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Abstract
Brain Imaging Analysis is a dynamic and exciting field within neuroscience. This study is conducted with two main
objectives. First, to develop a classification framework to enhance predictive performance, and second, to conduct a
comparative analysis of accuracy versus inference using brain imaging data. The dataset of chess masters and chess novices
is utilized to identify neurocognitive differences between the two groups, based on their resting-state functional magnetic
resonance imaging data. A network of connections between brain regions is created and analyzed. Standard statistical
learning techniques and machine learning models are then applied to distinguish connectivity patterns between the groups.
The trade-off between model precision and interpretability is also assessed. Finally, model performance measures, including
accuracy, sensitivity, specificity, and AUC, are reported to demonstrate the effectiveness of the model framework.
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1. Introduction

Recent advancements in machine learning and computational capabilities paved the way to discover the complex
relationship between neuronal activity inside the human brain. Investigating the brain’s functional organization
and how it varies from the disease or continuous training is of high importance among researchers, medical
practitioners, and policymakers [1, 2]. Resting-state functional magnetic resonance imaging (rs-fMRI) has great
potential to advance our understanding and help identify these phenomena. Identifying these biomarkers has far-
reaching implications such as helping treatment decisions, aiding in diagnosis, identifying personality traits, and
developing new therapies for improving the brain’s cognitive ability [1]. The most common ways machine learning
methods study the rs-fMRI data are supervised learning and unsupervised learning. The unsupervised learning
methods primarily focused on the functional organization of the brain dynamics. On the other hand, supervised
learning uses functional connectivity to make individual-level predictions where functional connectivity measures
the statistical relationship between blood oxygenated level-dependent (BOLD) fluctuations among spatially
distributed brain regions [1, 2]. The analysis is performed by analyzing the resting-state functional connectivity
between the brain regions of interest.

Imaging studies unfold insights about normal brain function and structure, neural processing and neuroanatomic
expressions of psychiatric and neurological disorders, and changes in neural activity associated with treatment
response [2]. Among the several widely used imaging modalities, functional magnetic resonance imaging (fMRI)
is one of the most popular techniques. fMRI is popular because it is a non-invasive method to obtain neural
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activity information from the human brain. The fMRI quantifies brain activity by measuring correlates of blood
flow and metabolism. In particular, activation of the brain is associated with a localized increase in oxygen
consumption. The increase in oxygen consumption leads to the oxygen-rich blood flow toward the active area
to meet the increased demand. The increased supply of oxygen dominates the increased demand and leads to a
relative increase in oxyhemoglobin and a decrease in deoxyhemoglobin in activated brain areas. The common
form of fMRI works by leveraging magnetic susceptibility properties of hemoglobin in capillary red blood cells,
which delivers oxygen to neurons. Since hemoglobin is diamagnetic when oxygenated and paramagnetic when
deoxygenated, the MR scanner produces blood oxygenated level-dependent (BOLD) signals that vary according
to the degree of oxygenation [2]. Due to this reason, fMRI can be used to create the distribution maps of localized
brain activity. There are two different ways the fMRI is taken, the task-based fMRI and the rs-fMRI. Although
the person is not doing any task during the rs-fMRI, spontaneous fluctuations in the resting brain are prevalent
whose causal origin is largely unknown. Several studies have been done to explore whether resting-state coherent
fluctuations have a neuronal origin or are just due to physiological artifacts [3, 4, 5, 6]. Those research found
support for the neuronal basis of BOLD-based resting-state functional connectivity. This study analyzes the
resting-state functional connectivity to discriminate the neurocognitive difference between two healthy groups
known as chess masters and the chess novices and identify the most discriminating brain regions using Automated
Anatomical Labeling (AAL) atlas [7].

Several research works based on resting-state functional connectivity (RSFC) have been done to classify healthy
and unhealthy people. In addition, rs-fMRI has been used to identify the neurocognitive difference between the
groups of people, for example, the cognitive difference between people with schizophrenia and healthy patients [8,
9] studied the functional connectivity of the group of an aging population. The authors observed that the difference
emerges in the intrinsic network architecture as associations changes between network interactivity, cognitive
functioning, and age. They found that connectivity varied by cognition and age for within- and between-network
connections. The relationship between functional connectivity in large-scale brain networks and age over the adult
lifespan was studied in [10]. Their results showed significant alterations in the functional connectivity patterns
characterized by weaker within-network connectivity and higher between-network connectivity in advanced
age. Khan et al. (2020) [11] implemented the sequential forward feature selection approach to obtain the most
discriminating features between autistic and healthy controls. The results in [12] show a decreased functional
connectivity among the autistic subjects as compared to the controlled subjects. In the task unrelated neuronal
activity between 23 autistic and 20 control subjects, the study in [13] found disruptions in functional connectivity.
The work on [8] implemented linear classification techniques to classify Alzheimer’s and Schizophrenia by
analyzing fMRI data. [14] implemented several classification techniques to classify autistic and healthy patients
and concluded that the neural networks outperformed other methods. [15] utilized the MRI scans of chess masters
and novices to estimate morphometric connectivity. The authors introduced a novel functional morphometric
similarity connectome by integrating functional and anatomical features, followed by classification using the SVM
model after the feature selection technique is implemented. In this work, we explore the neurocognitive difference
of two healthy groups, one is trained on the specific task that requires intensive use of the human brain, and the
other does not, using statistical and machine learning techniques. Given that chess involves significant cognitive
engagement, we examine how variations in cognitive traits can be forecasted through disparities in resting-state
functional connectivity between adept chess players and novice chess players.

