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Abstract This paper presents a solution method for the optimal power flow (OPF) problem in direct current (DC) networks.
The method implements a master-slave optimization that combines a whale optimization algorithm (WOA) and a numerical
method based on successive approximations (SA). The objective function is to reduce the power losses considering the set
of constraints that DC networks represent in a distributed generation environment. In the master stage, the WOA determines
the optimal amount of power to be supplied by each distributed generator (DG) in order to minimize the total power losses in
the distribution lines of the DC network. In the slave stage, the power or load flow problem is solved in order to evaluate the
objective function of each possible configuration proposed by the master stage. To validate the efficiency and robustness of
the proposed model, we implemented three additional methods for comparison: the ant lion optimizer (ALO), a continuous
version of the genetic algorithm (CGA), and the algorithm of black hole-based optimization (BHO). The efficiency of
each solution method was validated in the 21- and the 69-node test systems using different scenarios of penetration of
distributed generation. All the simulations, performed in MATLAB 2019, demonstrated that the WOA achieved the greatest
minimization of power losses, regardless of the size of the DC network and the level of penetration of distributed generation.
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1. Introduction

It has been demonstrated that the regions that have access to electricity experience greater economic development,
which translates into better living conditions for their inhabitants [1]. Therefore, in recent years, technological
development and worldwide energy, economic, and environmental issues have created the need to explore new
power generation technologies that can supply electrical energy safely and reliably to all end users.

Acknowledging this need, several authors have sought to promote and develop clean generation technologies
that can satisfy current energy needs and reduce the environmental impact by implementing renewable energy
resources [2–4]. In addition to their main advantage (i.e., the reduction of generation based on fossil fuels and, thus,
energy production costs and the environmental impact), correctly locating and sizing clean technologies can have
a positive impact on different technical indicators, such as power losses, voltage stability, and service interruptions

∗Correspondence to: Jhon Montano (Email: jhonrojas7420@correo.itm.edu.co). Department of Electronic Engineering, Instituto
Tecnológico Metropolitano. Calle 54A No. 30-01, Barrio Boston, Medellı́n, Colombia (050013).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2024 International Academic Press
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[5–8]. However, although multiple papers have addressed the optimal location of distributed generators in electrical
networks, such optimal location is usually just a dream in real life because, due to the geographic, climate, and
technical conditions of the region, the location of the generation devices is pre-established or fixed by the network
designer or operator, which is the case examined in this study.

In addition to the research into distributed generation based on renewable energy sources that was mentioned
above, in recent years, several authors have focused their work on DC networks to develop energy distribution
systems in isolated as well as grid-connected networks [9–12]. This is due to the multiple advantages of DC
networks with respect to their AC counterparts: elimination of the analysis of reactive, less complex design and
set-up, and easy adaptation of energy resources (e.g., photovoltaic generators and batteries) [13].

Due to the importance of DC networks and adequately sizing the distributed generators (DGs) in them, different
papers have addressed this problem. For instance, the case in [14] proposed the formulation of second-order
cone programming to size distributed generators in an isolated DC network, and the objective function was the
minimization of power losses. Using the same objective function, Montoya et al. [15] proposed a convex quadratic
model to solve the OPF problem in DC networks and employed 10- and 21-node test systems to demonstrate
the efficiency of their methodology. The Linprog function of MATLAB was also used to find the optimal size of
generators distributed in a DC network in India [16]; in that paper, the objective function was the reduction of the
operating and investment costs of microgrids. The issue in the previously mentioned studies is that their authors
employed specialized software to solve the OPF problem, which increases the complexity and costs associated with
the implementation and acquisition of the tool.

In order to eliminate the implementation of specialized software to solve the mathematical formulation
that represents the problem of optimal sizing of generators in DC networks, several solution strategies based
on sequential programming have been proposed in recent years. They have mainly employed metaheuristic
optimization techniques. This is the case in [17], where a black-hole-based optimization algorithm was used to size
distributed generators in DC networks. In that study, the authors employed the 21- and 69-node systems proposed
in the specialized literature to validate planning and operation strategies of DC networks [18]. Additionally,
they evaluated three different maximum penetration levels of distributed generation to assess the effect of such
technology on this type of networks. In [19], the authors used a hybrid strategy that combines a continuous version
of the genetic algorithm and the Gauss–Seidel numerical method to solve the problem of optimal sizing of DGs
in DC networks; the objective function there was to reduce the power losses associated with energy transport.
Particle swarm optimization has also been used in [20] to solve the problem of optimal sizing of DGs in DC
networks; the objective function there was to reduce the operating costs, which are directly affected by power losses
associated with energy transport. Likewise, multiple studies in recent years have aimed to improve the technical
conditions of DC networks (mainly focused on the reduction of power losses) by means of an optimal sizing of
the distributed generators in the network [21,22]. All these efforts have been oriented toward enhancing the impact
of the proposed methodology in terms of the quality of the solution (objective function). For that purpose, the
authors have compared their methodologies with others reported in the literature in different test scenarios in order
to demonstrate the efficiency and robustness of their specific solution methodology.

