
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 9, December 2021, pp 942–962.
Published online in International Academic Press (www.IAPress.org)

A New One-parameter G Family of Compound Distributions:Copulas,
Statistical Properties and Applications

Mohamed Aboraya*

Department of Applied, Mathematical and Actuarial Statistics, Faculty of Commerce, Damietta University, Damietta, Egypt

Abstract This work introduces a new one-parameter compound G family. Relevant statistical properties are derived.
The new density can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left skewed
with one peak”. The new hazard function can be “upside-down”, “upside-down-constant”, “increasing”, “decreasing” and
“decreasing-constant”. Many bivariate types have been also derived via different common copulas. The estimation of the
model parameters is performed by maximum likelihood method. The usefulness and flexibility of the new family is illustrated
by means of two real data sets.
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1. Introduction and motivation

In the last few years, huge efforts have been paid to derive many new G families using the well knowm methods.
These new G families have been used for modeling non-censored and censored real data sets in many applied
studies such as finance, econometrics, value at risk applications, insurance, biology, engineering, forecasting,
medicine and environmental sciences see , for example, Marshall and Olkin (1997) (Marshall-Olkin-G (MO-G)
family), Eugene et al. (2002) (beta generalized-G (B-G) family), Yousof et al. (2015) (transmuted exponentiated
generalized (TEG) family), Rezaei et al. (2017) (Topp Leone generated (TLG) family), Merovci et al. (2017)
(exponentiated transmuted-G (ET-G) family), Aryal and Yousof (2017) (exponentiated generalized-G Poisson
(EGGP) family), Brito et al. (2017) (Topp-Leone odd log-logistic-G (TLOLL-G) family), Yousof et al. (2017a)
(Burr X G (BX-G) family), Hamedani et al. (2017) (type I general exponential-G (TIGE-G) family), Korkmaz
et al. (2018a) (exponential Lindley odd log-logistic-G (ELOLL-G) family), Cordeiro et al. (2018) (Burr XII-G
(BXII-G) family), Hamedani et al. (2018) (extended-G (Ex-G) family), Korkmaz et al. (2018b) (Marshall-Olkin
generalized-G Poisson (MOGGP) family), Yousof et al. (2018) (Burr-Hatke-G (BH-G) family), Nascimento et al.
(2019) (Nadarajah-Haghighi-G (NH-G) family), Hamedani et al. (2019) ( type II general exponential-G (TIIGE-
G) family), Yousof et al. (2020) (Weibull G Poisson (WGP) family), Merovci et al. (2020) (Poisson Topp Leone
G (PTL-G) family), Karamikabir et al. (2020) (Weibull Topp-Leone generated (WTL-G) family), Korkmaz et al.
(2020) (Hjorth-G (Hj-G) family), Alizadeh et al. (2020a) (flexible Weibull generated (FWG) family), Alizadeh et
al. (2020b) (transmuted odd log-logistic-G (TOLL-G) family), El-Morshedy et al. (2021) (Poisson generalized
exponential G (PGE-G) family) and Altun et al. (2021) (Gudermannian generated-G (GG-G) family), among
others. In this paper we propose and study a new family of distributions using the zero truncated Poisson (ZTP)
distribution with a strong physical motivation. Suppose that a system has N subsystems functioning independently
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at a given time where N has ZTP distribution with parameter ζ. It is the conditional probability distribution of a
Poisson-distributed random variable (R.V), given that the value of the R.V is not zero (see maurya and Nadarajah
(1998)). The probability mass function (PMF) of N is given by

P (N = n) = [ζn exp (−ζ)] / (n!ζ•) |(n=1,2,...), (1)

where ζ• = 1− exp (−ζ). Note that for ZTP R.V, the expected value E(N |ζ) and variance V ar(N |ζ) are,
respectively, given by

E(N |ζ) = ζζ−1• ,

and
Var(N |ζ) =

1

ζ•

(
ζ + ζ2

)
− 1

ζ2•
ζ2.

Suppose that the failure time of each subsystem has the reciprocal Rayleigh G (“RR-G(P)” for short) family defined
by the cumulative distribution function (CDF) and probability density function(PDF) given by

HP(x)=exp

(
− 1

∇2
x,P

)
|x∈R. (2)

and

hP(x) = 2gP(x)
GP(x)

GP(x)3
exp

(
− 1

∇2
x,P

)
, x ∈ R, (3)

respectively, where

∇x,P =
GP(x)

GP(x)
|x∈R,

and P is the parameter vector of the baseline model andGP(x) = 1−GP(x) is the survival function of the baseline
model. Let Yi denote the failure time of the ith subsystem and let X = min{Y1, Y2, · · · , YN}. Due to Aryal and
Yousof (2017), Korkmaz et al. (2018), Yousof et al. (2018a), Abouelmagd et al. (2019), et al. (2019) and Yousof et
al. (2020), the conditional CDF of X given N is

F (x|N) = 1− Pr (X > x|N) = 1−
[
1−HP(x)

]N
. (4)

Therefore, the CDF of the Poisson reciprocal Rayleigh (PRR-G) family can be expressed as

FΦ(x) = ζ−1•

{
1− exp

[
−ζexp

(
− 1

∇2
x,P

)]}
|x∈R, (5)

where Ω =(ζ,P). The corresponding PDF as

fΦ(x) = 2ζ
gP(x)GP(x)

ζ•GP(x)3
exp

(
− 1

∇2
x,P

)
exp

[
−ζexp

(
− 1

∇2
x,P

)]
|x∈R. (6)