In a nutshell, plenty of research has been done in brain imaging analysis to identify the neurocognitive
differences between healthy and unhealthy groups. Some research focuses on complex statistical or machine
learning techniques that focus on achieving higher accuracy while others only use the standard statistical techniques
for better statistical inference [16, 2, 1, 17]. In this work, we analyze the rs-fMRI data of two healthy groups of chess
masters and chess novices and perform a comparative study of the performance among simple and complex models.
We implemented the logistic regression (LR), support vector classifier (SVC), random forest classifier (RFC),
gradient boosting classifier (GBC), Long short-term memory (LSTM) neural network, and the gated recurrent
unit(GRU) neural network. The former models are tentatively more interpretable and less complex than the latter.
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The implemented state of art deep learning models such as LSTM and GRU are well-suited for capturing complex
relationships. On the other hand, the implemented standard machine learning models are well suited for statistical
inference. The paper discusses the results of optimal models in both improved prediction and inference settings.
Additionally, this work contributes to a limited body of research focused on identifying neurocognitive differences
among healthy groups.

2. METHODS

The remainder of the paper is structured as follows: We start by providing a concise overview of the classification
methods employed for the analysis in Section 2.2. Subsequently, the process of data collection and preprocessing
is elaborated upon in Section 2.3. The techniques for establishing functional connectivity among brain regions
of interest are introduced in Section 2.4. We detail the application of principal component analysis (PCA) for
dimension reduction in Section 2.5. Moving forward, the experimental methods and model performance are
scrutinized in Section 3.1 and Section 3.3 respectively. The comparison between model accuracy and their utility
in statistical inference is outlined in Section 3.4. Finally, we conclude with the presentation of our results and
discussions in Section 4. The references cited in this article can be found in the references section at the end.

2.1. Computational Framework

The proposed model framework is visualized in Figure 1. The research starts by extracting time series data from
the AAL atlas, as proposed in [7]. Subsequently, RSFCs are created using Pearson’s correlation, Spearman’s rank
correlation, and precision matrix. From these connectivity matrices, we extract the upper triangular elements
to serve as features. To reduce dimensionality, we employ the PCA technique, resulting in 40 features for
the Pearson RSFC and Spearman’s RSFC data of 54 subjects, while the Precision RSFC data consists of
20 features. These selected features are then utilized for modeling. We construct classification models for all
experimented classification methods, optimizing hyperparameters to achieve the best performance. With the chosen
hyperparameters, the final model is trained on the training data and applied to classify chess masters and novices
in the test dataset. To evaluate our model’s performance, we use various measures, including accuracy, sensitivity,
specificity, and AUC. Detailed procedures can be found in the corresponding sections and subsections.

Figure 1. Schematic diagram of proposed model framework

2.2. Review of Classification Techniques

Logistic Regression

Logistic regression for a binary classification models the probability that the response variable Y belongs to a
particular category. In this case, the chess masters (coded 1) or chess novices (coded 0). Like linear regression,
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logistic regression incorporates both intercept and slope parameters. However, because probabilities must lie
between 0 and 1, a straightforward intercept and slope model does not ensure this constraint. Instead, the goal
is to model p(X) = Pr(Y = 1|X) using a function that generates outputs between 0 and 1 across all predictor
variable values X [18, 19].

When p(X) = p signifies event probability, the odds of the event are given by p
1−p . These odds span values from

0 to ∞. Logistic regression models the log odds of the event through a linear function as follows:

log

(
p

1− p

)
= β0 + β1X

Upon straightforward manipulation, we arrive at the logistic function:

p(X) =
eβ0+β1X

1 + eβ0+β1X

To estimate the parameters β0 and β1, we utilize training data. New observations are then classified based on the
logistic function’s output. The relevant scientific studies that have applied logistic regression to classify fMRI data
includes works such as [20, 21, 22].

Support Vector Classifier

The Support Vector Classifier (SVC), also referred to as the Maximum Margin Classifier, works to maximize the
separation distance between the classification boundary and the nearest training data point. In the context of our
study, we are categorizing individuals as either chess masters (coded as 1) or chess novices (coded as -1) for
simplicity. In the case of a linear SVC, the decision boundary is linear.