DC networks are important, and solution strategies based on sequential programming should be proposed to
avoid the use of commercial software and have a positive impact on the technical aspects of these networks by
means of the optimal sizing of the distributed generation in them. For that purpose, this study proposes a master-
slave strategy: in the master stage, the whale optimization algorithm (WOA) solves the problem of sizing the
generators; and, in the slave stage, a numerical method based on successive approximations solves the power flow
problem. The objective function is to reduce the power losses associated with energy transport. In order to validate
the efficiency and robustness of the methodology proposed here, we used 21- and 69-node test systems, as well as
three levels of maximum penetration of distributed generation: 20%, 40%, and 60% of the power supplied by the
slack generator in a scenario without distributed generation. Additionally, the ant lion optimizer (ALO), the black
hole-based algorithm (BHO), and the continuous genetic algorithm (CGA) were used for comparison purposes due
to their excellent results reported by other authors regarding the problem addressed here. The simulation results
obtained in this study demonstrate that the WOA reaches the highest levels of reduction of power losses at different
levels of DG penetration and network sizes.
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This article is organized as follows. Section 2 presents the mathematical formulation of the optimal power flow
problem in DC networks, whose objective function is to reduce power losses. Section 3 details the proposed
methodology, which is based on a master-slave strategy that combines the WOA and SA. Section 4 describes
the test systems and the parameters of the four optimization algorithms used in this study. Section 5 reports the
simulation results with their respective analysis. Finally, Section 6 highlights some final remarks, conclusions, and
future work derived from this study.

2. Mathematical Formulation

The optimal power flow (OPF) problem is defined by a set of equations and constraints associated with the power
flow in DC networks [14, 15, 19, 23] that can be used to determine the optimal size of DGs while reaching the
desired values in an objective function. Such values are established by the network operator or owner by selecting
the power levels in the DGs; in this case, they are aimed at reducing the power losses associated with energy
transport in the electrical power system (Ploss). The following is the mathematical formulation of the problem
addressed in this study:

2.1. Objective Function

In this specific case, the objective function is to reduce the power losses related to power transmission. The
mathematical representation of that function is Equation (1).

minPloss = vTGLv (1)

where v is the vector that contains all the voltage profiles calculated using the power flow, and GL denotes the
matrix that represents the conductivity effects of each line.

2.2. Constraints

The constraints employed in this mathematical formulation are associated with the operation of DC networks in an
environment of distributed generation, and they are represented by the following equations:

Pg + PDG − Pd = D(v)[GL +GN ]v (2)

Pmin
g ≤ Pg ≤ Pmax

g (3)

Pmin
DG ≤ PDG ≤ Pmax

DG (4)

V min ≤ v ≤ V max (5)

1T (PDG − αPg) ≤ 0 (6)

The interpretations and components of Equations (2) to (6) are the following. Equation (2) represents the
global power balance of the network, where Pg, PDG, and Pd denote the power generated by the slack node,
the power supplied to the network by the DGs, and the power demanded by the loads at the network nodes,
respectively. Additionally, D(v) is defined as a positive symmetric matrix whose diagonal contains the nodal
voltages of the system; GL and GN represent the conductances of the lines and resistive loads connected to the
microgrid, respectively. The capacity of the slack node and the DGs to generate power is established in Equations
(3) and (4), where Pmin

g and Pmax
g denote the minimum and maximum power the slack node can supply to the

network. Likewise, Pmin
DG and Pmax

DG define the minimum and maximum power the DGs can supply. Equation (5)
presents the voltage regulation limits, where V min and V max are the minimum and maximum allowable voltages.
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Finally, Equation (6) defines the maximum allowable penetration of DGs (MGD), where α represents the allowable
penetration percentage with respect to the power generated by the slack node.

min z =



ploss + β1OnesTmax{0, v − V max}
+β2OnesTmin{0, v − V min}
+β3OnesTmax{0, pg − Pmax

g }
+β4OnesTmin{0, pg − Pmin

g }
+β5OnesTmax{0, pDG − Pmax

DG }
+β6OnesTmin{0, pDG − Pmin

DG }
+β7max{0, OnesT pDG −MGD)}


(7)

Finally, in order to ensure that all the constraints mentioned above were satisfied, we employed the adaptation
function (z) in Eq. 7 to find the optimal size of the distributed generators. Such function penalizes the objective
function if a constraint is violated. In it, β1 to β7 are penalty factors equal to 1000 in order to force the optimization
methods to meet all the constraints of the problem addressed in this study; such values are obtained in an heuristic
manner. In addition, OnesT is a transposed vector of ones that enables the sum of the various penalties inside the
adaptation function. Importantly, when all the constraints are satisfied, all the penalty factors should be nulled by
max{·} and min{·} functions, which, in that case, makes z equal to Ploss.