In this work, a special attention is paid to two special members called the Poisson reciprocal Rayleigh exponential
and the Poisson reciprocal Rayleigh Fréchet distributions. The new density of the Poisson reciprocal Rayleigh
exponential model can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left
skewed with one peak”. The new hazard rate function of the can be Poisson reciprocal Rayleigh exponential
model “upside-down-constant”, “increasing” and “decreasing-constant”. The new density of the Poisson reciprocal
Rayleigh Fréchet model can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left
skewed with one peak”. The new hazard rate function of the Poisson reciprocal Rayleigh Fréchet model can be
“upside-down”, “increasing” and “decreasing”. So, the family may be useful in modeling the “asymmetric right
skewed with one peak and a heavy tail” real data sets, “symmetric” real data setsand “left skewed with one peak”
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real data sets. Also, the family may be useful in modeling the real data sets which have “upside-down”, “upside-
down-constant”, “increasing”, “decreasing” and “decreasing-constant” hazard rate functions.

The new family is better than the odd Lindley family, Marshall-Olkin family, the Burr-Hatke family, generalized
Marshall-Olkin family, Beta family, Marshall-Olkin Kumaraswamy family, Kumaraswamy family, the Burr X
family and Kumaraswamy Marshall-Olkin family in modeling the bimodal right skewed relief times data set
so the new family could be considered as a good alternative to these families. The new family is better than
the Marshal-Olkin family, Generalized Marshal-Olkin family, Kumaraswamy family, beta family, Kumaraswamy
Marshal-Olkin family and Marshal-Olkin Kumaraswamy family in modeling the gauge lengths data set so the new
family could be considered as a good alternative to these families.

2. Mathematical properties

2.1. Useful expansions

Using the power series

exp (υ1) =

+∞∑
υ2=0

1

υ2!
υυ21 , (7)

the PDF in (6) can be written as

fΦ(x) = 2

+∞∑
h=0

ζ1+h (−1)
h

h!ζ•

gP(x)GP(x)

GP(x)3
exp

[
− (1 + h)

1

∇2
x,P

]
, (8)

again applying (7) to (8) we get

fΦ(x) = 2

+∞∑
h,v=0

ζ1+h (−1)
h+v

(1 + h)
v

h!v!ζ•
gP(x)GP(x)1+2vGP(x)−2v−3. (9)

If
∣∣∣υ1υ2 ∣∣∣ < 1 and υ3 > 0 is a real non-integer, the following power series holds

(
1− υ1

υ2

)υ3−1
=

+∞∑
l=0

(−1)
l

Γ (υ3)

i! Γ (υ3 − l)

(
υ1
υ2

)l
. (10)

Applying (10) to (9) we have

fΦ(x) = 2

+∞∑
h,v,l=0

ζ1+h (−1)
h+v+l

(1 + h)
v

Γ (2 + 2v) c∗

h!v!l!ζ•Γ (2 + 2v − l) c∗
gP(x)GP(x)l−2v−3, (11)

where c∗ = l − 2 (v + 1) , then

fΦ(x) =

+∞∑
v,l=0

Υv,l πc∗(x; P), (12)

where

Υv,l =

+∞∑
h=0

2ζ1+h (−1)
h+v+l

(1 + h)
v

Γ (2 + 2v)

h!v!l!ζ•Γ (2 + 2v − l) [l − 2 (v + 1)]
,

and πc∗(x; P) = c∗gP(x)
[
GP(x)

]c∗−1
is the PDF of the exponentiated-G (exp-G) family with power parameter

c∗. Equation (12) reveals that the density of X can be expressed as a linear mixture of exp-G densities. So, several
mathematical properties of the new family can be obtained from those of the exp-G distribution. Similarly, the CDF
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of the PRR-G family can also be expressed as a mixture of exp-G CDFs given by

F (x) =

+∞∑
v,l=0

Υv,l Πc∗ (x; P) , (13)

where Πc∗(x; P) = GP(x)c∗ is the CDF of the exp-G family with power parameter c∗.

2.2. Quantile function (QF) and random number generation

The QF of the R.V X, where X ∼PRR-G(ζ,P), is obtained by inverting its CDF in (5) as

Q (u) = G−1

[
1 +

√
− log

{
−1

ζ
log (1 + uζ•)

}]−1
, 0 ≤ u ≤ 1,

Simulating the PRR-G R.V is straightforward. If U is a uniform variate on the unit interval (0, 1), then the R.V
X = Q (U) follows (6).

2.3. Moments

Let Yc∗ be a R.V having density πc∗(x; P). The rth ordinary moment of X , say µ′r,X , follows from (12) as

µ′r,X = E (Xr) =

+∞∑
v,l=0

Υv,l E (Y rc∗) , (14)

where

E(Y rζ ) = ζ

∫ +∞

−∞
xr gP(x)GP(x)ζ−1 dx,

can be evaluated numerically in terms of the baseline qf QG(u) = G−1(u) as

E(Y rζ ) = ζ

∫ 1

0

uζ−1 [QG(u)]
r
du.

Setting r = 1 in (14) gives the mean of X .

2.4. Incomplete moments and mean deviations

The rth incomplete moment of X is defined by ωr,X(y) =
∫ y
−∞ xr fΦ(x)dx. We can write from (12)

ωr,X(y) =

+∞∑
v,l=0

Υv,l ωr,c∗(y),

where

ωr,ζ(y) =

∫ G(y)

0

uζ−1 [QG(u)]
r
du.