To classify a new observation u, we employ the decision function:

D(u) = β0 +

n∑
i=1

yiαixi
′u

In this equation, xi represents predictor data, and the coefficients αi ≥ 0 are the parameters. The predictors xi with
non-zero alpha values are termed as support vectors ([18, 23, 19]). The decision function is solely dependent on
these support vectors. When D(u) > 0, the sample is assigned to the ChessMasters class; otherwise, it’s assigned
to the novice class. The concept for the nonlinear SVC is analogous to the linear SVC, with the key distinction
being the use of a nonlinear decision boundary. Instead of the linear xi

′u term in the decision function, a kernel
function K(xi,u) is utilized. Numerous studies (e.g., [24, 25, 26, 27]) have implemented SVC with success for the
classification of fMRI data.

Random Forest Classifier

The random forest technique is an ensemble method that combines outcomes from multiple individual decision
trees. Suppose we have a dataset with n observations and p predictors. During the process of constructing a decision
tree, a random subset of m predictors out of the p available predictors is selected as candidates for splits whenever
a split within a tree is being evaluated. Each time a split occurs, only one of these m predictors is utilized from
the entire set of p predictors. A fresh subset of m predictors is chosen for each split. Typically, m is chosen to be
approximately

√
p, meaning that the number of predictors considered for each split is roughly equal to the square

root of the total number of predictors. The another common choice of m is log(p). In this methodology, we generate
B distinct bootstrapped training datasets. Each of these datasets is used to train the method, predicting out-of-bag
samples, and ultimately aggregating all the predictions. For a new test observation, classification is achieved by
recording the predicted class from each of the B trees and determining the majority vote. The final prediction
corresponds to the most frequently occurring majority class among the B predictions. Numerous research studies
in the past employed the random forest approach for the classification of fMRI data [28, 29, 30].
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Gradient Boosting

Gradient Boosting is an ensemble approach where multiple weak classifiers are aggregated to construct a robust
classifier. This technique begins by assigning initial weights to each sample. During each iteration, the algorithm
identifies the optimal classifier based on the current sample weights. Samples that are misclassified in the current
round receive increased weights in the subsequent iteration, while correctly classified samples are assigned reduced
weights. Essentially, the algorithm assigns progressively higher weights to challenging-to-classify samples until
the model effectively classifies them. A stage weight is calculated according to the error rate at each iteration.
Finally, the sequence of weighted classifiers is merged into an ensemble, offering enhanced potential for accurate
classification compared to individual weak classifiers [31].

For a binary classification task, where one class is labeled +1 and the other -1, we begin by generating k distinct
bootstrap training datasets. Our approach is trained on the i-th bootstrap training set, followed by prediction on
the out-of-bag samples. In each iteration, the stage weights are adjusted as detailed above. As soon as the model
achieves accurate classification for all samples, the weighted average of all predictions is computed. The new test
observation will be classified to +1 class if the weighted average obtained is positive otherwise it will be classified
to -1 class. Some of the recent works that utilized this method for classification problems associated with brain
imaging analysis are listed here [32, 33, 34, 35].

A brief overview of LSTM

The LSTM model is a well-known deep learning technique used for sequence classification tasks. Traditional
recurrent neural networks (RNNs) face challenges in learning long-term dependencies due to the vanishing gradient
problem [36], which the LSTM model was designed to address. LSTM employs memory cells to counter the
vanishing gradient issue, comprising input, hidden, cell state, and output layers [37, 38, 39]. A vital element in
the LSTM architecture is the cell state which runs through the chain that flows linearly, maintaining information
continuity. The gate mechanism of LSTM modifies or removes cell state information, allowing selective passage
through layers involving sigmoid and hyperbolic tangent activations, as well as point-wise multiplication.

The architecture of LSTM at time t is presented in the Fig 2. In this figure the four gates —output, change, input,
and forget —are shown with their operations at time t.

For a given input sequence {x1, x2, . . . , xn}, xt ∈ Rk×1 is the input sequence at time t. The memory cell ct
updates the information using three gates: input gate it, forget gate ft, and change gate c̃t. The hidden state ht

is updated using output gate ot and the memory cell ct. The respective gates and layers compute the following
functions at time t:

it = σ(Wixt +Whiht−1 + bi),

ft = σ(Wfxt +Whfht−1 + bf ),

ot = σ(Woxt +Whoht−1 + bo),

c̃t = tanh(Wcxt +Whcht−1 + bc),

ct = ft ⊗ ct−1 + it ⊗ c̃t,

ht = ot ⊗ tanh(ct)

where, σ represent the sigmoid function. The operator ⊗ denotes element-wise multiplication. W ∈ Rd×k and
Wh ∈ Rd×d are weight matrices, while b ∈ Rd×1 represents bias vectors. The variables n, k, and d correspond to
sequence length, number of features, and hidden size respectively [41, 42, 43]. Recent literature [44, 45, 46, 47,
48] has shown the utilization of LSTM neural networks for fMRI data classification.

