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Abstract In this article, we have developed the discrete version of the continuous inverted Nadarajah-Haghighi distribution
and called it a discrete inverted Nadarajah-Haghighi distribution. The present model is well enough to model not only the
over-dispersed and positively skewed data but it can also model upside-down bathtub-shaped, decreasing failure rate, and
randomly right-censored data. Here, we have developed some important statistical properties for the proposed model such
as quantile, median, moments, skewness, kurtosis, index of dispersion, entropy, expected inactivity time function, stress-
strength reliability, and order statistics. We have estimated the model parameters through the method of maximum likelihood
under complete and censored data. An algorithm to generate randomly right-censored data from the proposed model is also
presented. The extensive simulation studies are presented to test the behavior of the estimators with complete and censored
data. Finally, two complete and two censored data are used to illustrate the utility of the proposed model.
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1. Introduction

In many fields, including medical science, engineering science, economics, and other allied sciences, there is a
great emphasis on modelling through continuous lifetime distributions [1, 2, 3, 4]. The discretization phenomenon
generally arises when it becomes impossible or inconvenient to measure the life length of a product or device on
a continuous scale. Such situations may arise in many cases, for example, in survival analysis, the survival times
for those suffering from a brain tumor or period from remission to relapse may be recorded as the number of days;
in reliability engineering, the functioning status of a system is examined every unit time period and observed data
indicate the number of time units successfully completed prior to a breakdown; the lifetime of a copy machine is
the total number of copies it produces before it fails, etc. Besides the lifetime data, the count phenomenon arises in
many practical situations, such as the number of earthquakes that occur in a calendar year, the number of accidents,
the number of species types in ecology, the number of insurance claims, and so on. Therefore, discrete distributions
are quite meaningful to model lifetime data in such situations.

In this context, the geometric and negative binomial are known as discrete alternatives for the exponential and
gamma distributions. But these distributions do not fit discrete data appropriately in all practical situations. So
due to the necessity of more plausible discrete distributions to model discrete data arises in various real-world
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situations, many continuous lifetime distributions are discretized in the literature in the last few decades. For
example, discrete Weibull distribution [5], discrete Rayleigh distribution [6], discrete Burr [7], discrete inverse
Weibull distribution [8], discrete gamma distribution [9], exponentiated discrete Weibull distribution [10], and
discrete Weibull geometric distribution [11].

In recent years, Tyagi et al. [12] proposed discrete additive Perks-Weibull distribution to model bathtub-
shaped and increasing failure rate data. Shafqat et al. [13] pioneered univariate discrete Nadarajah and Haghighi
distribution. To analyze a discrete increasing failure and count data, Tyagi et al. [14] suggested a discrete Perks
distribution. El-Morshedy et al. [15] provided a new two-parameter exponentiated discrete Lindley distribution
with bathtub-shaped hazard rate characteristic. Eliwa et al. [16] presented a discrete Gompertz-G family for over-
and under-dispersed data. El-Morshedy et al. [17] introduced a discrete Burr-Hatke distribution with the associated
count regression model. El-Morshedy et al. [18] developed discrete generalized Lindley distribution to model the
counts of novel coronavirus cases. El-Morshedy et al. [19] gave a discrete analogue of the odd Weibull-G family
of distributions. They discussed classical and Bayesian estimation and shown the applicability of the proposed
model to count data sets. Most recently, Singh et al. [20] analyzed a discrete analogue of Teissier distribution with
application to count Data.

Though many discretized distributions are available in the literature, there may be situations where these
distributions are not compatible with discrete data modelling. Therefore, there is still a lot of space left to develop
new discretized distribution that is suitable under different conditions. In view of this, we propose a discretized
version of the inverted Nadarajah-Haghighi (INH) distribution introduced by Tahir et al. [21]. The INH distribution
is capable to model positive real-world data sets with decreasing and upside-down bathtub hazard rate shapes. Such
characteristics prompted us to develop a discrete analogue of the INH distribution.

Discretization of continuous distribution can be done using different methodologies [22]. The following is the
most often used approach for deriving the discrete analogue of a continuous distribution:
If the underlying random variable (RV) Y has the survival function (SF) SY (y) = P (Y ≥ y) then the RV
X = [Y ]=largest integer less or equal to Y will have the probability mass function (PMF)

P (X = x) = P (x ≤ Y < x+ 1) = P (Y ≥ x)− P (Y ≥ x+ 1)

= SY (x)− SY (x+ 1), x = 0, 1, 2, ... (1)

The discrete distribution generated by the above method retains the same functional form of the SF as that of its
continuous counterpart. Due to this feature, many reliability characteristics remain unchanged. So, there is enough
motivation to use this method for developing the discrete version of the existing continuous distributions.

In many cases, the data collection is limited by certain constraints, such as temporal or financial restrictions,
making it impossible to get the whole data set. Such type of incomplete data is called censored data. To analyze
these data sets, there are various censoring schemes available in the literature. The most popular censoring schemes
are conventional Type I and Type II censoring schemes. In Type I censoring, the event is observed only if it
occurs prior to some pre-specified time, whereas, in Type II censoring, the study continues until the predetermined
number of individuals are observed to have failed. Another type of censoring is called random censoring, this
censoring consists of studies where the subjects can be censored during any experiment period, with different
times of censoring. An example of random censoring can be seen in clinical trials or medical studies, where the
patients do not complete the course of treatment and leave before the termination point. For more details about the
censoring schemes, their generalization, and analysis, one can refer to Klein and Moeschberger [23]. Randomly
censored lifetime data frequently occur in many applications like medical science, biology, reliability studies, etc.,
which need to be analyzed properly to make correct inferences and suitable research conclusions. These data are
often right-censored because it is not possible to observe the patients or the items under study until their death or
patients may withdraw during the study period.