3. Proposed Methodology

Equations (2) to (6) in Section 2, which represent the problem addressed in this paper, require the application of
nonlinear methods to find a solution. In that sense, this paper proposes a two-stage master-slave methodology
to solve the optimal power flow problem in DC networks. The master stage is responsible for finding the
optimal power injection of the DGs using the WOA, while the slave stage evaluates the z of the different power
configurations proposed by the master stage using SA. The following is a description of the master-slave (WOA-
SA) methodology proposed in this study:

3.1. Master Stage: Whale Optimization Algorithm

The WOA is inspired by the behavior of humpback whales and fish herds [24]; more specifically, it is based on
the hunting method of such whales, called bubble-net, which consists of creating a spiral surrounding the pray to
direct it to the surface. The whales follow the most successful hunters and converge at the location where most
pray can be found. This behavior can be modeled mathematically and, thus, used as an optimization method. The
following subsection presents the stages we followed for the computational development and to find a solution to
the OPF problem in DC networks using WAO.

3.1.1. Generation of the initial population To generate the initial population of whales, (MWhales), and its
respective location in the solution space, this paper proposes a population of size nxd, where ”n” denotes the
rows that represent the number of whales (possible solutions to the problem) and ”d” denotes the columns that
represent the location of the whales in said space (which is related to the number of variables in the problem to be
solved). In Equation (8), Wn is the n-th whale in the MWhales matrix. In this specific case (i.e., optimal power flow
in DC networks), the number of columns is the number of nodes with DGs (different from the slack node) installed
in the electrical network, and the value assigned to them in each row indicates the power level to be injected by
each distributed generator.
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The values of each column in every individual (whale) in the population are assigned randomly at the first
iteration of the algorithm, respecting the maximum and minimum limits that constrain each variable in the problem.
In this case, we used the maximum and minimum power limits established for the DGs.

MWhales =



W1,1 W1,2 · · · · · · W1,d

W2,1 W2,2 · · · · · · W2,d

...
...

...
...

...
...

...
...

...
...

Wn,1 Wn,2 · · · · · · Wn,d


=



W1

W2

...

...
Wn


(8)

3.1.2. Calculation of the objective function To assess the impact of all the possible solutions contained in
MWhales, we evaluate the adaptation function of each whale Wi (aptitude function). Subsequently, each one of
the values obtained are stored in a matrix of size nx1 called MOWhales. In this case (i.e., the OPF problem),
we evaluate the power levels proposed by each whale, thus obtaining the level of the adaptation function, which
defines the power loss levels associated with every possible solution and the penalties for constraint violations (if
they occur).

MOWhales =


f ([W1,1,W1,2, · · · ,W1,d])

f ([W2,1,W2,2, · · · ,W2,d])

...
f ([Wn,1,Wn,2, · · · ,Wn,d])

 (9)

Additionally, the row (Wi) that offers the best solution in the MWhales matrix is selected as the incumbent
solution to the problem. The resulting value of the objective function and the configuration of values that compose
it are stored.

3.1.3. Evolution of whale position using upward-spirals The WOA implemented here uses an iterative process
in which, at each iteration, a new spiral bubble-net is generated; this enables the search agents (i.e., the whales)
to explore the search space. To simulate this behavior, the whales can move forward adopting two methods. The
first method is a shrinking encircling mechanism that can be used to update the whales’ position based on the best
whale (i.e., the incumbent solution) or a random whale. The second method is the upward spiral, which aims to
attract the pray to the whale. The method is selected based on the probability of p. If p is under 50%, the shrinking
encircling mechanism is selected; otherwise, spiral updating position is used. The following is a description of
these two mechanisms.

Shrinking encircling mechanism: This method employs a selection factor (A), which, based on its value
calculated at each iteration, forces the whale population to move to the incumbent solution or a random position,
which enables such method to escape from local optima.

A = (2 ∗ a ∗ r)− a (10)

The A factor is calculated by reducing the value of a in (10) from 2 to 0. Such value changes as a function of the
total number of iterations of the algorithm, as shown in 11, where IMax denotes the maximum number of iterations,
and I is the current iteration. Additionally, A is calculated as a function of an r value, which is a random number
in the [0, 1] range.

a = 2− 2 ∗ (I/IMax) (11)

When |A| ≥ 1, the movement of the whales evolves as a function of variable D (see 12), which determines a
new random position from the current whale position. The A factor is also used to force the agents to search away
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from the reference whale. In Equation 13), Wrand denotes a randomly chosen whale; r, a random value in the [0,1]
range; and Wt, the whale at the current iteration.

