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Abstract As a swarm-based optimization heuristic, the Ant System (AS) was proposed to deal with the Traveling
Salesman Problem (TSP). Classified as a constructive approach, AS was inspired by the ants’ social behavior.In Practice,
its implementation reveals three basic variants that exploit two operating models: a first “natural” model, where ants move
and update pheromones, with consideration of distances between towns, to define the Ant-Quantity variant, and without
considering distances for the Ant-Density variant. Or an “abnormal” second model, where ants move and delay updates until
all ants have completed a full cycle, then consider the tour length which defines the Ant-Cycle that was claimed to be the
best variant. We reload the AS and reconsider these three basic ant algorithms and their respective two models. We propose
to explore an “overlooked” third model, which consists of further expanding the “abnormal” ants’ attitude, forcing them to
move and update pheromones, simultaneously, after every single move, thus conceiving the Ant-Step model. Keeping the
option whether or not to consider distances, we propose two new AS basic algorithms: the Ant-Step-Quantity and the Ant-
Step-Density. The aim of this paper is to present and assess these two new basic AS variants in respect to the three existing
ones, specially the one considered the best, through an experimental study on various symmetric TSP benchmarks.
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1. Introduction

For a class of Combinatorial Optimization Problems (COP), the exact solution can be found using exact methods,
such as: Linear/Dynamic Programming, Simplex Method, Backtracking, Branch and Bound and Branch and Cut.
For other problems, known as NP-hard COP, an exact solution can’t be reached (either because it is unreachable
within a reasonable time or doesn’t exist at all), in this case, we just look for an approximate solution using
approximate approaches.

Without any guarantee of optimality, approximate methods use appropriate and specific exploration
(diversification) and exploitation (intensification) mechanisms to explore the problem’s search space. Some of
them deal with a single solution and are known as unique solution based methods such as: Local Search,
Simulated Annealing, Tabu Search, Variable Neighborhood Search, Iterated Local Search and Global Local Search.
Whereas others are population based, dealing with an aggregate of solutions, like: Evolutionary Algorithm, Genetic
Algorithm and Swarm Based Algorithms such as: Particle Swarm Optimization, Ant Colony Optimization, Cuckoo
Search and Grey Wolf Optimizer.

These approaches can be clustered in two categories: Constructive or Ameliorative ones. A constructive approach
starts from scratch and gradually constructs a solution or a set of solutions (such as: Ant Colony Optimization). An

∗Correspondence to: Djamel Zeghida (Email: dj.zeghida@gmail.com). Department of Computer Science, 20 Août 1955-Skikda University.
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ameliorative approach starts with a solution or a population of solutions and proposes an improved solution or a
chosen one among a set of improved ones (like: Genetic Algorithm or Grey Wolf Optimizer).

Many approaches were proposed, in literature, to tackle the Traveling Salesman Problem (TSP), as one of the
most challenging and treated NP-hard discrete COP, some methods were more efficient than others.

We can, for instance, cite the use of a Grey Wolf Optimizer [18, 29] or an Artificial Bee Colony Algorithm
[22, 6]. Some, relatively, less recent examples were presented in [17, 2] using Particle Swarm Optimization [15, 32],
Artificial Neural Network [5] and Evolutionary Computing Algorithms [33, 23]. A survey of old known approaches
can be found in [21], such as Tabu Search [19, 24, 14] and Simulated Annealing [1, 28, 16, 26].

As a constructive population-based approach, a novel heuristic, based on the social ants’ behavior, was proposed
to deal with the TSP, it was called the Ant System (AS) or the Ant Algorithm (AA) heuristic [7, 10].

Without any referential mathematical model, the AS authors [7, 10] were constrained to develop different
implementations of this Ant heuristic, generating three basic variants: Ant-Density, Ant-Quantity and Ant-Cycle
algorithms.

Based on the Ant-Cycle variant, proclaimed the best among these three basic AS implementations, many
improvements of this heuristic for TSP were proposed such as: Ant Colony System (ACS) [11], MAX-MIN Ant
System (MMAS) [30] and Rank Based Ant System (ASrank) [3] and Elitist Ant System (ASelit or EAS) [3, 10].
Other improvements were proposed to deal with other optimization domains, such as Graph Coloring [8], Quadratic
Assignment [25, 31] or Vehicle Routing [4].

However, it has been shown, recently [35, 36], that the Ant-Cycle variant can’t be proclaimed as the best among
the three basic variants any more, since other “overlooked” basic variants can exhibit better performance too.

The “premises” of such an idea come from the flowing “Naturalist” observation; How can a “biased” imitation
(the Ant-Cycle algorithm) of the natural ant behavior perform better than the “exact” imitation of nature (the Ant-
Density or Ant-Quantity algorithms)?.