In the existing literature, the random censoring scheme is widely studied under continuous models [24].
However, a few studies considered this censoring scheme for discrete models, viz. Krishna and Goel [25], de
Oliveira et al. [26], and most recently, Achcar et al. [27] discussed classical and Bayesian inference of exponentiated
discrete Weibull distribution with censored data. Moreover, most of the existing discrete models were developed to
analyze count data and in most situations, they fail to capture the diversity of the censored data. As a result, such
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occurrences offer even more encouragement to discretize the INH distribution so that we can correctly fit not just
count data but also randomly right-censored data.
Hence, the main objectives of the presented model are as:

• To generate model that not only fit a positively skewed data set, they are also capable for modelling over-
dispersed data.

• To develop a discrete model whose hazard rate function (HRF) can takes upside-down bathtub and decreasing
shapes.

• To generate models for modelling probability distribution of count data.
• To provide consistently better fits than other well-known models in the literature of discrete distributions.
• To develop a model that can be appropriately used for analyzing random right censored data.

The rest of the paper is organized as follows. Section 2 introduces the two-parameter DINH distribution. In
Section 3, some important distributional and reliability characteristics are studied. In Section 4, we estimate the
parameters of DINH distribution by the method of maximum likelihood (ML) under complete data. To observe
the behavior of the ML estimators, a simulation study is performed in Section 5. The goodness-of-fit of the
proposed model to two complete real data sets is also demonstrated in Section 5. The ML estimators for the model’s
parameters under randomly right-censored data are discussed in Section 6. The algorithm to generate censored data
from the proposed model and numerical illustration with randomly right-censored empirical and real data are also
presented in Section 6. Finally, some concluding remarks are given in Section 7.

2. Discrete inverted Nadarajah-Haghighi distribution

The SF of continuous INH distribution is given by

S(y) = 1− exp
(
1− (1 + λ

y )
α
)
; y > 0, (α, λ) > 0. (2)

Using Equation (2) in (1), the PMF of the DINH distribution is

PX(x) = P (X = x;α, λ) = exp(1)
(
exp(−(1 + λ

x+1 )
α
)− exp(−(1 + λ

x )
α
)
)
; x = 0, 1, 2, ..., (3)

where α > 0 and λ > 0 are the shape and scale parameters, respectively. One can easily verify that the proposed
PMF is proper i.e.

∑∞
x=0 P (X = x) = 1.

The cumulative distribution function (CDF) corresponding to PMF (3) is given by,

F (x;α, λ) = exp
(
1− (1 + λ

x+1 )
α)

;x = 0, 1, 2, ..., (α, λ) > 0. (4)

Here, it is to be noted that F (0) = exp(1− (1 + λ)α) and the proportion of non-zero values is 1− F (0) =
1− exp(1− (1 + λ)α).

3. Important structural properties of DINH distribution

3.1. Shape of the PMF

The PMF plots of the DINH distribution for different parametric values are shown in Figure 1. The PMF of
the suggested distribution may exhibit decreasing and unimodal (right-skewed) shapes, as seen in Figure 1.
Furthermore, when α or λ, or both, are increased, the degree of asymmetry and peakedness of the PMF plots
decreases. We can also observe that the PMF of DINH distribution approaches 0 as x → ∞.

3.2. Quantiles, random number generation, skewness and kurtosis

If xm symbolizes the mth quantile of a discrete RV X , then P (X ≤ xm) ≥ m and P (X ≥ xm) ≥ 1−m (Rohatgi
and Saleh [28]). Using this result, we have the following theorem.
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Figure 1. The shapes of PMF of DINH distribution for various parametric values.

Theorem 1
The mth quantile Q(m) of DINH (α, λ) distribution is given by

Q(m) = ⌈xm⌉ =

⌈
λ

((1− logm)
1/α − 1)

− 1

⌉
, (5)

where ⌈xm⌉ denotes the smaller integer greater than or equal to xm.

Proof
The proof is obvious by using Equation (4).

A random number (integer) can be easily sampled from the proposed distribution by using Equation (5), where
m be a uniform random number on U (0,1). In particular, the median is given as

Q(0.5) = ⌈x0.5⌉ =

⌈
λ

((1 + log 2)
1/α − 1)

− 1

⌉
.
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Kenney and Keeping [29] and Moors [30] provided the famous expressions for skewness and kurtosis based on
the quantiles. One of the most notable characteristics of these measures is that they are less influenced by outliers
and may be computed even for distributions without moments. The expression of skewness (Sk) by Kenney and
Keeping [29] is

Sk =
Q( 34 ) + Q( 14 )− 2Q( 12 )

Q( 34 )−Q( 14 )
.

The Moors kurtosis (Ku) proposed by Moors [30] can be presented as

Ku =
Q( 78 )−Q( 58 ) + Q( 38 )−Q( 18 )

Q( 34 )−Q( 14 )
.