D = |2 ∗ r ∗Wrand −W (t)| (12)

W (t+ 1) = Wrand −A ∗D (13)

In turn, when |A| < 1, the movement is defined by (14), which calculates a new position between the whale at
the current iteration and the current incumbent solution. The position of each whale is updated using (15), where
Wbest is the position of the whale associated with the incumbent, the A factor enables a greater exploitation of the
search space taking the best search agent as a reference point, and t denotes the current iteration.

D = |2 ∗ r ∗Wbest(t)−W (t)| (14)

W (t+ 1) = Wbest(t)−A ∗D (15)

Spiral updating position: The search agents can also be updated by means of the spiral mechanism, which
consists of calculating the distance between the prey and the whale using (16) to generate a helix-shaped movement
from the whale’s position to that of the prey (the current incumbent solution). This imitation of the spiral motion
of humpback whales is mathematically formulated in (17).

D′ = |Wbest(t)−W (t)| (16)

W (t+ 1) = D′ ∗ ebl ∗ cos(2π(l)) +W (t) (17)

where b is a constant used to define the shape of the logarithmic ellipse, and l is a random number in the [−1, 1]
interval.

At the end of each iteration and after MWhales has been calculated, we should verify that the Whales respect
the constraints established for the problem examined here. Thus, if a constraint is violated, the objective function
of each whale is penalized using the adaptation function proposed in (7). Afterward, MOWhales is updated with
the new population, and the incumbent is updated as well. This process is repeated until the stopping criteria
established for the problem addressed here are met.

3.1.4. Stopping criteria We used two stopping criteria for the master stage:

• The master stage will end after n consecutive iterations in which the incumbent solution is not updated. In
other words, the process finishes when the objective function reaches a certain number of iterations (non-
improvement counter) without finding a better solution to the problem.

• The computational analysis ends when the optimization algorithm reaches the maximum allowable number
of iterations for such algorithm. Iterations are recorded using a counter in the algorithm.

3.2. Slave stage: Successive Approximations (SA)

The slave stage can calculate the objective function and the feasibility of each possible solution (Whales) proposed
by the master stage. In other words, the slave stage calculates the electrical variables needed to estimate the power
losses of the system, which represent the objective function in this paper, as well as the set of constraints associated
with the problem. However, as this process requires an iterative method to solve the power flow (PF) problem in
DC networks, this study proposes an iterative solution based on successive approximations (SA) [25]. The latter
was selected due to its excellent results, reported by the authors, in terms of convergence and processing times. The
SA method solves the PF problem using

Gddvd = −D−1
d (vd)Pd −Gdgvg (18)
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where Gdd is a positive symmetrical matrix that contains the conductance of the lines connecting nodes and the
resistive loads of the electrical power system, except for the slack node; and Vg and Vd are the voltage profile in the
(slack) generators and the demand nodes, respectively. By means of a mathematical development applied to (18),
we can obtain the equation that can be used to calculate the nodal voltages in the demand nodes:

vd = −G−1
dd [D

−1
d (vd)Pd +Gdgvg] (19)

Applying an iterative process, we can obtain the Vd voltage profiles with an almost null convergence error. For
this purpose, we should add a counter, i.e., t, in (19), thus obtaining:

vt+1
d = −G−1

dd D
−1
d (vtd)Pd +Gdgvg, (20)

Algorithm 1 presents the pseudocode of the master-slave methodology proposed here, which combines the WOA
and SA to efficiently solve the problem of optimal sizing of DGs in DC networks.

Algorithm 1 Hybrid WOA-SA optimization algorithm
1: Load network data.
2: Initialize the parameters of the algorithms.
3: Generate initial population of whales (MWhales).
4: Calculate the adaptation function employing the slave stage (MOWhales).
5: Select the incumbent solution (Wbest).
6: while t < Maximum iterations do
7: for Each search agent do
8: Calculate A, a, l, and p.
9: if p < 0.5 then

10: if |A| < 1 then
11: Update the position of the current search agent using (15).
12: else if |A| ≥ 1 then
13: Randomly select a search agent (Wrand).
14: Update the position of the current search agent using (13).
15: end if
16: else if P ≥ 0.5 then
17: Update the position of the current search agent using (17).
18: end if
19: end for
20: Calculate the adaptation function using SA.
21: Update the incumbent solution.
22: t=t+1.
23: end while

4. Test systems and parameterization

This section details the test systems, their parameters, and test scenarios proposed in this study to validate the
efficiency of the WOA to solve the problem of optimal sizing of distributed generators in DC networks.