The integral mr,ζ(y) can be determined analytically for any special model with closed-form expressions for the
QG(u) or computed at least numerically for most baseline distributions. Two important applications of the first
incomplete moment are related to the mean deviations about the mean and median and to the Bonferroni and
Lorenz curves.
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2.5. Moment generating function (MGF)

The MGF of X , say MX(t) = E(exp (tX) ), is obtained from (12) as

MX(t) =

+∞∑
v,l=0

Υv,l Mc∗ (t) ,

where Mc∗(t) is the generating function of Yc∗ given by

Mζ(t) = ζ I+∞−∞(x) = ζ I+1
0 (u).

where

I+∞−∞(x) =

∫ +∞

−∞
exp (t x) gP(x)

[
GP(x)

]ζ−1
dx

and

I+1
0 (u) =

∫ 1

0

exp[tQG(u; ζ )]uζ−1du

The two integrals I+∞−∞(x) and I+1
0 (u) can be computed numerically for most base line distributions.

3. Copulas

A copula is a multivariate CDF for which the marginal distribution of each R.V is uniform on the interval [0, 1].
Copulas are used to describe the dependence between R.Vs. In this Section, we derive some new bivariate PRR
(B-PRR) type distributions using the Farlie Gumbel Morgenstern (FGM) copula (Morgenstern (1956), Gumbel
(1958), Gumbel (1960), Johnson and Kotz (1975) and Johnson and Kotz (1977)), the modified version of the FGM
copula (Rodriguez-Lallena and Ubeda-Flores (2004)), the Clayton copula, the Renyi’s copula (Pougaza and Djafari
(2011)) and finally with the Ali–Mikhail–Haq copula (Ali et al. (1987)). The Multivariate PRR (M-PRR) type is
also presented under the Clayton copula. However, many future works could allocated to the study these new
models (see also Al-babtain et al. (2020), Elgohari et al. (2020a,b), Mansour et al. (2020a-f), Ibrahim et al. (2021)
and Ali et al. (2021a,b) as examples).

3.1. FGM copula

Consider the joint CDF (J-CDF) of the FGM family with dependence parameter ς , where

Cς(υ, a) = υa (1 + ςυ•a•) |υ•=1−υ,a•=1−a,

and the two marginal function υ = F1, a = F2, ς ∈ (−1, 1) and for every υ, a ∈ (0, 1), C(υ, 0) = C(0, a) = 0 which
is “grounded-minimum” and C(υ, 1) = υ and C(1, a) = a which are “grounded-maximum”. Then,

C (υ1, a1) + C (υ2, a2)− C (υ1, a2)− C (υ2, a1) ≥ 0.

A copula is continuous in υ and a; actually, it satisfies the stronger Lipschitz condition, where

|C (υ2, a2)− C (υ1, a1) | ≤ |υ2 − υ1|+ |a2 − a1|.

For 0 ≤ υ1 ≤ υ2 ≤ 1 and 0 ≤ a1 ≤ a2 ≤ 1, we have

Pr (υ1 ≤ υ ≤ υ2, a1 ≤ a ≤ a2) = C (υ1, a1) + C (υ2, a2)− C (υ1, a2)− C (υ2, a1) ≥ 0.
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Then, setting υ• = 1− F (z1)|[υ•=(1−υ)∈(0,1)] and a• = 1− F (z2)|[a•=(1−a)∈(0,1)], we can esaily obtain the J-CDF
of the PRR using the FGM family

Cς(z1, z2) = ζ−1•1
[
1− exp

(
−ζ1%P (z1)

)]
×ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]
×
[
1 + ς

( {
1− ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)]}
×
{

1− ζ−1•2
[
1− exp

(
−ζ2%P (z2)

)]} )] ,
where

%P (z) = exp

(
− 1

∇2
x,P

)
.

The joint PDF can then be derived from cς(υ, a) = 1 + ςυ•a•|(υ•=1−2υ and a•=1−2a) or from

cς(z1, z2) = f(z1, z2) = C (F1, F2) f1f2.

3.2. Modified FGM copula

The modified FGM copula is defined as Cς(υ, a) = υa [1 + ςA (υ)C (a)] |ς∈(−1,1) or Cς(υ, a) = υa +

ςÃυC̃a|ς∈(−1,1), where Ãυ = υA (υ), and C̃a = aC (a) and A (υ) and C (a) are two continuous functions on (0, 1)
with A (0) = A (1) = C (0) = C (1) = 0. Let

a1 (υ) = inf

{
Ãυ :

∂

∂υ
Ãυ

}
|$1,υ

< 0,

a2 (υ) = sup

{
Ãυ :

∂

∂υ
Ãυ

}
|$1,υ

< 0,

c1 (a) = inf

{
C̃a :

∂

∂a
C̃a

}
|$2,a > 0,

c2 (a) = sup

{
C̃a :

∂

∂a
C̃a

}
|$2,a > 0.

Then,
1 ≤ min {a1 (υ) a2 (υ) , c1 (a) c2 (a)} < +∞,

where
0 =

∂

∂υ
Ãυ − υ

∂

∂υ
A (υ)−A (υ) ,

$1,υ =
{
υ : υ ∈ (0, 1) | ∂

∂υ Ãυ exists

}
,

and
$2,a =

{
a : a ∈ (0, 1) | ∂

∂a C̃a exists

}
.