Using Equation (5) in the above expressions, one can easily obtain the Sk and Ku for the DINH distribution.

3.3. Moments and related concepts

The moments of a probability distribution are important for measuring its different properties such as mean,
variance, skewness, kurtosis, etc. The rth raw moments of the DINH distribution can be obtained by using

ϖ/
r = E(Xr) =

∞∑
x=0

{((x+ 1)
r − xr) (1− F (x;α, λ))}

=

∞∑
x=0

((x+ 1)
r − xr)

(
1− exp

(
1− (1 + λ

x+1 )
α))

. (6)

Using Equation (6), the first four raw moments of the DINH distribution are

ϖ
/
1 = E(X) =

∞∑
x=0

(
1− exp

(
1− (1 + λ

x+1 )
α))

, (7)

ϖ
/
2 = E(X2) =

∞∑
x=0

(2x+ 1)
(
1− exp

(
1− (1 + λ

x+1 )
α))

, (8)

ϖ
/
3 = E(X3) =

∞∑
x=0

(
3x2 + 3x+ 1

) (
1− exp

(
1− (1 + λ

x+1 )
α))

, (9)

ϖ
/
4 = E(X4) =

∞∑
x=0

(
4x3 + 6x2 + 4x+ 1

) (
1− exp

(
1− (1 + λ

x+1 )
α))

. (10)

The variance of the DINH distribution is

V (X) =

∞∑
x=0

(2x+ 1)
(
1− exp

(
1− (1 + λ

x+1 )
α))− [ ∞∑

x=0

(
1− exp

(
1− (1 + λ

x+1 )
α))]2

.

Using the raw moments (7-10), we can easily find the skewness and kurtosis based on moments from the following
relations

Sk =
ϖ

/
3 − 3ϖ

/
2ϖ

/
1 + 2

(
ϖ

/
3

)3
(V ar(X))

3/2
and Ku =

ϖ
/
4 − 4ϖ

/
2ϖ

/
1 + 6ϖ

/
2

(
ϖ

/
1

)2
− 3
(
ϖ

/
1

)4
(V ar(X))

2 , respectively.

The index of dispersion (ID) is a technique for determining whether a data is equi-, under or over-dispersed. If
the ID>1(<1), it indicates the over-dispersion, (under-dispersion), while if ID=1, it is equi-dispersed. In the case
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of the proposed model, the ID is

ID =
V ar(X)

E (X)
=

∞∑
x=0

(2x+ 1)
(
1− exp

(
1− (1 + λ

x+1 )
α))− [ ∞∑

x=0

(
1− exp

(
1− (1 + λ

x+1 )
α))]2

∞∑
x=0

(
1− exp

(
1− (1 + λ

x+1 )
α)) .

The coefficient of variation (CV) is a relative measure of variability and is generally used to compare two
independent samples based on their variability. The large value of CV indicates higher variability. For DINH
distribution, the CV can be obtained as

CV =
(V ar(X))

1/2

E (X)
=

(
∞∑
x=0

(2x+ 1)
(
1− exp

(
1− (1 + λ

x+1 )
α))− [ ∞∑

x=0

(
1− exp

(
1− (1 + λ

x+1 )
α))]2)1/2

∞∑
x=0

(
1− exp

(
1− (1 + λ

x+1 )
α)) .

It is not possible to get a closed-form of the above expressions, therefore, we use R software to demonstrate these
characteristics numerically. Table 1 lists some numerical results of the mean, variance, skewness, kurtosis, ID, and
CV for the DINH distribution under different setups of parametric values. From this table, it can be concluded that:

• The mean and variance of the DINH distribution grow when the value of α or λ, or both, increases.
• From the observed values of skewness and kurtosis, we can conclude that the DINH distribution is positively

skewed and leptokurtic. Also, as the values of α or λ, or both of them increase the skewness and kurtosis
decrease.

• Since ID>1, the suggested model is only appropriate for modelling over-dispersed data.
• As the value of α or λ, or both rises, the ID and CV tend to increase.

Table 1. Descriptive measures for different combination of the parameters of DINH distribution.

Parameter Descriptive Measures
(λ, α) Mean Variance Skewness Kurtosis ID CV

(0.25, 0.25) 0.250 5.805 452.854 588.861 23.190 9.637
(0.25, 0.50) 0.500 11.484 227.207 296.418 22.950 6.777
(0.25, 1.0) 0.999 22.468 114.510 150.316 22.490 4.744
(0.25, 2.5) 2.464 52.532 47.218 62.938 21.316 2.941
(0.50, 0.25) 0.482 11.395 231.006 300.348 23.647 7.003
(0.50, 0.50) 0.962 22.325 116.191 152.040 23.199 4.911
(0.50, 1.0) 1.913 42.819 58.980 78.066 22.383 3.420
(0.50, 2.5) 4.581 94.807 24.937 33.874 20.698 2.125
(1.0, 0.25) 0.904 22.037 119.490 155.459 24.383 5.192
(1.0, 0.50) 1.800 42.451 60.282 79.401 23.584 3.619
(1.0,1.0) 3.538 78.725 30.921 41.581 22.254 2.507
(1.0, 2.5) 7.967 162.328 13.167 18.643 20.376 1.599