To match LSTM architecture’s dimensionality requirements, the input sequence Xt is formed by creating m
continuous sequences xt : xt+m−1, resulting in a k ×m matrix for t ∈ {1, 2, . . . , n−m− 1}. The LSTM output ht

serves as the feature representation for the input sequence Xt at time t, denoted as ht = LSTM(Xt, ht−1, ct−1, w)
where w represents learnable parameters. As the final hidden state hf contains key information from the input
sequence, it is transformed into a vector through a dense layer.
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Figure 2. LSTM architecture [40, 36].

A brief overview of GRU

The GRU, proposed by [49], is a more recent model that simplifies the LSTM’s four gates into three: the
update, change, and reset gates. The update gate combines the functions of LSTM’s input and forget gates. GRU
is computationally efficient, requiring fewer parameters for estimation compared to the LSTM model (Dey et
al., 2017; Chung et al., 2014). The architecture of the GRU at time t is presented in Figure 3, illustrating the
operations of the reset, change, and update gates at time t. Similar to the LSTM model, for a given input sequence
x1, x2, . . . , xn, with xt ∈ Rk×1 representing the input sequence at time t. The GRU model’s gates and layers
compute the following functions at time t:

rt = σ(Wrxt +Whrht−1 + br),

ut = σ(Wuxt +Whuht−1 + bu),

c̃t = tanh(Wcxt +Wc(rt ⊗ ht−1) + bc),

ht = (1− ut)⊗ ht−1 + ut ⊗ c̃t

where, σ represents the sigmoid function, ⊗ is the element-wise product; W ∈ Rd×k and Wh ∈ Rd×d are weight
matrices, while b ∈ Rd×1 serves as bias vectors. Additionally, n, k, and d denote the sequence length, the number
of features, and the hidden size respectively [51]. Similar to the LSTM model, the input sequence Xt for the GRU
model is formulated. The output ht of the GRU denotes a feature representation for input sequence Xt at time t,
expressed mathematically as:

ht = GRU(Xt, ht−1, w),

where w encompasses all parameters that can be learned through model training.
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Figure 3. GRU architecture [50, 49].

2.3. Data Description and Preprocessing

We obtain the resting-state fMRI data from the Neuroimaging Tools and Resources Collaboratory. The dataset
was made available by the Huaxi MR Research Center of Sichuan University. The dataset includes fMRI scans
from 29 professional chess players and 29 age and sex-matched novices. Data collection utilized a Siemens 3T
TRIO system at the West China Hospital of Sichuan University, Chengdu, China, employing an EPI sequence with
parameters TR=2000 ms, TE=30 ms, Bandwidth=2442 Hz/Px, Flip angle=90 degrees, FOV=240 × 240mm2, and
slice thickness=5 mm. Each volume consisted of thirty interleaved 64 × 64 slices. For more information about
data and the protocol, please refer to the following article [52]. The chess masters dataset is preprocessed using
the data processing assistant for resting-state fMRI (DPARSF 4.1) framework [53]. A total of 54 observations,
27 on Chess Masters and 27 on Chess Novices, were chosen for analysis. The preprocessed fMRI data for each
subject constitute a matrix of dimensions 116× 200, with rows representing brain regions of interest and columns
depicting time points. These 116 brain regions are sourced from the AAL atlas. Figure 4 provides a visualization
of the 116 brain regions as per the AAL atlas.

Denoising was performed using adaptive wavelet threshold denoising with Bayesian estimation [54], employing
Haar wavelet and soft thresholding from the scikit-image package [55]. Wavelet-based denoising methods with
limited smoothing effectively preserve image sharpness and active region shapes. The adaptive wavelet threshold
denoising technique, employing Bayesian estimation, differentiates between signal and noise components to
maintain frequency information and minimize noise impact. This method proves superior to the original Gaussian
filter in retaining useful signals [56, 57, 58]. Both denoised and original data were used for experimentation and
comparison.
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Figure 4. Visualization of 116 brain regions

2.4. Generation of Functional Connectivity

The network of resting-state functional connectivity (RSFC) is constructed using both denoised and original data.
Three methods, Pearson’s correlation, Spearman’s rank correlation, and precision matrix are employed to create the
connectivity matrix. Initially, Pearson’s correlation coefficient is chosen due to its common usage in literature [59,
60]. However, partial correlation is deemed superior for direct connectivity assessment, considering potential
influences from other regions [61, 62]. Therefore, graphical lasso [63] is utilized to compute the inverse covariance
matrix as a connectivity matrix. Finally, Spearman’s rank correlation [64] is employed for its ability to capture both
linear and non-linear relationships between brain regions. The utilization of these three metrics aims to compare
their impact on model performance within the proposed framework. The connectivity matrices being symmetric
(mxm), upper diagonal elements form a feature vector of length m∗(m−1)

2 due to self-connections on the diagonals
being omitted. Each feature symbolizes the correlation between two brain regions conditioned on others. The
dataset consists of 54 rows and 6670 columns, with rows representing subjects and columns representing features.

