimation

Assume the beta and uniform priors for the parameter, respectively. Then

p(ξ1,ξ2) (π̃) ∼ Gamma(ξ1, ξ2)|π̃=− ln(π).

Then, the prior distribution p(ξ1,ξ2)(π̃) is given by

p(ξ1,ξ2)(π̃) =
ξξ12

Γ (ξ1)
π̃ξ1−1 exp (−π̃ξ2) ,

where B(·, ·) is the beta function. The posterior distribution p (π̃|x) of the parameter is defined as p (π̃|x) ∝ ℓn(π̃)
×p(ξ1,ξ2)(π̃), where x = (x1, . . . , xn). Under SELF, the Bayesian estimators of π̃ are the means of their marginal
posteriors. They are defined as

̂̃π(Bayesian) =

∫
π̃p (π̃|x) dπ̃.

Because the Bayesian estimates cannot be obtained using the above formula, numerical approximations are
required. We propose the use of Markov chain Monte Carlo (MCMC) techniques, namely Gibbs sampler and M-H
algorithm (see Cai [4], Chib and Greenberg [7] and Korkmaz et al. [20] for more details). Since the conditional
posteriors of the parameters π̃ cannot be obtained in any standard forms, using a hybrid MCMC for drawing sample
from the marginal posterior of the parameters is suggested. The theory beyond the Bayes estimators can be found
in [16] and [6]. Then, the full conditional posteriors of π̃ can be easily derived. The simulation algorithm is given
by:

1. Provide the initial values, say π̃, then at ith stage;
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2. Using M-H algorithm, generate

π̃(i) ∼ p2
(
π̃(i)|π̃(i−1), x

)
;

3. Repeat steps 1 and 2, 100000 times to obtain the sample of size M from the corresponding posteriors of
interest. Obtain the Bayesian estimates of π̃ using the following formulae

̂̃π(Bayesian) =
1

M−M0

M∑
h=M0+1

π̃[h],

respectively, where M0(≈ 50000) is the burn-in period of the generated MCMC.

6. Simulations for comparing Bayesian and non-Bayesian estimation methods

To assess and compare the performance of non-Bayesian and Bayesian estimations, numerical MCMC
simulation studies are performed. The numerical assessment is performed based on the mean squared errors
(MSEs). First, we generated 1000 samples of the DIB distribution, where n = 50, 150, 300 and 500. The MSEs
are obtained and listed in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. Ten combinations of initial values are considered.
Based on Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, we note that all methods perform well. All estimation methods
improve their performance as n → ∞.

Table 2. MSEs for for comparing methods | π0 = 0.5.

n MLE OLS WLS Bayesian
50 0.01793 0.01748 0.01621 0.01763

100 0.00897 0.00820 0.00873 0.00896
200 0.00429 0.00467 0.00444 0.00402
300 0.00283 0.00283 0.00303 0.00328

Table 3. MSEs for for comparing methods | π0 = 0.9.

n MLE OLS WLS Bayesian
50 0.03676 0.03267 0.04099 0.03421

100 0.01972 0.01746 0.01790 0.01843
200 0.00841 0.00973 0.00863 0.00814
300 0.00558 0.00580 0.00611 0.00590
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Table 4. MSEs for for comparing methods | π0 = 1.2.

n MLE OLS WLS Bayesian
50 0.05534 0.05237 0.05947 0.04594

100 0.02797 0.02517 0.02526 0.02812
200 0.01178 0.01331 0.01288 0.01206
300 0.00860 0.00847 0.00916 0.00928

Table 5. MSEs for for comparing methods | π0 = 1.5.

n MLE OLS WLS Bayesian
50 0.07254 0.07908 0.07472 0.07003

100 0.03501 0.03495 0.03567 0.03770
200 0.01672 0.01879 0.02004 0.02869
300 0.01170 0.01164 0.01298 0.01335

Table 6. MSEs for for comparing methods | π0 = 2.

n MLE OLS WLS Bayesian
50 0.11304 0.12914 0.11705 0.10569

100 0.05421 0.05311 0.06190 0.06064
200 0.02676 0.02937 0.02842 0.03144
300 0.01848 0.02073 0.02056 0.16231

Table 7. MSEs for for comparing methods | π0 = 2.5.

n MLE OLS WLS Bayesian
50 0.16339 0.18367 0.15629 0.10376

100 0.07900 0.08475 0.08324 0.07924
200 0.04143 0.04313 0.04707 0.05397
300 0.02550 0.03009 0.02056 0.04015
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Table 8. MSEs for for comparing methods | π0 = 4.

n MLE OLS WLS Bayesian
50 0.37701 0.47502 0.36365 0.43232

100 0.18426 0.21137 0.21528 0.21894
200 0.08837 0.11353 0.10920 0.12608
300 0.05371 0.07778 0.08354 0.04283

Table 9. MSEs for for comparing methods | π0 = 8.