(2.5, 0.25) 1.963 50.725 51.539 67.405 25.840 3.628
(2.5, 0.5) 3.873 93.993 26.013 35.001 24.266 2.503
(2.5, 1.0) 7.350 162.682 13.406 18.906 22.133 1.735
(2.5, 2.5) 15.031 298.211 5.307 8.674 19.840 1.148
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3.4. Entropy

In information theory, the entropy of an RV is the average level of “information”, “surprise”, or “uncertainty”
contained in the possible outcomes of that variable. One of the important entropy is Rényi entropy (RE) (see,
Rényi [31]). It is a crucial measure of complexity and uncertainty, and is used in many fields including problems
identification in statistics, statistical inference, physics, econometrics, and pattern recognition in computer science.
For the DINH distribution, the RE can be defined as (ρ > 0, ρ ̸= 1)

IR(ρ) =
1

1− ρ
log
∑∞

x=0
P ρ
X(x)

=
1

1− ρ

(
ρ+ log

∑∞

x=0

(
exp(−(1 + λ

x+1 )
α
)− exp(−(1 + λ

x )
α
)
)ρ)

.

Another famous entropy called Shannon entropy (ShE) can be obtained as a particular case of RE as ρ → 1, where
SE = −E[log f(y;α)].

3.5. Survival and hazard rate functions

The SF and HRF of the DINH distribution is respectively given by,

S (x;α, λ) = P (X ≥ x) = 1− exp
(
1− (1 + λ

x )
α)

;x = 0, 1, 2, ...,

H(x;α, λ) = P (X = x|X ≥ x) =
exp(1)

(
exp(−(1 + λ

x+1 )
α
)− exp(−(1 + λ

x )
α
)
)

1− exp
(
1− (1 + λ

x )
α) ;x = 0, 1, 2, ...

Figure 2 depicts various plots of HRF of the proposed model. From the HRF plot, it is easily visible that the HRF of
the DINH distribution can be decreasing and upside-down bathtub shaped, and it approaches towards 0 as x → ∞.
As a result, the suggested distribution is more flexible to evaluate a broad range of data than traditional and recently
established models due to the distinctive shapes of HRF. Also, the reversed hazard rate function (RHRF) and the
second rate of failure (SRF) of the proposed model are

H∗(x;α, λ) = P (X = x|X ≤ x) =

(
exp(−(1 + λ

x+1 )
α
)− exp(−(1 + λ

x )
α
)
)

exp
(
−(1 + λ

x+1 )
α) ;x = 0, 1, 2, ...,

and

H∗∗(x;α, λ) = log

[
S(x;α, λ)

S(x+ 1;α, λ)

]
=

1− exp
(
1− (1 + λ

x )
α)

1− exp
(
−(1 + λ

x+1 )
α) ;x = 0, 1, 2, ...,

respectively.

3.6. Expected inactivity time function

The expected inactivity time function or mean past life function (MPL), denoted by m∗(i), measures the time
elapsed since the failure of X given that the system has failed sometime before ‘i’. It has many applications in
a wide variety of areas, including reliability theory, survival analysis, actuarial research, and forensic science. In
discrete setup, MPL function is defined as

m∗(i) = E(i−X|X < i) =
1

F (i− 1)

i∑
k=1

F (k − 1); i = 1, 2, ....

By replacing the CDF (4) in the expression of m∗(i), we can easily obtain the MPL for the proposed model.
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Figure 2. The shapes of HRF of DINH distribution for various parametric values.

3.7. Stress-strength parameter

The probability R = P [X > Z], is a measure of component reliability and is known as the stress-strength (SS)
parameter. The SS model describes the life of a component that has a random strength X that is subjected to
a random stress Z. The component fails immediately as and when the stress applied to it exceeds the strength
otherwise it works satisfactory. The SS system model has many applications in various areas including engineering,
medical science, psychology, etc. For a detailed review of SS models, one may refer to Choudhary et al. [32]. For
discrete independent RVs X and Z, the SS reliability is defined as

R = P [X > Z] =

∞∑
x=0

PX(x)FZ(x)

Statistics Opt. Inform. Comput. Vol. 10, September 2022.
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where PX(x) and FZ(x) respectively denote the PMF and CDF of the independent discrete RVs X and Z. Let
X ∼DINH(α1, λ1) and Z ∼DINH(α2, λ2). Then, from Equations (3) and (4), we have

R = P [X > Z] = exp(2)

∞∑
x=0

exp(−(1 + λ2

x+1 )
α2
)
(
exp(−(1 + λ1

x+1 )
α1
)− exp(−(1 + λ1

x )
α1
)
)

(11)

Given the difficulty of obtaining an explicit expression for the SS reliability R in this instance, we show this feature
quantitatively using the R software. Tables 2 and 3 illustrate the calculated values of R for various parameters
combinations. From Tables 2 and 3, we can infer that reliability decreases with λ1 → ∞ or λ2 → ∞ for fixed
values of α1 and α2. Similarly, when α1 → ∞ or α2 → ∞, reliability is also decreasing under particular setups of
λ1 and λ2.

Table 2. The numerical values of SS reliability R for fixed values of α1 and α2.