2.5. Dimension Reduction using Principal Component Analysis

We possess 54 observations, each with 6670 features, leading to a high-dimensional statistics-related challenge
where the feature count significantly surpasses the sample size. To address this, Principal Component Analysis
(PCA) is employed, mitigating common issues linked with high-dimensional data, such as computational
complexity and inflated error rates due to multiple testing corrections during outcome-associated feature testing.
PCA simplifies high-dimensional data complexity by transforming it into fewer dimensions that serve as feature
summaries [65, 66]. Although ICA and its extensions are widely used in the rs-fMRI field, their modeling of linear
representations for non-Gaussian data raises concerns about whether such transformations effectively capture the
relationship between independent latent sources and fMRI data. Additionally, ICA fails to assign importance to its
components, preventing the differentiation between strong and weak sources [1, 67].

After the PCA was implemented, the numbers of principal components were chosen so that they could explain
the data variability of at least 90 percent. The 40 principal components that correspond to Pearson RSFC and
Spearman’s RSFC were chosen, and for Precision RSFC, 20 principal components were selected. Now each subject
of the Pearson RSFC and Spearman’s RSFC data has 40 features, and Precision RSFC data consists of 20 features,
each feature representing the principal components. We have observations on the 54 subjects for the analysis. In
this case, our data contains 54 rows representing the number of subjects, and the number of columns(40 or 20)
equals the chosen number of principal components for each RSFC.

Additionally, we employed the feature selection methods known as SelectFromModel (SFM) and recursive
feature elimination (RFE) technique, as described by [16]. The RFE technique begins with all features and
iteratively eliminates the least significant feature until the desired feature count is achieved. In our analysis, the
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(a) (b) (c)

Figure 5. The percentage of the variance explained by the number of principal components on the features obtained by (a)
Pearson’s Correlation, (b) Precision Matrix, and (c) Spearman’s Correlation.

RFE method reduces the feature set to half of the total features at each iteration. The SelectFromModel is a
versatile meta-transformer compatible with various estimators that assign feature importance. It discards features
with importance values below a specified threshold parameter. It also provides built-in heuristics like ”mean” and
”median” and supports a feature limit using the max features parameter. In our implementation, we utilized SFM
with its default settings.

3. Experiments and Results

3.1. Experimental Methods

In this study, we explored supervised learning methods, including LR, LSVC, KSVC, RFC, GBC, LSTM, and
GRU neural networks, for the classification of chess masters and novices. Implementation of these methods
utilized scikit-learn and scikit-image libraries [68, 69] and TensorFlow [70, 71] in Python. The input for these
models consists of feature vectors obtained through three different methods for constructing feature sets (FC). Our
experimentation involved four distinct datasets: features extracted from the original data with and without PCA, as
well as features from denoised data with and without PCA. Initially, five-fold cross-validation was performed on
the entire dataset to determine the optimal model parameters. Subsequently, repeated ten-fold cross-validation was
conducted using these parameters, with a performance evaluation on hold-out folds. The experiment was repeated
ten times to ensure stable performance.

Data preparation steps were undertaken to ready the input data for LSTM and GRU models. The architecture for
these models is illustrated in Figure 2 and Figure 3. The input sequence was constructed using k = 6670 features
(reduced to k = 40 or k = 20 after PCA dimension reduction) with a time step of 1. LSTM model processed the
input sequence along with memory cells, while the GRU model operated without memory cells. The transformed
data, initially two-dimensional, was adjusted to a three-dimensional format (number of observations, time step,
number of predictors) required by the models. The dataset was randomly divided into an 80% training set and a
20% test set.

For LSTM and GRU models, both single-layer and multi-layer architectures were experimented with.
Hyperparameters such as learning rate, number of epochs, optimizers, and batch size were adjusted. Epochs
were set to 50, and an early stopping criterion was employed to halt training after five consecutive instances
of no validation loss improvement. Varying learning rates (0.1 to 0.001), neuron counts (10 to 250) with their
combinations from one to three layers, and optimizers (Adam, RMSprop, Adadelta) were explored. Once optimal
hyperparameters were identified, the model was trained using the chosen values, and performance was assessed on
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the test set. To ensure reliable performance, each model was replicated ten times.

3.2. Hyperparameter Tuning

For LR, LSVC, KSVC, RFC, and GBC models, a five-fold cross-validation method was employed to determine
the optimal hyperparameters. The LR model was tested with L1, L2, and elastic net penalties. However, the
feature selection techniques did not enhance results for the lasso penalty implementation. The LR model’s best
performance came from the SFM feature selection method with a C value of 0.1 among the choices between 0.1
and 5.1, using the saga solver. LSVC utilized a C value of 0.3 from the range of 0.1 to 30, while KSVC with a
linear kernel selected a C value of 2.2. For RFC, parameters like maximum depth (5 to 20), number of trees (500
to 2500), and impurity criterion (gini vs. entropy) were evaluated. The RFC model with 1000 trees, a maximum
depth of 5, and the gini criterion was chosen. Gradient boosting employed a learning rate (0.1 to 0.001), number of
trees (200 to 700), max depth (3 to 7), and various split quality criteria. The final model adopted a learning rate of
0.01, mean absolute error criterion, max depth of 7, and 500 estimators.