n MLE OLS WLS Bayesian
50 1.51837 1.73538 1.44175 1.95487

100 0.69834 0.90560 0.70421 0.44893
200 0.34222 0.43632 0.37434 0.12406
300 0.20064 0.29674 0.27200 0.12169

Table 10. MSEs for for comparing methods | π0 = 15.

n MLE OLS WLS Bayesian
50 4.65915 6.02921 5.01556 1.79753

100 2.47947 2.87890 2.57184 0.75391
200 1.10139 1.63056 1.32381 0.31169
300 0.75640 0.97191 0.94531 0.29139

Table 11. MSEs for for comparing methods | π0 = 25.

n MLE OLS WLS Bayesian
50 13.39616 16.36931 14.67991 2.64481
100 6.55614 7.82160 6.85395 1.86572
200 3.20947 4.10796 3.39501 1.42769
300 2.20396 2.69540 2.48062 0.84161

7. Application for comparing Bayesian and non-Bayesian estimation methods

In this section, two examples of real data sets are introduced and analyzed for comparing the Bayesian and
non-Bayesian estimation methods. We consider the Kolmogorov-Smirnov test (ks) and P-value (pv) statistic for
comparing the Bayesian and non-Bayesian estimation methods.
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7.1. Application 1: Carious teeth data

The first data set consists of the number of carious teeth among the four deciduous molars. The sample size
is 100. Figure 3 gives the Kaplan–Meier survival plots for carious teeth data. Table 12 shows the estimations
for the carious teeth data under Bayesian and non-Bayesian methods, Kolmogorov-Smirnov test (ks) and P-value
(pv) statistics. Based on Table 12, the Bayesian method is the best model with lowest ks = 4.07325 and biggest
pv = 0.25366.

Table 12. Comparison of the methods for based on the carious teeth data, with rank under brackets.

Method↓ estimations and statistics→ π̂ ks pv

MLE[2] 0.607838490 4.73624 0.19216
OLS[3] 0.606884929 4.76582 0.18977
WLS[4] 0.573977811 5.92970 0.11508

Bayesian[1] 0.631423018 4.07325 0.25366
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Figure 3. Kaplan–Meier survival plots for the carious teeth data
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7.2. Application 2: Counts of cysts of kidneys data

Due to Chan et al. [8], the second data set represents the counts of cysts of corticosteroid-induced kidney
dysmorphogenesis which is associated with deregulated expression of known cystogenic molecules as well as
Indian hedgehog. Figure 4 gives the Kaplan–Meier survival plots for counts of cysts of kidneys data. Table 13 gives
the estimations under Bayesian and non-Bayesian methods, ks and pv statistics for counts of cysts of kidneys data.
According to Table 13, the Bayesian method is the best model with lowest ks = 3.34854 and biggest pv = 0.50128.

Table 13. Comparison of the methods for based on the kidneys data, with rank under brackets.

Method↓ estimations and statistics→ π̂ ks pv

MLE[3] 0.7523056604 3.45680 0.48448
OLS[2] 0.7570113907 3.36403 0.49885
WLS[4] 0.7384775217 3.75382 0.44035

Bayesian[1] 0.7578183582 3.34854 0.50128
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Figure 4. Kaplan–Meier survival plots for the counts of cysts of kidneys data.
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8. Application for comparing models and testing of hypothesis

8.1. Application 1: Carious teeth data

Using the carious teeth data, the fits of the DIB model is compared with some competitive models such as DBH,
Poisson (P), DR, DLi, DIR, and PLi models. Table 14 gives the observed frequency (OF), expected frequency
(EF), MLEs, Chi-squared test

(
χ2
V

)
and pv for these models. For exploring the carious teeth data graphically, we

present some useful plots such as box plot, quantile-quantile (Q-Q) plot, total time in test (TTT) plot and the initial
histogram. Based on Figure 5 (top left panel and top right panel), it is noted that the carious teeth data have some
extremes. Based on Figure 5 (bottom left panel), it is noted that the underlying HRF of the data is decreasing. From
Figure 5 (bottom right panel), we see that the data are right skewed. Figure 6 gives the fitted PMF, estimated HRF
(EHRF), estimated SF (ESF) (Kaplan-Meier plot) and estimated CDF (ECDF). Based on Table 14 and Figure 6, the
DIB model provides the best fits against all competitive models with χ2

V = 4.73624, pv = 0.19216 and df = 3; the
pv is the best. As expected, the DIB distribution is useful in modeling the over-dispersed count data. By comparing
the initial HRF (Figure 5 bottom left panel) of the carious teeth data with the estimated HRF (Figure 6 top right
panel) using the estimated parameter, we conclude that the both shapes means monotonically decreasing HRF.
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Figure 5. Box plot, Q-Q plot, TTT plots and histogram for the carious teeth data.
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Table 14. OF, EF, MLE, χ2
V and pv for the carious teeth data.