Parameter λ2

λ1 α1 α2 0.1 0.25 0.5 1 2 4
0.1

0.5 0.5

0.906 0.846 0.760 0.629 0.458 0.276
0.25 0.846 0.789 0.709 0.587 0.427 0.258
0.5 0.760 0.709 0.637 0.527 0.384 0.232
1 0.629 0.587 0.527 0.436 0.317 0.191
2 0.458 0.427 0.384 0.317 0.231 0.139
4 0.276 0.258 0.232 0.191 0.139 0.084

Table 3. The numerical values of SS reliability R for fixed values of λ1 and λ2.

Parameter α2

α1 λ1 λ2 0.1 0.3 0.7 1.3 2.5 5
0.1

0.4 0.4

0.933 0.868 0.740 0.558 0.258 0.012
0.3 0.868 0.808 0.689 0.519 0.240 0.011
0.7 0.740 0.689 0.587 0.442 0.205 0.009
1.3 0.558 0.519 0.442 0.333 0.154 0.007
2.5 0.258 0.240 0.205 0.154 0.071 0.003
5 0.012 0.011 0.009 0.007 0.003 0.001

3.8. Order statistics

The order statistics play a vital role in the construction of tolerance intervals for the distributions and drawing
inferences on population parameters especially in survival analysis. Let X1, X2, ..., Xn be a random sample (RS)
from the DINH(α, λ) distribution. Also, let X(1) ≤ X(2) ≤ ... ≤ X(n) represents the corresponding order statistics.
Then, the CDF of the rth order statistic say W = X(r) is given by

Fr(w) =

n∑
i=r

(
n
i

)
F i(w).[1− F (w)]

n−i

=

n∑
i=r

n−i∑
k=0

(−1)
k

(
n
i

)(
n− i
k

)
F i+k(w)

=

n∑
i=r

n−i∑
k=0

(−1)
k

(
n
i

)(
n− i
k

)
exp

(
(i+ k)(1− (1 + λ

w+1 )
α)

. (12)
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The corresponding PMF of rth order statistics is

fr(w) = Fr(w)− Fr(w − 1)

=

n∑
i=r

n−i∑
k=0

(−1)
k

(
n
i

)(
n− i
k

){
exp

(
(i+ k)(1− (1 + λ

w+1 )
α)− exp

(
(i+ k)(1− (1 + λ

w )
α)}

(13)

Particularly, by setting r = 1 and r = n in Equation (13), we can obtain the PMF of minimum
(
X(1), . . . , X(n)

)
and the PMF of maximum

(
X(1), . . . , X(n)

)
, respectively.

3.9. Some other important results on DINH distribution

a. For α = 1, the DINH distribution reduces to a discrete inverted exponential distribution.
b. If Y ∼INH(α, λ) distribution, then X = [Y ] ∼DINH(α, λ) distribution.
c. If Y be a non-negative continuous RV and t be a positive constant, then X = [Y/t] is a DINH(α, λ

t )
distribution for every t if and only if Y has an INH(α, λ) distribution.

d. If Y has the continuous uniform distribution on (0,1), then X =
[

λ
(1−log(1−y))1/α−1

]
follows the DINH

distribution.

4. Estimation through maximum likelihood approach with complete data

The method of maximum likelihood is one of the most often used classical point estimation techniques. The
maximum likelihood estimate is the point in the parametric space that maximizes the likelihood function. Its logic
is both intuitive and adaptable, and as a result, it has become a dominating approach to statistical inference.

Let x1, x2, ..., xn be an RS of size ‘n’ from DINH(α, λ) distribution, then the likelihood function (LF) can be
written as

L(x;α, λ) = exp(n)
∏n

i=1

(
exp(−(1 + λ

xi+1 )
α
)− exp(−(1 + λ

xi
)
α
)
)
. (14)

The corresponding log-likelihood (LL) function is

logL = n+
∑n

i=1
log
(
exp(−(1 + λ

xi+1 )
α
)− exp(−(1 + λ

xi
)
α
)
)
. (15)

Taking the partial derivative of the LL function with respect to the parameters α and λ, we get the following normal
equations,

∂ logL

∂α
=

n∑
i=1

Λα(xi) exp(−Λα(xi)) log(Λ(xi))− Λα(xi + 1) exp(−Λα(xi + 1)) log(Λ(xi + 1))

exp(−Λα(xi + 1))− exp(−Λα(xi))
= 0, (16)

∂ logL

∂λ
= α

n∑
i=1

(xi + 1)Λα−1(xi) exp(−Λα(xi))− xiΛ
α−1(xi + 1) exp(−Λα(xi + 1))

xi(xi + 1) (exp(−Λα(xi + 1))− exp(−Λα(xi)))
= 0, (17)

where

Λ(xi) = (1 + λ/xi). (18)

The ML estimator of parameters α and λ, can be found by simplifying Equations (16) and (17), but unfortunately,
these equations do not yield the analytical solution. Therefore, we can use an iterative approach such as Newton-
Raphson (NR) to calculate the estimate computationally through inbuilt approaches available in R-software,
MATLAB, or Maple programming.
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5. Numerical illustration with complete data

Here, we present the numerical illustrations of the proposed model based on the empirical and real data sets.