For LSTM and GRU models, data was split into training, validation, and test sets. Initially, 80% was for training
and 20% for testing, then 20% of training became validation data. Hyperparameters included batch sizes, learning
rates, optimizers, and epochs (set to 50 with early stopping). Optimizers were Adam, RMSprop, and Adadelta.
Learning rates were chosen from 0.01, 0.05, 0.001, and 0.005. The batch sizes considered were 2, 4, and 8. Neuron
counts ranged from 10 to 200 for single-layer and various multilayer combinations. For both LSTM and GRU, 12
models were evaluated with 36 combinations each, and the best-performing combination based on validation data
was selected. This process was repeated for three data models: Spearman RSFC, Pearson RSFC, and Precision
RSFC.

Model reliability was enhanced through ten replications, with average accuracy scores guiding hyperparameter
selection. The top-performing LSTM and GRU models were based on Pearson’s RSFC. Optimal settings for LSTM
were a batch size of 4, a learning rate of 0.005, and a single-layer model with 200 neurons. Similarly, GRU model
favored a batch size of 4, a learning rate of 0.005, and a three-layer configuration with neuron counts [70, 40, 10].
These settings were employed to train the models, which were then evaluated using the entire training dataset and
tested on the test dataset for performance assessment.

3.3. Model Performance

The developed framework is tested on classifying chess masters and chess novices. The selected value of
parameters obtained from the grid-search cross-validation has been used in the repeated ten-fold cross-validation
for the LR, LSVC, KSVC, RFC, and GBC models. The ten-fold cross-validation is replicated ten times, and the
average accuracy, sensitivity, specificity, and AUC scores obtained from the hold-out fold are reported. In addition,
the average performance scores from these methods implementing the RFE and SFM techniques are recorded. The
feature selection technique slightly improves the accuracy in comparison without using model selection.

For the LSTM and GRU models, various single-layer and multi-layers models has been implemented with best
values of the hyperparameters chosen. However, we noticed the overfitting issue with these models. To fix the issue,
drop-out strategy has been implemented. After implementation of drop out, the LSTM model outperforms all other
tested models with significant improvement in some performance measures while GRU has better performance
in other measures however not statistically significant different. As we worked with three different datasets
corresponding to three different functional connectivity, the best performance score was obtained from the features
using Pearson’s connectivity with the following value of hyperparameters —200-neuron (LSTM) and [70, 40, 10]
neuron (GRU), Adam optimizer with a learning rate of 0.005, and 50 epochs with early stopping and patience of 5.

The following tables summarize the performance of all implemented methods obtained by using Pearson’s
correlation, precision matrix, and Spearman’s rank correlation as functional connectivity methods.

Table 1 displays the average performance scores of employed supervised learning models on PCA transformed
Precision RSFCs. Our observations reveal that the KSVC model exhibits superior overall performance, with the
GRU model emerging as its closest competitor among the array of compared methods. The top performance is seen
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Table 1. Performance scores of the various supervised learning models on Precision RSFC using PCA

Metrics \Methods KSVC LSVC LR +SFM RFC GBC LSTM GRU
Accuracy 48.30 45.53 46.47 47.4 45.83 46.67 48.18
Sensitivity 69.49 63.50 66.67 39.83 42.16 47.33 62.67
Specificity 28 29.67 31.17 55.17 50.83 46.11 36.11

AUC 54.67 36.61 51 41.55 44.39 43.22 53.44

from the KSVC model with notable scores in Accuracy (48.30), Sensitivity (69.49) and AUC (54.67). It’s important
to note that while the difference in accuracy and AUC scores is minimal, there’s a noteworthy discrepancy in
sensitivity and specificity. All other models shows varying scores and are inferior except for the specificity metrics.
The RFC model demonstrates higher specificity, but at the expense of lower accuracy, sensitivity, and AUC. In
comparison, the KSVC model demonstrates competitive predictive performance and computational efficiency,
making it a favorable choice for this dataset with an additional advantage of its reduced computational demands
compared to LSTM and GRU models..

Table 2. Performance scores of various supervised learning models on PCA transformed Pearson’s RSFC data

Metrics \Methods KSVC LSVC LR +SFM RFC GBC LSTM GRU
Accuracy 67.47 63.10 63.43 62.30 59.70 80.30 80.91
Sensitivity 66.83 56.67 65.50 63.83 61.33 76.67 80
Specificity 68.67 68.50 62.50 60.67 57.5 83.33 81.67

AUC 70.39 65.16 63.39 64.17 58.44 84.72 82.5

Table 2 displays the performance scores of various supervised learning models on PCA transformed Pearson’s
RSFC data. These scores underscore the consistent excellence of the LSTM and GRU models, which attain the
highest marks across Accuracy (LSTM: 80.30, GRU: 80.91), Sensitivity (LSTM: 76.67, GRU: 80), Specificity
(LSTM: 83.33, GRU: 81.67),and AUC (LSTM: 84.72, GRU: 82.50). In contrast, the LSVC, KSVC, LR + SFM,
and RFC models exhibit varying levels of performance, highlighting the diversified outcomes among supervised
learning approaches. To sum up, the LSTM and GRU models emerge as consistently robust choices for effective
classification. Notably, the KSVC model also demonstrates relatively good performance metrics, despite its model
simplicity and inferential advantage in comparison. Overall, the LSTM and GRU models display superior predictive
performance without any statistically significant difference in PCA transformed Pearson’s RSFC data.