5. Test systems

This section describes the 21-node [18] and 69-node [6] DC test systems used in this study. The two have
been widely implemented in the literature to validate methodologies to plan and operate DC networks [26, 27].
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Both systems were modified to have only load nodes in them (generation nodes other than the slack node were
eliminated); for that purpose, the generation values in the original systems were transformed into loads in the
systems employed here. Finally, the location of the distributed generators in the 21- and 69-node systems was
calculated based on locations recommended in the specialized literature, which are described below.

5.1. 21-node test system

Figure 1 shows the electrical diagram of the first system, composed of 21 nodes and 20 lines; and Table 1 lists the
data that represent its nodal interconnections, the resistances in the lines, and the power demanded at each node.
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20

21

Gen slack (v)

Figure 1. 21-node system

The voltage and base power in this system are 1 kV and 100 kW, respectively. In the case without distributed
generators in the system (base case), the power generated by the slack node is 581.6 kW, and the power demand is
554 kW, which generates 27.603 kW of power losses. Finally, the distributed generators in this system are located
at nodes 9, 12, and 16 [17]; they will be sized later.

From To R [pu] P [pu] From To R [pu] P [pu]
1(slack) 2 0.0053 -0.70 11 12 0.0079 -0.68

1 3 0.0054 0 11 13 0.0078 -0.10
3 4 0.0054 -0.36 10 14 0.0083 0
4 5 0.0063 -0.04 14 15 0.0065 -0.22
4 6 0.0051 -0.36 15 16 0.0064 -0.23
3 7 0.0037 0 16 17 0.0074 -0.43
7 8 0.0079 -0.32 16 18 0.0081 -0.34
7 9 0.0072 -0.80 14 19 0.0078 -0.09
3 10 0.0053 0 19 20 0.0084 -0.21
10 11 0.0038 -0.45 19 21 0.0082 -0.21

Table 1. Electrical parameters of the 21-node system

5.2. 69-node test system

Figure 2 shows the second test system, which comprises 69 nodes and 68 connection lines; and Table 2 presents
its nodal interconnections, the resistances in the lines, and the power demanded at each node. The 69-node system
reported in [6] originally operated in AC. However, in this study, we adapted it to DC by eliminating the reactive
components form the lines and the loads in the system. For that purpose, we used a base voltage of 12.66 kV and a
base power of 100 kW.

We also considered a base case without distributed generators in the electrical power system. In said case, the
power generated by the slack node is 4043.1 kW, and the power demand is 3889.25 kW, which generates 153.85
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slack

D C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51

52

28 29 30 31 32 33 34 35

Figure 2. 69-node system

kW of power losses. Finally, the distributed generators in the 69-node system are located at nodes 26, 61, and
66 [6].

From To R [Ω] P [kW] From To R [Ω] P [kW]
1 2 0.0005 0 3 36 0.0044 -26
2 3 0.0005 0 36 37 0.0640 -26
3 4 0.0015 0 37 38 0.1053 0
4 5 0.0215 0 38 39 0.0304 -24
5 6 0.3660 -2.6 39 40 0.0018 -24
6 7 0.3810 -40.4 40 41 0.7283 -102
7 8 0.0922 -75 41 42 0.3100 0
8 9 0.0493 -30 42 43 0.0410 -6
9 10 0.8190 -28 43 44 0.0092 0
10 11 0.1872 -145 44 45 0.1089 -39.2
11 12 0.7114 -145 45 46 0.0009 -39.2
12 13 1.0300 -8 4 47 0.0034 0
13 14 1.0440 -8 47 48 0.0851 -79
14 15 1.0580 0 48 49 0.2898 -384
15 16 0.1966 -45 49 50 0.0822 -384
16 17 0.3744 -60 8 51 0.0928 -40.5
17 18 0.0047 -60 51 52 0.3319 -3.6
18 19 0.3276 0 9 53 0.1740 -4.35
19 20 0.2106 -1 53 54 0.2030 -26.4
20 21 0.3416 -114 54 55 0.2842 -24
21 22 0.0140 -5 55 56 0.2813 0
22 23 0.1591 0 56 57 1.5900 0
23 24 0.3463 -28 57 58 0.7837 0
24 25 0.7488 0 58 59 0.3042 -100
25 26 0.3089 -14 59 60 0.3861 0
26 27 0.1732 -14 60 61 0.5075 -1244
3 28 0.0044 -26 61 62 0.0974 -32
28 29 0.0640 -26 62 63 0.1450 0
29 30 0.3978 0 63 64 0.7105 -227
30 31 0.0702 0 64 65 1.0410 -59
31 32 0.3510 0 65 66 0.2012 -18
32 33 0.8390 -10 66 67 0.0047 -18
33 34 1.7080 -14 67 68 0.7394 -28
34 35 1.4740 -4 68 69 0.0047 -28