X OF EF
DIB P DR DLi DIR PLi

0 64 66.45 51.17 33.50 57.13 62.50 37.50
1 17 16.60 34.28 46.94 26.88 26.41 25.00
2 10 7.80 11.49 17.01 10.45 5.990 15.63

≥ 3 9 9.15 3.060 2.550 5.450 5.100 21.87∑
100 100 100 100 100 100 100

π̂ MLE 0.60784 0.670 0.665 0.625 0.625 1.998

χ2
V 4.73624 23.65 66.7 6.638 9.056 30.899
df 3 2 2 2 2 2
pv 0.19216 <0.001 <0.001 0.036 0.011 <0.001
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Figure 6. The fitted PMF, EHRF, ESF and ECDF for the carious teeth data.
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8.2. Application 2: Counts of cysts of kidneys data

For the counts of cysts of kidneys data set, the same methodology is employed; we compare the fits of the
DIB model with the DLi-II, DIW, DR, DIR, DLi, PLi, P and geometric (Gc) models. Table 15 gives the observed
frequency (OF), expected frequency (EF), MLEs, χ2

V and pv for the competitive models. For exploring counts of
cysts of kidneys data graphically, we present the box plot, the Q-Q plot, the TTT plot and the initial histogram for
the data. Based on Figure 7 (top left panel and top right panel), it is noted that the counts of cysts of kidneys data
have some extremes. According to Figure 7 (bottom left panel), it is noted that the underlying HRF is decreasing.
Based on Figure 7 (bottom right panel), it is noted that the counts of cysts of kidneys data are heavy tail right
skewed data. Figure 8 gives the fitted PMF, EHRF, ESF and ECDF. Based on Table 15 and Figure 8, the DIB
model provides the best fits against all the competitive models with χ2

V = 3.45680, pv = 0.48448 and df = 4; the
pv is the best. By comparing the initial HRF (Figure 7 bottom left panel) of the counts of cysts of kidneys data
with the estimated HRF (Figure 8 top right panel) using the estimated parameter, we conclude that the both shapes
means monotonically decreasing HRF.
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Figure 7. Box plot, Q-Q plot, TTT plots and histogram for the counts of cysts of kidneys data
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Table 15. OF, EF, MLE, χ2
V and pv for the counts of cysts of kidneys data.

X OF EF
DIB DLi-II DIW Gc P DR DIR DLi PLi

0 65 66.30 46.03 63.91 45.98 27.42 11.00 60.94 40.25 44.14
1 14 16.78 26.77 20.70 26.67 38.08 26.83 33.96 29.83 28.00
2 10 8.51 15.57 8.05 15.57 26.47 29.55 8.11 18.36 17.70
3 6 5.41 9.05 4.23 9.060 12.26 22.23 3.00 10.35 9.57
4 4 3.9 5.27 2.60 5.280 4.26 12.49 1.42 5.53 5.34
5 2 3.05 3.06 1.75 3.070 1.18 5.42 0.87 2.86 2.92
6 2 1.63 1.78 1.26 1.79 0.27 1.85 0.47 1.44 1.57
7 2 1.29 1.04 0.95 1.04 0.05 0.52 0.31 0.71 0.84
8 1 0.95 0.60 0.74 0.62 0.01 0.11 0.21 0.35 0.44
9 1 0.87 0.35 0.59 0.35 0.00 0.02 0.15 0.17 0.23

10 1 0.74 0.20 0.48 0.21 0.00 0.00 0.11 0.08 0.12
11 2 0.57 0.28 4.74 0.28 0.00 0.00 0.54 0.07 0.13∑

110 110 110 110 110 110 110 110 110 110

π̂ MLE 0.75231 0.581 0.581 0.582 1.390 0.901 0.554 0.436 1.087

θ̂ MLE - 0.001 1.049 - - - - - -

χ2
V 3.45680 22.89 24.135 22.84 294.10 321.07 51.047 43.48 31.151
df 4 3 3 4 4 4 4 4 4
pv 0.48448 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Figure 8. The fitted PMF, EHRF, ESF and ECDF for the counts of cysts of kidneys data.

9. Conclusions

A new one-parameter decreasing failure rate discrete distribution, called the discrete inverse Burr (DIB)
distribution, is defined and studied. The probability mass function of the new distribution can be “unimodal and
right skewed” with various shapes. Also, the DIB distribution appears to be a heavy-tailed discrete distribution with
an infinite mean. Some of its relevant properties are discussed. Certain characterizations of the DIB distribution
involving (i) the conditional expectation of a certain function of the random variable and (ii) the reversed hazard
function are presented. The new distribution could be useful in modeling the over-dispersed count data. Different
Bayesian and non-Bayesian estimation methods (maximum likelihood, ordinary and weighted least squared) are
described and compared using MCMC simulations and two real data applications. The Bayesian estimation is
considered under the squared error loss function. The DIB model is applied for modeling carious teeth data and
counts of cysts of kidneys data sets. The results show that it provides the best fits compared to many well-known
competitive discrete models.
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