Table 3. Performance scores of various supervised learning models on Spearman’s RSFC using PCA

Metrics \Methods KSVC LSVC LR +SFM RFC GBC LSTM GRU
Accuracy 64.93 5810 69.07 55.57 50.43 76.06 75.45
Sensitivity 61.33 52.67 64.83 57.17 52.67 69.33 70
Specificity 69.17 63.50 73 55 47.83 81.67 80

AUC 67.94 63.17 72.22 57.39 51.16 81.44 79.83

Table 3 reveals performance scores of diverse supervised learning models on Spearman’s RSFC data transformed
via PCA. Notably, the LSTM model stands out with superior overall performance, characterized by high accuracy
(76.06), sensitivity (69.33), specificity (81.67), and AUC (81.44) scores. The GRU model closely follows with
commendable performance in accuracy (75.45), sensitivity (70.00), specificity (80.00), and AUC (79.83) scores.
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In comparison, the KSVC also demonstrates relatively good performance despite its simplicity. The other models
have consistently shown lower performance across all metrics. Overall, the LSTM model emerges as the leader in
predictive capabilities on this dataset.

From tables 1, 2, and 3, we can observe that the performance of the GRU model on Pearson’s RSFC using PCA
stands out as the best among all other compared methods. Although the difference with the LSTM is not statistically
significant, the GRU model holds a slight computational advantage. This framework yields improved outcomes,
likely attributed to the GRU’s capacity to learn intricate predictor relationships, combined with Pearson’s RSFC’s
capability to capture linear brain region connections.

3.4. Comparison of Results for Accuracy and Inference

In this section we discuss the results obtained from the two most promising simple model with the performance of
the best model.

Table 4. The average performance scores of the best model for accuracy and the best model for Inference

Metrics Best Model for Accuracy Best Model for Inference
(GRU model on PCA transformed Pearson’s RSFC) (Kernel SVC model (linear Kernel) on Pearson’s RSFC )

Accuracy 80.91 60.80
Sensitivity 80 58.16
Specificity 81.67 63

AUC 82.50 65.61

Figure 6. Visualization of the discriminating weights of the brain regions obtained by recursive feature elimination technique
on the logistic regression model

In this section, we present the results derived from the two most promising models, optimized for accuracy
and inference. The best model optimized for the accuracy is the GRU model on the PCA transformed Pearson’s
RSFC and the best model for inference is the Kernel SVC model (linear Kernel) on Pearson’s RSFC data. Table 4
provides the average performance scores of the best model for accuracy and the best model for statistical inference.
The GRU model with PCA on Pearson’s RSFC data achieves the highest accuracy score of 80.91, while the Kernel
SVC model (linear Kernel) on Pearson’s RSFC data attains an accuracy score of 60.80. The GRU model also
excels in sensitivity (80) and specificity (81.67), while the Kernel SVC model demonstrates a sensitivity of 58.16
and specificity of 63. Notably, the GRU model exhibits a specificity score of 81.67, outperforming the Kernel
SVC’s score of 63. Although the complex model offers significant improvements in accuracy and sensitivity, it
compromises inference. The Kernel SVC model enables the identification of crucial brain regions contributing
to the classification of chess masters and novices through feature importances while using the original features,
whereas interpretability becomes challenging with PCA-transformed features.
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The most influencing features among the logistic regression, linear support vector classifier and the support
vector classifier with linear Kernel models were investigated. The discriminant weights of the logistic regression,
SVC using the recursive feature selection method, and KSVC are given below. The logistic regression method
selects the following regions of interest as shown in the figure 6.

The SVC method selects the following region as shown in the figure 7.

Figure 7. Visualization of the discriminating weights of the brain regions obtained by the recursive feature elimination
technique on the support vector classification model

The KSVC method selects the following region as shown in the figure 8.