Table 2. Electrical parameters of the 69-node system

5.3. Comparison of methods

In order to validate the efficiency of the methodology proposed in this paper in terms of the quality of the solution
(i.e., power loss reduction), we employed three other master-slave methodologies that can also be used to optimally
size DGs. Such methodologies implement three different continuous solution methods in the master stage: (1) the
ant lion optimizer (ALO) [28], which is a technique based on the way antlions hunt, i.e., they dig cone-shaped
holes in the ground to catch their prey; (2) the continuous genetic algorithm (CGA) [29], which is based on the
genetic process of living beings, who store the information of learned evolutions and share it with the following
generations; and (3) Black Hole Optimization (BHO) [17], which uses the interaction between stars and black holes
to offer a solution to the problem.
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Nevertheless, the slave stage of all these methodologies (including the one proposed in this paper, i.e., WOA-SA)
employs successive approximations to solve the load or power flow problem [19]. This method is implemented due
to its high efficiency, in terms of convergence and processing times [25], and in order to make a fair comparison
between the proposed methodology and its three counterparts.

Each method was tuned in order to obtain the best possible response in terms of objective function for each
test system, which was possible by implementing the particle swarm algorithm proposed in [6]. More specifically,
several parameters were tuned in the techniques: population size ([2–100] range), number of iterations ([1–1000]
range), and number of non-improvement iterations ([1–1000] range). In particular for WOA, we also tuned
parameter b, which is a constant used to define the spiral shape, employing a [-1,1] range. Table 3 presents the
parameters found for each methodology discussed in this document.

21-node test system
Method WOA ALO CGA BHO

Number of
particles 65 79 52 67

Stopping
criteria

Maximum
iterations:

(969)

Maximum
iterations:

(769)

Maximum
iterations:

(592)

Maximum
iterations:

(317)

Non-improvement
iterations:

(462)

Non-improvement
iterations:

(441)

Non-improvement
iterations:

(346)

Non-improvement
iterations:

(317)
Constant b to

define the spiral 0,072195 - - - - - - - - -

69-node system
Method WOA ALO CGA BHO

Number of
particles 33 77 40 35

Stopping
criteria

Maximum
iterations:

(814)

Maximum
iterations:

(182)

Maximum
iterations:

(622)

Maximum
iterations:

(566)

Non-improvement
iterations:

(151)

Non-improvement
iterations:

(182)

Non-improvement
iterations:

(443)

Non-improvement
iterations:

(566)
Constant b to

define the spiral 0,67984 - - - - - - - - -

Table 3. Parameters of the continuous methods employed in the master stage

Additionally, in order to evaluate the robustness of the methodology proposed here, we considered three MGD
levels applied to each one of the test systems described above: 20%, 40%, and 60% of the power generated by
the slack node in the base case. The objective of this step was to evaluate the impact of the distributed generation
on the DC networks. Importantly, we allowed a single generator or the group of three generators to reach the
MGD. Therefore, the minimum power limit of each generator was 0 W, and the maximum level was equal to the
penetration limit established for each case (20%, 40%, or 60% of the slack power), as long as a single generator
was injecting power to the system. Finally, the voltage limits of the test systems were +/- 10% of the nominal
voltage of each system.

6. Simulations and results:

The computational analysis was conducted on a computer with a 3-GHz Intel Xeon CPU ES 1660 processor, 16
GB of RAM, a 2.5-inch 480-GB SATA solid state drive, and Windows 10 PRO as the operating system. The
programming environment was Matlab ® 2019a.

Tables 4 and 5 present the results of applying the previously described solution methods to the test systems in
each scenario. In said tables, the five columns show, respectively, (1) the solution method; (2) the power injected
by each DG installed in the system; (3) the minimum Ploss and the percentage of reduction with respect to the
base case; (4) the mean Ploss and the percentage of reduction with respect to the base case; and (5) the standard
deviation of each method.
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6.1. 21-node system

Table 4 reports the results of each methodology in the 21-node system under the test scenarios employed here. To
highlight the impact of the proposed methodology (i.e., WOA) with respect to its counterparts, Figures 3 and 4
show their differences in the reduction of average and minimum power losses.