3.2.1. Modified FGM type-I Consider the following functional form for both A (υ) and C (a). Then, the B-PRR-
FGM (Type-I) can be derived from

Cς(z1, z2) = ζ−1•1
[
1− exp

(
−ζ1%P (z1)

)]
×ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]
+ς


ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)]
×
{

1− ζ−1•1
[
1− exp

(
−ζ1%P (z1)

)]}
×ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]
×
{

1− ζ−1•2
[
1− exp

(
−ζ2%P (z2)

)]}
 |ς∈(−1,1).
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3.2.2. Modified FGM type-II Let A (υ) and C (a) be two functional form satisfying all the conditions stated
earlier where A (υ)

• |(ς1>0) = υς1 (1− υ)
1−ς1 and C (a)

• |(ς2>0) = aς2 (1− a)
1−ς2 . Then, the corresponding B-

PRR-FGM (Type-II) can be derived from Cς,ς1,ς2(υ, a) = υa
[
1 + ςA (υ)

•
C (a)

•]
. Thus

Cς,ς1,ς2(z1, z2) = ζ−1•1
[
1− exp

(
−ζ1%P (z1)

)]
×ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]
×

1 + ς


{
ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)]}ς1
×
{
ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]}ς2
×
(
1− ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)])1−ς1
×
(
1− ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)])1−ς2



3.2.3. Modified FGM type-III Let C• (υ) = υ [log (1 + υ•)] and D• (a) = a [log (1 + a•)] for all A (υ) and C (a)
which satisfy all the conditions stated earlier. In this case, one can also derive a closed form expression for the
associated CDF of the B-PRR-FGM (Type-III) from Cς(υ, a) = υa

(
1 + ςC• (υ) D• (a)

)
. Then

Cς(z1, z2) = ζ−1•1
[
1− exp

(
−ζ1%P (z1)

)]
×ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]
×

1 + ς


ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)]
×ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]
×
[
log
(
2− ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)])]
×
[
log
(
2− ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)])]

 .

3.3. Clayton copula

The Clayton copula can be considered as C(a1, a2) = [(1/a1)
ς

+ (1/a2)
ς − 1]

−ς−1

|ς∈(0,+∞). Setting a1 = F (υ)
and a2 = F (x), the B-PRR type can be derived from C(a1, a2) = C(F (a1) , F (a2)). Then

C(z1, z2) =

{ {
ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)]}−ς
+
{
ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)]}−ς − 1

}−ς−1

|ς∈(0,+∞)

Similarly, the M-PRR can be derived from

C(xl) =

(
d∑
l=1

{
ζ−1•i

[
1− exp

(
−ζi%P (zl)

)]}−ς
+ 1− d

)−ς−1

.

3.4. Renyi’s entropy copula

Using the theorem of Pougaza and Djafari (2011) where C(υ, a) = z2υ + z1a− z1z2, the associated B-PRR can be
derived from

C(z1, z2) = z2ζ
−1
•1
[
1− exp

(
−ζ1%P (z1)

)]
+z1ζ

−1
•2
[
1− exp

(
−ζ2%P (z2)

)]
− z1z2.

3.5. Ali–Mikhail–Haq copula

Under the stronger Lipschitz condition, the Archimedean Ali–Mikhail–Haq copula can expressed as

C(υ, a) = υa [1− ςυ•v•]−1 |τ∈(−1,1),
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then for any F
Φ1

(z1) = 1− υ•|[υ•=(1−υ)∈(0,1)] and F
Φ2

(z2) = 1− a•|[a•=(1−a)∈(0,1)] we have

C(z1, z2) =

{
ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)]
×ζ−1•2

[
1− exp

(
−ζ2%P (z2)

)] }
1− ς

( {
1− ζ−1•1

[
1− exp

(
−ζ1%P (z1)

)]}
×
{

1− ζ−1•2
[
1− exp

(
−ζ2%P (z2)

)]} ) .

4. Special PRR-G submodels

In this Section we will provide many new distributions based on some common base line models namely: Log-
logistic (LL), Weibull (W), Fréchet (F), Exponential (E), reciprocal exponential (RE), Lomax (Lx), reciprocal
Lomax (RLx), Rayleigh (R), reciprocal Rayleigh (RR), Burr XII (BXII), Half-logistic (HL), Standard Gumbel
(Gu), Lindley (L), Nadarajah-Haghighi (NH), Dagum (D), inverse flexible Weibull (IFW), Gumbel (Gu), Gompertz
(Gz) and reciprocal Gompertz (RGz) (see Table 1). A special attention is given to the Poisson reciprocal Rayleigh
exponential (PRRE) and the Poisson reciprocal Rayleigh Fréchet (PRRF) distributions. Figure 1 gives some plots of
the PDF of the PRRE model. Figure 2 provides different plots of the HRF of the PRRE model. Figure 3 gives some
plots of the PDF of the PRRF model. Figure 4 provides different plots of the HRF of the PRRF model. Based
on Figure 1, the new density of the PRRE model can be “asymmetric right skewed with one peak and a heavy
tail”, “symmetric” and “left skewed with one peak”. Based on Figure 2, the new hazard rate function (HRF) of
the can be PRRE model “upside-down-constant”, “increasing” and “decreasing-constant”. Based on Figure 3, the
new density of the PRRF model can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric”
and “left skewed with one peak”. Based on Figure 4, the new hazard rate function (HRF) of the can be PRRF
model “upside-down”, “increasing” and “decreasing”. Based on Figure 1 and Figure 3, the family may be useful
in modeling the “asymmetric right skewed with one peak and a heavy tail” real data sets, “symmetric” real data
setsand “left skewed with one peak” real data sets.Based on Figure 3 and Figure 4, the family may be useful in
modeling the real data sets which have “upside-down HRF”, “upside-down-constant HRF”, “increasing HRF”,
“decreasing HRF” and “decreasing-constant HRF”.
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Figure 1. Plots of the PDF of the PRRE model.