Figure 8. Visualization of the discriminating weights of the brain regions obtained by the support vector classifier with the
linear kernel

We observed that the regions selected by the these methods are almost identical. Among the top five features
selected by the two best-performing simple models, the four are the same, and the remaining one is different. From
the agreement of these methods, we can say that these brain regions are most important in discriminating the two
groups of interest.
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Table 5. Five most Influential Brain Regions selected by Logistic Regression on Pearson’s Connectivity

Rank Brain Region Label MNI Position
X Y Z

1 Hippocampus L -24 -2 -18
Caudate L -12 10 8

2 Hippocampus L -24 -2 -18
Caudate R 14 11 8

3 Cerebelum 4 5 L -31 -41 -22
Cerebelum Crus2 R 33 -70 -41

4 Cerebelum Crus1 R 38 -68 -31
Cerebelum 10 R 27 -35 -43

5 Vermis 3 -2 -41 -13
Vermis 10 -3 -47 -33

Table 6. Five most Influential Brain Regions selected by SVC on Pearson’s Connectivity

Rank Brain Region Label MNI Position
X Y Z

1 Hippocampus L -24 -2 -18
Caudate L -12 10 8

2 Hippocampus L -24 -2 -18
Caudate R 14 11 8

3 Cerebelum 4 5 L -31 -41 -22
Cerebelum Crus2 R 33 -70 -41

4 Cerebelum Crus2 R 33 -70 -41
Cerebelum 10 R 27 -35 -43

5 Vermis 3 -2 -41 -13
Vermis 10 -3 -47 -33

Table 7. Five most Influential Brain Regions selected by KSVC on Pearson’s Connectivity

Rank Brain Region Label MNI Position
X Y Z

1 Frontal Sup Orb L -17 46 -15
Cerebelum Crus2 R 33 -70 -41

2 Hippocampus L -24 -2 -18
Caudate L -12 10 8

3 Hippocampus L -24 -2 -18
Caudate R 14 11 8

4 Cerebelum 4 5 L -31 -41 -22
Cerebelum Crus2 R 33 -70 -41

5 Vermis 3 -2 -41 -13
Vermis 10 -3 -47 -33

Table 5, 6, and 7 presents the top five influential brain regions selected by the LR LSVC and KSVC methods on
identifying the chess masters and chess novices. Out of five selected regions, majority are the same just in a slightly
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different order, and only one is different. All methods agree that the regions Hippocampus L and Caudate L are
among the top two important regions. The most accurate model KSVC selects the regions Frontal Sup Orb L and
Cerebelum Crus2 R as the most important region, whereas none of the other methods identify Frontal Sup Orb L
among the most important five regions. As there were very few results on this type of problem and even in a
different setting so having a comparison is not possible [15, 27].

4. Discussion and Conclusion

In this article, we undertook the classification of chess masters and chess novices using a variety of supervised
learning methods. This endeavor represents one of the few attempts, to the best of our knowledge, that aims to
distinguish between two completely healthy groups through the analysis of fMRI data. The employed measures
include RSFC derived from Pearson’s correlation, Spearman’s rank correlation, and the precision matrix obtained
through graphical lasso. We compared the performance of classification models corresponding to each rs-RSFC
measure, both on denoised and original data. The improvements in model performance remain relatively marginal
with the use of denoised data and the results reported in the study corresponds to the denoised data. All the
compared models performed poorly in the data with original features, among them, the best results obtained from
the original features is discussed for the inference perspective. The inferior performance of overall models be
attributed to the challenge posed by the curse of dimensionality, given the modest number of observations (54) in
relation to the substantial number of features (6670). To mitigate this, we employed PCA for dimension reduction.
While PCA enhanced model performance and significantly reduced computational time, it came at the expense of
feature interpretability, particularly evident in classical machine learning models as the deep learning models has a
known difficulty for statistical inference. The results on the PCA transformed three different RSFCs are thoroughly
discussed.

On the top of several machine learning models such as LR, LSVC, KSVC, RFC, GBC, our exploration extended
to LSTM and GRU models, encompassing a range of hyperparameter values. The most straightforward model with
the highest accuracy was ultimately selected. Both LSTM and GRU models were equipped with a drop-out strategy
to prevent overfitting. Comparatively, the GRU model applied to PCA-transformed Pearson’s RSFC data exhibited
superior performance, significantly enhancing accuracy and sensitivity. Meanwhile, LSTM models applied to the
same data excelled in specificity and AUC scores. It’s noteworthy that there is no statistically significant difference
between the results of LSTM and GRU models; both outperform other models assessed in this study. On the other
hand, the KSVC with linear kernel on the features obtained by Pearson’s RSFC remains promising as it is simple
enough for statistical inference and has an acceptable performance. We gain an insights on the important brain
regions contributing to identify the differences between players. In our experiment, the KSVC with linear kernel
emerges as the top competitor to the LSTM/GRU model among all the compared models capable of statistical
inference.

Our work has some limitations. Since the sample size is small, the overall performance scores may depend on
the split of the data set. In addition, the LSTM/GRU neural network expects to have a decent sample size to learn
the value of the parameters. Since our sample size is small, the model performance is mediocre. Since this is a
binary classification problem between healthy groups, there may not be a significant difference in the functional
connectivity between the groups. From the analysis of performance metrics, it does not seem easy to classify these
two groups. Exploring the new state of art attention based models, hybrid classification techniques, implementing
various global optimizers and local optimizer in the model, applying other dimension reduction techniques such as
independent component analysis, autoencoders and manifold learning methods is a matter of future work.
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