5.1. Simulation study under empirical data

In this sub-section, we observe the performance of ML estimators to estimate the unknown parameters of the
proposed model. This assessment consists of the following steps:

i. Generate 2000 samples of sizes n=15, 20,. . . ,100 from DINH distribution under different combinations of
parameters α and λ. The selected values of (α, λ) are (0.5, 0.5), (1, 0.5), (5, 0.5), (0.5, 2), and (1, 2). Equation
(5) is used to generate the required RSs from the DINH distribution.

ii. Compute the ML estimates for 2000 samples, say α̂j and λ̂j for j = 1, 2, ..., 2000.
iii. Compute the mean-squared error (MSE) and average absolute bias (AAB) for ML estimates, where MSE =

1
2000

2000∑
j=1

(
θ̂j − θ

)2
and AAB = 1

2000

2000∑
j=1

∣∣∣θ̂j − θ
∣∣∣, here θ̂j is an estimate of θ.

The empirical results are shown in Figures 3-7. From these figures, the following conclusions can be made:

a. The MSE of the ML estimates decreases to zero as n tends to infinity. This shows the consistency of the ML
estimator. Also, the AABs decreases to zero as n becomes large.

b. For small values of the parameters α and λ, the ML estimator performs better as compared to the large values
of α and λ.

c. Based on MSEs and AABs, we observe that the estimation of the parameter α is more sensitive as compare
to the estimation of the parameter λ.

Figure 3. The MSE and AAB for λ = 0.5 and α = 0.5.

5.2. Real data analysis

In this section, we use two real data sets to show that the DINH distribution can be a better model than some most
popular and recently developed discrete distributions. The proposed model is compared with some competitive
models listed in Table 4.

In order to compare these models, -LL, Kolmogorov-Smirnov (K-S) with its p-value, Akaike information
criterion (AIC), Bayesian information criterion (BIC), and Corrected Akaike information criterion (CAIC) are
used to choose the best-fitted model in the conclusive stage. Based on these criteria, a model with the smallest
value of –LL, K-S, AIC, BIC, CAIC, and the largest p-value is the best-fitted model for a given data as compare
to other fitted models. The real data sets used here are the daily new cases of COVID-19 and the daily new deaths
due to COVID-19 recorded in two regions. The detailed data description and their analysis are as follows:
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Figure 4. The MSE and AAB for λ = 0.5 and α = 1.

Figure 5. The MSE and AAB for λ = 0.5 and α = 5.

Figure 6. The MSE and AAB for λ = 2 and α = 0.5.

Data set I: In the first application, we consider the daily new cases in Hong Kong, China. The data is
available at https://www.worldometers.info/coronavirus/country/china-hong-kong-sar/ and contains the daily new
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Figure 7. The MSE and AAB for λ = 2 and α = 1.

Table 4. The competitive models.

Model Parameter(s) Abbreviation Author(s)
Poisson θ P -

Discrete analogous of the generalized Lindley (α, η) DsGLi El-Morshedy et al. [18]
Discrete Lindley α DsLi G´omez-D´eniz and Calder´ın-Ojeda[33]

A new one-parameter discrete model α NDsIP Eliwa and El-Morshedy [34]
Discrete Rayleigh θ DsR Roy [6]
Discrete Burr-XII (α, η) DsB-XII Krishna and Pundir [7]
Discrete Pareto θ DsPa Krishna and Pundir [7]

Discrete Burr-Hatke θ DsBH El-Morshedy et al. [17]

cases between 15 February to 23 March 2020. The data values are
0, 1, 3, 2, 3, 4, 0, 1, 4, 7, 4, 4, 3, 1, 2, 5, 0, 1, 2, 2, 3, 0, 7, 1, 5, 9, 1, 1, 10, 7, 6, 13, 25, 15, 48, 18, 44, 39.

This data set is modelled with DINH and other competitive models. Table 5 contains the estimated parameters
and their corresponding standard errors (SEs) as well as the various fitting measures discussed earlier. From Table
5, we conclude that the DINH model is the best-performed model among others since it has the lowest values
of –LL, AIC, BIC, CAIC, and K-S test statistics with the highest p-value. Figure 8 (first row) shows the profile
plots for the ML estimators of α and λ under data set I, which provide the guarantee of unique existence of ML
estimators. The empirical vs fitted CDFs plot in Figure 9 (left panel) also announces that the fitted CDF closely
follow the pattern of the empirical CDF.

Table 5. The ML estimate (SE) and various goodness of fit measures under data set I.

Model ML estimate (SE) -LL AIC BIC CAIC K-S P-value
DINH 0.805(0.302), 3.406(2.090) 115.71 235.41 238.69 235.75 0.184 0.539
DsGLi 0.888(0.024), 0.106(0.037) 118.95 241.89 245.17 242.23 0.157 0.305
DsLi 0.805(0.02) 127.12 256.23 257.87 256.34 0.246 0.020

NDsIP 0.911(0.015) 121.35 244.71 246.35 244.82 0.186 0.146
DsR 0.995(0.136) 161.19 324.38 326.02 324.49 0.761 ≤ 0.001

DsB-XII 0.817(0.074), 3.298(1.427) 118.99 241.98 245.26 242.32 0.277 0.006
DsPa 0.559(0.053) 124.33 250.66 252.30 250.77 0.367 ≤ 0.001
DsBH 0.995(0.013) 130.95 263.90 265.54 264.01 0.565 ≤ 0.001

Poi 7.921(0.457) 287.83 577.67 579.31 577.78 0.913 ≤ 0.001
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Data set II: In the second application, we consider the daily new deaths in Iran. The data is available at
https://www.worldometers.info/coronavirus/country/iran/ and contains the daily new deaths between 15 February
to 10 March 2020. The data values are:
0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 3, 7, 8, 9, 11, 12, 11, 15, 16, 16, 21, 49, 43, 54.
The above data set is modelled with DINH and other competitive models. The estimated parameters and other
fitting measures are reported in Table 6. From the outcomes of Table 6, we conclude that the DINH distribution is
the best choice among other competitive models since it has the lowest values of –LL, AIC, BIC, CAIC, and K-S
statistics with the highest p-value. The unique existence of the ML estimators of α and λ can be verified from the
profile plots in Figure 8 (second row). Figure 9 (right panel) also depicts that DINH distribution is well enough to
model the considered data.