Stat., Optim. Inf. Comput. Vol. 9, December 2021



950 A NEW ONE-PARAMETER G FAMILY OF COMPOUND DISTRIBUTIONS

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

 

x

H
R

F

ζ = 1  β = 1

0.0 0.1 0.2 0.3 0.4

0
1

2
3

4
5

6

 

x

H
R

F

ζ = 10  β = 0.99

2 4 6 8 10

1
.0

1
.5

2
.0

2
.5

3
.0

 

x

H
R

F

ζ = 15  β = 0.1

Figure 2. Plots of the HRF of the PRRE model.

Table 1: New submodels based on the new PRR-G family.
No. Base line model ∇x,P Submodel
1 LL α

βx
α|β,α>0 PRRLL

2 W exp
(
xβ
)
− 1|β>0 PRRW

3 F
[
exp

(
x−β

)
− 1
]−1 |β>0 PRRF

4 E exp (βx)− 1|β>0 PRRE
5 RE

[
exp

(
αx−1

)
− 1
]−1 |α>0 PRRIE

6 Lx (1 + x)
α − 1|α>0 PRRLx

7 RLx
[(

1 + x−1
)β − 1

]−1
β>0

PRRRLx

8 R exp (αx)
2 − 1|α>0 PRRR

9 RR
[
exp

(
αx−2

)
− 1
]−1 |α>0 PRRRR

10 BXII
(
1 + xβ

)α − 1|β,α>0 PRRBXII

11 HL
{[

1−exp(−x)
1+exp(−x)

]−1
− 1

}−1
PRRHL

12 Gu (exp {exp [− (x)]} − 1)
−1 PRRGu

13 L exp (αx)
[
1+α+αx

1+α

]−1 − 1|α>0 PRRL
14 NH exp

[
(1 + αx)β − 1

]
− 1|α,β>0 PRRNH

15 HL
{[

1−exp(−αx)
1+exp(−αx)

]−1
− 1

}−1
|α>0 PRRHL

16 Da
{[

1 +
(
x
λ

)−β]α − 1
}−1
|α,β,λ>0 PRRDa

17 RFW
{

exp
[
exp

(
α
x − βx

)]
− 1
}−1 |α>0 PRRRFW

18 Gz exp {β [exp (αx)− 1]} − 1|α>0 PRRGz
19 RGz

(
exp

{
−β
α

[
exp

(
x
α

)
− 1
]}
− 1
)−1
|α,β>0 PRRRGz
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Figure 3. Plots of the PDF of the PRRF model.
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Figure 4. Plots of the HRF of the PRRF model.

5. Parameter Estimation

Here, we will consider the estimation of the unknown parameters (ζ,P) of the new G family from complete samples
by maximum likelihood method. Let z1, · · · , xn be a random sample (rs) from the PRR-G models parameter vector
Ω =(ζ,Pᵀ)ᵀ. The log-likelihood function for Ω is given by

`n(Ω) = n log 2 + n log ζ − n log ζ• +

n∑
i=1

log gP(xi) +

n∑
i=1

logGP(xi)

−
n∑
i=1

1

∇2
xi,P

− 3

n∑
i=1

logGP(xi)− ζ
n∑
i=1

exp

(
− 1

∇2
xi,P

)
.

The above log-likelihood function can be maximized numerically by using R (optim), SAS (PROC NLMIXED)
or Ox program (sub-routine MaxBFGS), among others. For confidence interval (C.I.) estimation of the parameters,
the elements of the observed information matrix J(Ω) can be evaluated numerically, where

Uζ =
∂

∂ζ
`n(Ω) =

n

ζ
− n exp (−ζ)

ζ•
−

n∑
i=1

1−

[
1− exp

(
− 1

∇2
xi,P

)]β ,
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and

UPP
=

∂

∂PP

`n(Ω) =

n∑
i=1

g
′

P(xi)

gP(xi)
−

n∑
i=1

G
′

P(xi)

GP(xi)
+ 2

n∑
i=1

q (xi)

+2 (β − 1)

n∑
i=1

q (xi) exp
(
− 1
∇2
xi,P

)
1− exp

(
− 1
∇2
xi,P

) − 3
G
′

P(xi)

GP(xi)

+2ζβ

n∑
i=1

q (xi) exp
(
− 1
∇2
xi,P

)
[
1− exp

(
− 1
∇2
xi,P

)]1−β .
where P is the number of parameters of the base line model,

g
′

P(xi) =
∂

∂PP

gP(xi),

G
′

P(xi) =
∂

∂PP

GP(xi),

and

q (xi) = ∇−3x,P
G
′

P(xi)[
GP(xi)

]2
Setting the nonlinear system of equations Uζ = Uβ = UPP

= 0 and solving them simultaneously yields the
maximum likelihood estimations (MLEs) of Ω = (ζ,Pᵀ)

ᵀ. These equations can be solved numerically using
convenient iterative method such as the Newton-Raphson type algorithms. For interval estimation of these
parameters, we can obtain the observed information matrix J

(
Ω̂
)

= ∂2`n(Ω)
∂m∂n (for m,n = ζ,V) which can be

computed numerically. Under standard regularity conditions when n→ +∞, the distribution of
(
Ω̂
)

can be

approximated by a multivariate normal N(P+1)

(
0,J

(
Ω̂
)−1)

distribution to construct approximate confidence

intervals for the parameters. Here, J
(
Ω̂
)

is the total observed information matrix evaluated at
(
Ω̂
)

. Large
sample theory for these estimators delivers simple approximations that work well in finite samples. The normal
approximation for the MLEs is easily handled numerically. Likelihood ratio tests can be performed for the proposed
family in the usual way.