21-node system

Method Node/
Power [KW]

Power losses
Minimum [KW]/

Reduction [%]
Mean [KW]/

Reduction [%] STD [%]

20 % penetration

WOA
9 / 0.02889

12 / 19.0913
16 / 97.2265

13.1829 /
52.2357

13.2263 /
52.0787 0.2395

ALO
9 / 0

12 / 17.9859
16 / 98.2914

13.2173 /
52.1112

14.3063 /
48.1656 4.2884

CGA
9 / 0.07409
12 / 17.5937
16 / 98.6018

13.1879 /
52.2178

13.2775 /
51.8933 0.2743

BHO
9 / 4.1437

12 / 11.9259
16 / 99.9939

13.2874 /
51.8571

14.1355 /
48.7845 2.4201

40 % penetration

WOA
9 / 30.2959

12 / 72.5982
16 / 129.7473

6.1209 /
77.8228

6.1632 /
77.6696 0.6894

ALO
9 / 26.3671
12 / 71.5807
16 / 134.6034

6.1350 /
77.7716

6.9399 /
74.8552 8.0726

CGA
9 / 31.2718
12 / 72.2301
16 / 129.1309

6.1213 /
77.8214

6.1473 /
77.7273 0.2319

BHO
9 / 31.1800
12 / 73.0927
16 / 128.3499

6.1218 /
77.8197

6.5473 /
76.2779 3.3612

60 % penetration

WOA
9 / 93.6394

12 / 107.2169
16 / 148.1058

2.7853 /
89.9082

2.8201 /
89.7822 1.4569

ALO
9 / 96.4746

12 / 107.3789
16 / 145.0460

2.7995 /
89.8570

3.5878 /
87.0009 15.4297

CGA
9 / 93.9940

12 / 108.1192
16 / 146.8271

2.7861 /
89.9053

2.8136 /
89.8058 0.5424

BHO
9 / 90.6167

12 / 110.0679
16 / 147.8907

2.7929 /
89.8805

3.0445 /
88.9693 4.5224

Table 4. Results in the 21-node system

In the case with 20% MGD, the WOA achieved the greatest reduction in Ploss with respect to the base case
(52.08%); that is, it outperformed the ALO, CGA, and BHO in terms of Ploss reduction by 3.91%, 0.1854%,
and 3.29%, respectively. In the case with 40% MGD, the CGA produced the largest Ploss reduction (77.72%),
outperforming the WOA by just 0.0578%; nevertheless, the WOA outperformed the BHO and ALO by 2.81% and
1.39%, respectively. Finally, in the tests with 60% MGD, the CGA was the most successful method (89.80%), only
0.0236% better than the WOA (89.7822%), which was followed by the BHO (88.96%) and ALO (87.0009%) in
the third and fourth places, respectively.

Note that the WOA produced the greatest average reduction in Ploss in the 21-node system when the results
obtained in the three test scenarios (i.e., 20%, 40%, and 60% MGD) are averaged. Such reduction in Ploss was
73.17%, which is 3.17% better than the ALO, 0.035% better than the CGA, and 1.83% better than the BHO.
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Moreover, the WOA exhibited the largest minimum reduction in Ploss in the 21-node system (73.32%) in the three
penetration scenarios with respect to the base case (see Figure 4).
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Figure 3. Mean loss reduction in the 21-node system with the WOA as the zero reference

20 % 40 % 60 %
0

0.2

0.4

0
.
1
2

5
.
1
2
·
1
0

�

2

3
.
1
·
1
0

�

3

1
.
7
9
·
1
0

�

2

1
.
4
·
1
0

�

3

2
.
9
·
1
0

�

3

0
.
3
8

3
.
1
·
1
0

�

3

2
.
7
7
·
1
0

�

2

R
ed
u
ct
io
n
of
en
er
gy
co
st
s
[%
]

ALO CGA BHO

Figure 4. Minimum loss reduction in the 21-node system with the WOA as the zero reference

6.2. 69-node system

Table 5 reports the simulation results obtained in the 69-node system with each method. As with the 21-node
system, Figures 5 and 6 show the difference in mean and minimum power losses obtained by the WOA and each
one of the methods used for comparison here.

Figure 5 presents the impact of each one of the methodologies implemented in this study on the average loss
reduction. When a 20% MGD was allowed, the method that produced the highest reduction in Ploss was the
WOA, with 62.99%, followed by the CGA, with a Ploss reduction 0.094% lower than WOA’s. BHO was in the
third place, with a Ploss reduction 3.47% lower than WOA’s; and the worst solution was offered by the ALO,
with a Ploss reduction 3.66% lower than that of the method proposed here. When a 40% MGD penetration was
allowed, the CGA was on top in terms of power loss reduction, but its solution was only 0.045% better than that
of the WOA, which was followed by the BHO (87.72%) and the ALO (87.35%). Finally, when a 60% MGD was
considered, the WOA was the most effective method for reducing power losses, with a 96.31% decrease in Ploss,
thus outperforming the ALO, CGA, and BHO by 1.912%, 0.017%, and 2.077%, respectively.
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69-node system

Method Node/
Power [KW]

Power losses
Minimum [KW]/

Reduction [%]
Mean [KW]/

Reduction [%] STD [%]