Table 6. The ML estimate (SE) and various goodness of fit measures under data set II.

Model ML estimate (SE) -LL AIC BIC CAIC K-S P-Value
DINH 0.302(0.050), 21.586(2.139) 87.10 178.21 180.65 178.75 0.2000 0.699
DsGLi 0.920(0.025), 0.077(0.042) 87.24 178.48 180.92 179.03 0.1600 0.541
DsLi 0.857(0.019) 94.73 191.46 192.68 191.64 0.2510 0.087

NDsIP 0.941(0.011) 88.94 179.88 181.10 180.06 0.1890 0.328
DsR 0.997(0.048) 115.82 233.64 234.86 233.81 0.7420 ≤ 0.001

DsB-XII 0.65(0.102), 1.239(0.426) 89.92 183.83 186.27 184.38 0.2580 0.072
DsPa 0.596(0.062) 90.12 182.24 183.46 182.42 0.3010 0.021
DsBH 0.997(0.011) 96.91 195.81 197.03 195.98 0.5120 ≤ 0.001

Poi 11.56(0.68) 243.85 489.70 490.92 489.88 0.9420 ≤ 0.001

6. Analysis of random censored data under DINH distribution

In this section, we derive the ML estimators of the unknown parameters of DINH distribution for random right-
censored data. An algorithm to generate random right-censored data is discussed for the DINH model. We also
provide numerical illustrations based on empirical and real data sets to demonstrate the applicability of the proposed
approach for analyzing random right-censored data.

6.1. Method of maximum likelihood

In the presence of right-censored observations, the contribution of ith individual to the likelihood function based
on an RS (xi, di) of size n is

Li = [p(xi)]
di [S(xi)]

1−di ,

where di is a censoring indicator variable, that is, di = 1 for an observed lifetime and di = 0 for a censored lifetime
(i = 1, 2, ..., n). Under the DINH distribution, the LF for α and λ is given by

L(α, λ|x, d) = exp

(
n∑

i=1

di

)
n∏

i=1

{
exp(−(1 + λ

xi+1 )
α
)− exp(−(1 + λ

xi
)
α
)
}di
{
1− exp(1− (1 + λ

xi
)
α
)
}1−di

(19)
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Figure 8. The profile plots for α and λ under data set I (first row) and under data set II (second row).

The LL corresponding to LF (19) is

logL =

n∑
i=1

di +

n∑
i=1

di log
{
exp(−(1 + λ

xi+1 )
α
)− exp(−(1 + λ

xi
)
α
)
}

+

n∑
i=1

(1− di) log
{
1− exp(1− (1 + λ

xi
)
α
)
}
. (20)

The first-order partial derivative of the LL function with respect to the parameters α and λ, provides the following
log-likelihood equations,

∂ logL

∂α
=

n∑
i=1

di (Λ
α(xi) exp(−Λα(xi)) log(Λ(xi))− Λα(xi + 1) exp(−Λα(xi + 1)) log(Λ(xi + 1)))

exp(−Λα(xi + 1))− exp(−Λα(xi))

+

n∑
i=1

(1− di) exp(1− Λα(xi))Λ
α(xi) log(Λ(xi))

1− exp(1− Λα(xi))
, (21)
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Figure 9. The empirical vs fitted CDFs for data set I (left panel) and data set II (right panel).

∂ logL

∂λ
= α

n∑
i=1

di
(
(xi + 1)Λα−1(xi) exp(−Λα(xi))− xiΛ

α−1(xi + 1) exp(−Λα(xi + 1))
)

xi(xi + 1) (exp(−Λα(xi + 1))− exp(−Λα(xi)))

+ α

n∑
i=1

(1− di)Λ
α−1(xi) exp(1− Λα(xi))

xi (1− exp(1− Λα(xi)))
, (22)

where Λ(xi) has already been defined in Equation (18).
By simplifying Equations (21) and (22), the ML estimators of parameters α and λ can be obtained, however, these
equations do not provide an analytical solution. As a result, we utilize an iterative method, such as NR to find the
estimate computationally using built-in codes in various software like R, MATLAB, and Maple programming.

6.2. Algorithm to simulate random right censored data

In this section, we present a simple algorithm to generate the randomly right-censored data from the proposed
model. The algorithm consists of the following steps:

Step 1: Fix the values of the parameters α and λ.
Step 2: Draw n random pseudo from Uniform(0,1) i.e. ui ∼ U(0, 1); i = 1, 2, ..., n.
Step 3: Obtain x

/
i = F−1(ui;α, λ); i = 1, 2, ..., n, where F−1(•) is defined in Equation (5).