6. Real data applications

In this Section we analyze two real data sets. For data the first data set (the first application), we considered the
standard one-parameter exponential distribution as our base line model and then we compare the fits of the PRRE
distribution with other competitive exponential extensions such as Marshall-Olkin exponential (MOE) (Ghitany
et al. (2005)), the odd Lindley exponential (OLE) (Almamy et al. (2018)), Moment exponential (ME) (Dara
and Ahmad (2012)), generalized Marshall-Olkin exponential (GMOE) (Chakraborty and Handique (2017)), the
Burr-Hatke exponential (BHE) (Yousof et al. (2018b)), beta exponential (BE) (Lee et al. (2007)), Kumaraswamy
exponential (KE) (Cordeiro et al. (2010)), the Burr X exponential (BXE) distribution (Yousof et al. (2017b),
Kumaraswamy Marshall-Olkin exponential (KMOE) (George and Thobias (2019)), Marshall-Olkin Kumaraswamy
exponential (MOKE) (Chakraborty and Handique (2017)) and standard exponential (E) model. However, in the
literature there are many other useful versions of the exponential distribution which can be used in comparison
such as, Poisson-exponential (PE) distribution (Cancho et al. (2011)), transmuted exponentiated generalized
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exponential (TEGE) distribution (Yousof et al. (2017a)), Burr type XII exponential (BXIIE) distribution (Cordeiro
et al. (2018)), The Burr X exponentiated exponential (BXEE) model (Khalil et al. (2019)), quasi Poisson Burr
X exponentiated exponential (QPBXEE) distribution (Mansour et al. (2020b)), generalized odd log-logistic
exponentiated exponential (GOLLEE) distribution (Mansour et al. (2020b)) and Mansour et al. (2020c)), among
others.

For data set (the second application), we considered the standard two-parameters Fréchet distribution as our
base line model and then we compare the fits of the PRRF distribution with other competitive Fréchet extensions
such as the standard Fréchet (F) distribution, Marshal-Olkin Fréchet (MOF) distribution, Generalized Marshal-
Olkin Fréchet (GMOF) distribution, Kumaraswamy Fréchet (KF) distribution, beta Fréchet (BF) distribution,
Kumaraswamy Marshal-Olkin Fréchet (KMOF) distribution and Marshal-Olkin Kumaraswamy Fréchet (MOKF)
distribution. Some details related to the these copetitive model are available in Aboraya (2018), Aboraya (2019a,b)
and Ibrahim et al. (2020).

For comparing models, we consider the Cramér-Von Mises (CM) and the Anderson-Darling (AD) and the
Kolmogorov-Smirnov (KS) statistic (and its corresponding P-value), the Akaike Information Criterion (C1),
Bayesian Information Criterion (C2), consistent Akaike Information Criterion (C3) and Hannan-Quinn Information
Criterion (C4) where

CM =

(
1 +

1

2n

)[
1

12n
+
∑n

h=1

(
zh −

2h− 1

2n

)2
]
,

AD = a(n)

(
n+

1

n

∑n

l=1
ql

)
,

C1 = −2̂̀+ 2P,

C2 = −2̂̀+ P log (n) ,

C3 = −2̂̀+
2nP

n− P− 1
,

C4 = −2̂̀+ 2P log [log (n)] ,

where
a(n) = 1 +

9

4
n−2 +

3

4
n−1,

and
ql = (2l − 1) log [zl (1− zn−l+1)] ,

where zl = F (yl), the yl’s values are the ordered observations and n is the sample size. However, other potential
goodness-of-fit statistic tests for validation such as Nikulin-Rao-Robson statistic test and the modified Nikulin-
Rao-Robson statistic test may be used (see Goual et al. (2019), Abouelmagd et al. (2019), Ibrahim et al. (2019 and
2020), Goual et al. (2020), Goual and Yousof (2020), Yadav et al. (2020) and Yousof et al. (2021)).

6.1. First application (failure times data)

The failure times data set is given in Gross and Clark (1975)). The data represents the lifetime data relating to relief
times (in minutes) of patients receiving an analgesic. This data was recently analyzed by Al-babtain et al. (2020) and
Ibrahim et al. (2020). Table 2 lists the MLEs, standard errors (SEs) and 95% C.I.s (LC.I., UC.I.). Table 3 lists the C1,
C2, C3, C4, AD, CM, K.S. and its p-value. Figure 3 gives the total time in test (TTT) plot (see Aarset (1987)) for the
relief times data along with the corresponding quantile-quantile (QQ) plot , box plot and the nonparametric Kernel
density estimation (N-KDE) plot. Based on Figure 5, the HRF of the relief times is “monotonically increasing HRF”
(top right plot) and this data has an extreme value ( see top right and bottom right plots) and its density is right
skewed and bimodal. Figure 6 gives the estimated PDF (E-PDF), estimated CDF (E-CDF), estimated HRF (E-HRF)
and P-P plot for relief times data. Based on results of Table 3 and Table 4, it is concluded that the PRRE model is
much better than the exponential, odd Lindley exponential, Marshall-Olkin exponential, moment exponential, the
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logarithmic Burr-Hatke exponential, generalized Marshall-Olkin exponential, Beta exponential, Marshall-Olkin
Kumaraswamy exponential, Kumaraswamy exponential, the Burr X exponential and Kumaraswamy Marshall-
Olkin exponential models with C1=34.86, C2=36.85, C3=35.56, C4=35.24, AD=0.146, CM=0.025, K.S=0.092 and
p-value=0.9955 so the new lifetime model is a good alternative to these models in modeling relief times data set.
According to Figures 6, the PRRE distribution provides adequate fits to the empirical functions.