20 % penetration

WOA
26 / 0.5813

61 / 558.0062
66 / 250.0319

56.5004 /
63.2756

56.9387 /
62.9908 0.5992

ALO
26 / 2.5254

61 / 508.2167
66 / 296.4392

56.7097 /
63.1396

62.5720 /
59.3292 5.4829

CGA
26 / 1.5514

61 / 574.3403
66 / 232.7018

56.5298 /
63.2565

57.0842 /
62.8962 0.4079

BHO
26 / 6.2984

61 / 504.2485
66 / 297.2478

56.7592 /
63.1074

62.2809 /
59.5184 4.3841

40 % penetration

WOA
26 / 156.9812
61 / 1214.7037
66 / 245.5538

13.9925 /
90.9051

14.2169 /
90.7592 1.6869

ALO
26 / 160.0688
61 / 1242.8338
66 / 212.5341

14.0610 /
90.8606

19.4616 /
87.3503 18.0101

CGA
26 / 154.5390
61 / 1211.8016
66 / 250.8669

13.9947 /
90.9036

14.1477 /
90.8042 0.6015

BHO
26 / 210.5467
61 / 1163.9483
66 / 230.1891

14.6303 /
90.4905

18.8862 /
87.7243 11.5615

60 % penetration

WOA
26 / 375.0962
61 / 1588.5358
66 / 245.6686

5.5558 /
96.3888

5.5576 /
96.3876 0.0687

ALO
26 / 374.0692
61 / 1603.5921
66 / 221.6755

5.5666 /
96.3818

8.5092 /
94.4692 32.1093

CGA
26 / 376.4859
61 / 1585.8303
66 / 248.2141

5.5559 /
96.3887

5.5837 /
96.3707 0.3428

BHO
26 / 372.0270
61 / 1623.0764
66 / 208.3910

5.5758 /
96.3758

8.7425 /
94.3175 23.4198

Table 5. Results obtained in the 69-node system

As in the 21-node feeder, the proposed method (i.e., WOA) presented the best minimum reduction in Ploss in the
69-node system at all the penetration levels. Remarkably, the WOA also achieved the best mean reduction in Ploss,
i.e., 83.38%, outperforming the ALO, CGA, and BHO by 2.99%, 0.022%, and 2.86%, respectively (see Figure 6).

Finally, to determine the efficiency and robustness of the WOA to solve the problem of optimal sizing of DGs
in DC networks of different sizes, we averaged the results of each methodology in the different scenarios and
test systems considered in this paper, which are presented in Figure 7. The latter shows that the WOA achieves
the greatest reduction in minimum and average power losses. Regarding the minimum power losses found by
the methodologies, the WOA outperformed the ALO, CGA, and BHO by 0.0691%, 0.0071%, and 0.1675%,
respectively. Furthermore, the WOA produced a mean reduction in Ploss of 78.28%, which is 3.083%, 0.0285%,
and 2.346% better than that of the ALO, CGA, and BHO, respectively. This shows that the methodology proposed
in this paper can achieve the highest reduction in power losses when distributed generators are optimally sized in
DC networks of different sizes.
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Figure 5. Mean power loss reductions in the 69-node system with the WOA as the zero reference
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Figure 6. Minimum power loss reductions in the 69-node system with the WOA as the zero reference

7. Conclusions

In this paper, we proposed a WOA-SA optimization algorithm to solve the OPF problem in DC networks by means
of a master-slave methodology. The master stage uses the WOA to determine the optimal power to be injected
by each DG. In turn, the slave stage employs the power flow based on successive approximations to calculate
the impact of each solution proposed by the master stage on the objective function and the set of constraints that
define the problem. To prove the efficiency of the method proposed in this study, we used three other methods for
comparison (i.e., the ALO, CGA, and BHO) and three MGD levels as test scenarios (20%, 40%, and 60% of the
power supplied by the slack node in a no-DG configuration).

In most cases, the WOA reached the highest reduction in average Ploss, and, in all cases, the greatest decrease in
minimum Ploss. The standard deviations of this method are adequate with respect to that of the three other methods
used for comparison. Based on these results, we can conclude that the WOA-SA master-slave methodology is the
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Figure 7. Reduction of power losses for all the systems and penetration percentages

most efficient method to solve the OPF problem in DC networks of different sizes and MGD levels. Therefore, this
hybrid methodology is recommended to reduce power losses in DC networks by optimally sizing their DGs.

Future studies could use the WOA-SA methodology proposed in this article with different objective functions
that consider the reduction of the operating costs of the network and the CO2 emissions associated with fossil fuel
power generation. The WOA-SA can also be used to solve the problem of optimal location and sizing of DGs in
DC as well as AC networks.
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