Step 4: Draw n random pseudo from ci ∼ U(0,max(x
/
i )); i = 1, 2, ..., n. This is the distribution that controls the

censorship mechanism.
Step 5: If x/

i ≤ ci, then xi = [x
/
i ] and di = 1, i = 1, 2, ..., n, else, xi = [ci] and di = 0, i = 1, 2, ..., n. Hence, pairs of

values (x1, d1), (x2, d2), ..., (xn, dn) are obtained as the random right-censored data.

For more detail review on generating random right censored data from a model, one can refer to Ramos et al. [35].
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6.3. Numerical illustration using simulated random right-censored data

The performance of the ML estimators under random right-censored data is investigated in this subsection via a
simulation study. The whole study is based on RSs drawn from the DINH distribution of sizes 20, 25,...,100. The
parametric values of the parameters α and λ are taken as (0.5, 0.5), (1, 0.5), (5, 0.5), (0.5, 2), and (1, 2). The method
described in Section 6.2 is utilized to produce the required random right-censored data. All simulation results are
based on 2000 replicates for the different sample sizes considered for each parameter setting. We have calculated
the MSE and AAB of the parameter estimates based on these 2000 values, and the findings are shown in Figures
10-14.
From Figures 10-14, the following conclusions can be made:

a. The ML estimators of the unknown parameters show the consistency property, i.e., the MSE reduces as the
sample size rises.

b. As n becomes larger, the AAB approaches zero.
c. The ML estimator performs better for small values of the parameters α and λ than for high values of these

parameters.
d. From the analysis of MSEs and AABs, we find that the estimation of the parameter α is more sensitive

compared to the estimation of the parameter λ.

Figure 10. The MSE and AAB for λ = 0.5 and α = 0.5.

Figure 11. The MSE and AAB for λ = 0.5 and α = 1.

6.4. Application to censored real data

Here, we examine two real data sets to demonstrate the applicability of the DINH model to censored data. These
data sets along with their fitting are described as follows:
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Figure 12. The MSE and AAB for λ = 0.5 and α = 5.

Figure 13. The MSE and AAB for λ = 2 and α = 0.5.

Figure 14. The MSE and AAB for λ = 2 and α = 1.

Data set III: The data below represent the times of remission, in weeks, for a group of 30 leukaemia patients
who underwent similar treatment (see, Lawless [36], pp. 139). The censoring times are indicated with asterisks.
1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31*, 42, 45*, 50*, 57, 60, 71*, 85*, 91.

Now, we examine the DINH distribution’s appropriateness for modelling the above data. To do this, we use the K-
S statistic and its related p-value to determine the goodness of fit. This fitting measure indicates that the proposed
model with ML estimates (SE in parenthesis) α̂= 0.5556(0.0915), λ̂= 24.5700(7.0738); adequately captures the
diversity of the data, as the K-S statistic and related p-value are 0.1311 and 0.6802, respectively. The profile plots
in Figure 15 (first row) clearly reveals the existence of ML estimators whereas the empirical vs fitted CDFs plot in
Figure 16 (left panel) confirms the output of K-S statistics and its p-value.
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Data set IV: The following data consist of the survival periods (in months) of individuals with Hodgkin’s disease
who received nitrogen mustards and heavy prior therapy [see, Lawless [36], pp. 139]. The censored observations
are indicated by asterisks.
1, 2, 3, 4, 4, 6, 7, 9, 9, 14*, 16, 18*, 26*, 30*, 41*.

Notably, we have observed the floor value of the original data. The ML estimate (SE) of the DINH distribution’s
parameters α and λ are 0.7556(0.5159), 9.8737(12.5442), respectively. Using these estimates with the considered
data, the K-S statistics and associated p-value are 0.1588 and 0.8438, respectively. This well-known goodness-of-
fit measure indicates that the suggested discrete model is adequate for modelling the given data. Graphically, the
uniqueness of ML estimators and fitting capability can be viewed in Figure 15 (second row) and Figure 16 (right
panel), respectively.
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Figure 15. The profile plots for α and λ under data set III (first row) and under data set IV (second row).

7. Conclusion

In this article, we have proposed a new discrete model to analyze complete and censored data. The PMF and HRF
of the proposed model have a variety of shapes that enables to capture of a wide spectrum of real data. We have
derived its various crucial statistical properties including quantile, median, moments, skewness, kurtosis, index of
dispersion, entropy, expected inactivity time function, stress-strength reliability, and order statistics. The unknown
parameters of the proposed model with complete and censored data are estimated under the maximum likelihood
approach. An algorithm to produce randomly right-censored data is provided. The extensive simulation studies are
presented to the assessment of the ML estimator under complete and censored data. Finally, the fitting capability of
the proposed model for complete and censored data is illustrated using four real data. Hence, we can conclude that
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Figure 16. The empirical vs fitted CDFs for data set III (left panel) and data set IV (right panel).

the suggested model may be used as an alternative model to some well-known existing models to analyze complete
and randomly right-censored data generated from various domains.

A future plan of action regarding the current study might be an examination of the other type of censored data
using the proposed model (see, Tyagi et al. [37]). We may investigate the load share model where the component
failure time follows the DINH distribution. The stress-strength parameter may be examined using various censored
data. In addition, a bivariate extension of the DINH distribution can be developed.
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