Table 2: MLEs, SEs, C.I.s (in parentheses) values for the relief times data.
Models Estimates

E(β) MLE 0.526
SE (0.117)

(LC.I., UC.I.) (0.29, 0.75)
OLE(β) MLE 0.6044

SE (0.0535)
(LC.I., UC.I.) (0.5, 0.7)

ME(β) MLE 0.950
SE (0.150)

(LC.I., UC.I.) (0.66, 1.24)
BHE(β) MLE 0.5263

SE (0.118)
(LC.I., UC.I.) (0.43, 0.63)

MOE(ζ, β) MLE 54.474, 2.316
SE (35.582), (0.374)

(LC.I., UC.I.) (0, 124.21), (1.58, 3.04)
GMOE(α, ζ, β) MLE 0.519, 89.462, 3.169

SE (0.256), (66.278), (0.772)
(LC.I., UC.I.) (0.02, 1.02), (0, 219.37), (1.66, 4.68)

KE(α, ζ, β) MLE 83.756, 0.568, 3.330
SE (42.361), (0.326), (1.188)

(LC.I., UC.I.) (0.73, 166.78), (0, 1.21), (1.00, 5.66)
BE(α, ζ, β) MLE 81.633, 0.542, 3.514

SE (120.41), (0.327), (1.410)
(LC.I., UC.I.) (0, 317.63), (0, 1.18), (0.75, 6.28)

MOKE(α, a, ζ, β) MLE 0.133, 33.232, 0.571, 1.669
SE (0.332), (57.837), (0.721), (1.814)

(LC.I., UC.I.) (0, 0.78), (0, 146.59), (0, 1.98), (0, 5.22)
KwMOE(α, a, ζ, β) MLE 8.868, 34.826, 0.299, 4.899

SE (9.146), (22.312), (0.239), (3.176)
(LC.I., UC.I.) (10.9, 46.8), (0, 78.6), (0, 0.8), (0, 11.12)

BXE(ζ, β) MLE 1.1635, 0.3207
SE (0.33), (0.03)

(LC.I., UC.I.) (0.5, 1.8), (0.26,0.4)
EIBXE(ζ, β) MLE 3.0215, 0.3416

SE (1.558), (0.0336)
(LC.I., UC.I.) (0, 6), (0, 0.94)
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Figure 5. Box, TTT, N-KDE, QQ plots for the relief times data.

Table 3: C1, C2, C3, C4 for the relief times data.
Models C1 C2 C3, C4

E 67.67 68.67 67.89 67.87
OLE 49.12 50.11 49.32 49.30
ME 54.32 55.31 54.54 54.50
BHE 67.67 68.67 67.89 67.87
MOE 43.51 45.51 44.22 43.90

GMOE 42.75 45.74 44.25 43.34
KE 41.78 44.75 43.28 42.32
BE 43.48 46.45 44.98 44.02

MOKE 41.58 45.54 44.25 42.30
KMOE 42.83 46.84 45.55 43.60
BXE 48.13 50.12 48.81 48.52

PRRE 34.8562 36.85 35.56 35.24
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Table 4: AD, CM, K.S. and p-value for the relief times data.
Models AD CM K.S. p-value

E 4.60 0.96 0.44 0.004
OLE 1.33 0.22 0.85 < 0.001
ME 2.76 0.53 0.32 0.07

BHE 0.62 0.105 0.44 < 0.001
MOE 0.84 0.14 0.18 0.55

GMOE 0.51 0.08 0.15 0.78
KE 0.45 0.07 0.14 0.86
BE 0.70 0.12 0.16 0.80

MOKE 0.60 0.11 0.14 0.87
KMOE 1.08 0.19 0.15 0.86
BXE 1.39 0.24 0.25 0.17

PRRE 0.146 0.025 0.092 0.9955
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Figure 6. E-PDF, E-CDF, P-P and E-HRF for relief times data.
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6.2. Second application (gauge lengths data)

The fgauge lengths data set consists of 74 observations (see Kundu and Raqab (2009)). Table 5 lists the MLEs,
SEs confidence intervals (C.I.s) for the gauge lengths data. Table 6 lists the C1, C2, C3, C4, AD, CM, K.S.
and p-value. Figure 5 gives the total time test (TTT) plot (Aarset (1987)) for the relief times data along with
the corresponding box plot, QQ plot and the N-KDE plot. Based on Figure 7, the HRF of the gauge lengths
data is “monotonically increasing HRF” (see top right plot) and this data has no extreme observation (see top
right and bottom right plots) and its density is semi-bimodal. Figure 6 gives the E-PDF, E-CDF, E-HRF and
P-P plot for gauge lengths data. Based on results Table 5 and Table 7, it is concluded that the PRRF model
is much better than the Fréchet, Marshal-Olkin Fréchet, Generalized Marshal-Olkin Fréchet, Kumaraswamy
Fréchet, beta Fréchet, Kumaraswamy Marshal-Olkin Fréchet and Marshal-Olkin Kumaraswamy Fréchet models
with C1 =109.36, C2 =116.28, C3 =109.70, C4 =112.121, AD=0.33, CM=0.047, K.S=0.060 and p-value=0.9495
so the new lifetime model is a good alternative to these models in modeling gauge lengths data set. According to
Figures 6, the PRRF distribution provides adequate fits to the emPRRical functions.
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Figure 7. Box, TTT, N-KDE, QQ plots for the gauge lengths data.
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Table 5: MLEs, SEs, C.I.s (in parentheses) values for the gauge lengths data.
Models Estimates

F(β1, β2) MLE 4.110, 2.169
SE (0.323), (0.065)

(LC.I., UC.I.) (3.48,4.74), (2.04,2.29)
MOF(α, β1, β2) MLE 80.338, 8.031 1.419

SE (62.007), (0.764), (0.109)
(LC.I., UC.I.) (0,201.87),(6.53,9.53),(1.21,1.63)

GMOF(α, ζ, β1, β2) MLE 3.702, 63.707, 5.918, 1.577
SE (2.683), (38.655), (0.945), (0.139)

(LC.I., UC.I.) (0,8.96),(0,139.47),(4.06,7.77),(1.30,1.85)
KF(α, ζ, β1, β2) MLE 3.218,217.031,1.005,4.384

SE (1.036),(268.565),(0.223),(1.012)
(LC.I., UC.I.) (1.18,5.25),(0,743.42),(0.57,1.44),(2.40,6.37)

BF(α, ζ, β1, β2) MLE 2.039,5.857,0.242,37.179
SE (1.015),(1.813),(0.377),(33.510)

(LC.I., UC.I.) (0.04,4.02),(2.30,9.41),(0,0.98),(0,102.85)
KMOF(α, a, ζ, β1, β2) MLE 0.016, 0.827, 16.985, 0.894, 25.127

SE (0.023), (0.789), (24.975), (0.396), 19.688)
(LC.I., UC.I.) (0,0.06),(0,2.37),(0,65.93),(0.11,1.67),(0,63.72)

MOKF(α, a, ζ, β1, β2) MLE 7.995,2.933,35.707,1.221,2.415
SE (13.063),(0.825),(41.500),(0.412),(1.032)

(LC.I., UC.I.) (0,33.6),(1.31,4.6),(0,117.1),(0.41,2.03),(0.39,4.44)
PRRF(ζ, β1, β2) MLE 994.5, 8.3, 0.222

SE (10.5), (0.55), (0.25)
(LC.I., UC.I.) (973, 1015), (7.2, 9.4), (0, 0.72)

Table 6: C1, C2, C3, C4 for the gauge lengths data.
Models C1 C2 C3, C4

F 142.02 146.63 142.19 143.86
MOF 115.06 121.96 115.40 117.81

GMOF 112.80 122.00 113.37 126.48
KF 113.68 122.82 114.25 117.36
BF 112.63 121.84 113.21 116.30

KMOF 113.30 124.82 114.18 117.90
MOKF 113.19 124.68 114.07 117.78
PRRF 109.36 116.28 109.70 112.121

Table 7: AD, CM, K.S. and p-value for the gauge lengths data.

Models AD CM K.S. p-value
F 2.93 0.46 0.151 0.09

MOF 0.78 0.12 0.072 0.86
GMOF 0.39 0.07 0.065 0.94

KF 0.37 0.07 0.065 0.92
BF 0.44 0.07 0.064 0.93

KMOF 0.36 0.055 0.066 0.95
MOKF 0.36 0.055 0.063 0.94
PRRF 0.33 0.047 0.060 0.9495
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Figure 8. E-PDF, E-CDF, P-P and E-HRF plot for gauge lengths data.

7. Concluding remarks

In this work, a new one-parameter compound G family of continuous distributions is derived and studied. Relevant
statistical properties such as moments, incomplete moments and moment generating function are derived. The
density of the new family is re-expressed in terms of the exponentiated G family. The new density can be
“asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left skewed with one peak”. The
corresponding hazard function can be “upside-down”, “upside-down-constant”, “increasing”, “decreasing” and
“decreasing-constant”.

Many bivariate types have been also derived via different common copulas. The estimation of the model
parameters is performed by the maximum likelihood method. The usefulness and flexibility of the new family
is illustrated by means of two real data sets. The new family is better than the odd Lindley family, Marshall-Olkin
family, the Burr-Hatke family, generalized Marshall-Olkin family, Beta family, Marshall-Olkin Kumaraswamy
family, Kumaraswamy family, the Burr X family and Kumaraswamy Marshall-Olkin family in modeling the
bimodal right skewed relief times data set with C1=34.86, C2=36.85, C3=35.56, C4=35.24, AD=0.146, CM=0.025,
K.S=0.092 and p-value=0.9955 so the new family could be considered as a good alternative to these families.

Stat., Optim. Inf. Comput. Vol. 9, December 2021



960 A NEW ONE-PARAMETER G FAMILY OF COMPOUND DISTRIBUTIONS

The new family is better than the Marshal-Olkin family, Generalized Marshal-Olkin family, Kumaraswamy family,
beta family, Kumaraswamy Marshal-Olkin family and Marshal-Olkin Kumaraswamy family in modeling the gauge
lengths data set with C1=109.36, C2=116.28, C3=109.70, C4=112.121, AD=0.33, CM=0.047, K.S=0.060 and p-
value=0.9495 so the new family could be considered as a good alternative to these families.
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