According to these basic variants’ authors [7, 10], the Ant-Cycle’s “supremacy” was due to the use of “global
information” in the system. So, if we provide “global information” in the case of Ant-Density and Ant-Quantity,
for instance, it can improve their performance too.

The use of “global information” in Ant-Cycle results from the ants’ attitude to synchronize the pheromones
updates, all together, after an entire tour (a complete tour synchronization). In the case of Ant-Density or
Ant-Quantity, the use of “global information” can be performed if the ants “choose” to “wait” for the others to
update pheromones, all together, after every single move or step (a single move synchronization). Thus giving the
idea to explore a third “overlooked” choice when defining the AS basic variants.

In this paper, we define two new variants of the Ant Algorithm: the Ant-Step-Density and the Ant-Step-Quantity
Algorithms, where Ants are dotted with an efficient data disseminating mechanism to increase the system’s
reactivity.

Through Section 2, we introduce, as a background of our work, a brief overview of the application domain:
defining the Traveling Salesman Problem, and presenting the principles of the three basic algorithms of the AS
heuristic: Ant-Quantity, Ant-Density and Ant-Cycle, as proposed by Dorigo et al..

In Section 3, we present, in our style, the two models used to define the previous three basic variants.
Through Section 4, we give some comments on the basic variants, their corresponding models and algorithms.
In Section 5, we present our contribution. We signal, first, an “overlooked” choice, when commenting the Dorigo

et al.’s work. After that, we give the corresponding models and algorithms of the two proposed new methods: the
Ant-Step-Density and the Ant-Step-Quantity.

Throughout Section 6, we assess and validate our new basic variants in respect to the previous existing ones.
Section 7 concludes the paper.
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2. The Traveling Salesman Problem and the Ant Heuristic

Mostly, discrete Combinatorial Optimization Problems (COP) belong to NP-hard class problems. For this class
of problems an exact solution is out of reach, forcing the use of heuristic approaches (more details in [13]). The
Traveling Salesman Problem (TSP) may be the most famous example of these problems.

This problem consists in a traveling salesman looking for the shortest way to visit n towns without going twice
to any town, except starting and ending in the same town. When paths between any given two towns (in case of
more than one path) are equal the TSP is symmetric otherwise the problem is asymmetric.

The use of ants for symmetric TSP begins with the use of a novel heuristic based on the ants’ social behavior,
giving rise to the Ant System (AS) or the Ant Algorithm (AA) of Dorigo et al., with their three basic variants:
Ant-Density, Ant-Quantity and Ant-Cycle.

The AS heuristic [7] was always competitive and can be considered as a landmark in solving TSP. Reference [20]
presents a comparative study between Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Simulated
Annealing (SA).

Dorigo et al. [7, 11, 12] deal with a symmetric TSP with euclidean distance, and use the following notations:

• n: number of towns, m: number of ants;
• Tabulistk memorizes for Antk the towns already visited up to time t;
• dij , the euclidean distance between two towns Ti and Tj :

dij =

√
(xi1 − x

j
1)2 + (xi2 − x

j
2)2;

• The intensity of pheromone trail on Pathij at t+1, given by equation (1):

τij(t+ 1) = ρ.τij(t) + ∆τij(t, t+ 1) (1)

ρ the evaporation coefficient, at t=0, τij(0) = Qc(Initial pheromone quantity);
• ηij = 1

dij
the visibility;

• The Antk transition probability from Ti to Tj , calculated by equation (2):

P kij(t) =
ταij(t).η

β
ij∑

k∈allowedk τ
α
ik(t).ηβik

(2)

allowedk= n - Tabulistk , α and β parameters that control effect of pheromone intensity versus visibility.

3. The Exploited Ant System Models and the Three Basic Variants

In practice, and without any mathematical referential model, two choices were exploited:

• Model 1: Desynchronized updates after every single move.
• Model 2: Synchronized updates after an entire tour.

The first model generates two variants and the second one gives rise to one variant, as presented in the following
subsections.

3.1. The First Variant: Ant-Density Algorithm

Updates are performed after every single move and distances between towns aren’t considered.
Antk going from Ti to Tj leaves a Q1 units of pheromone on Pathij , between t and t+1, according to equation (3):

∆τkij(t, t+ 1) = Q1, (3)
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3.2. The Second Variant: Ant-Quantity Algorithm

Updates are performed after every single move and distances between towns are considered.
Antk going from Ti to Tj leaves a quantity Q2 of pheromone depending on the length of Pathij , between t and
t+1, according to equation (4):

∆τkij(t, t+ 1) = Q2/dij , (4)

3.3. The Third Variant: Ant-Cycle Algorithm

Updates are performed after an entire tour, it is an adaptation of the Ant-Quantity approach. The pheromone update
is not computed at every move or step but after a complete tour (n steps/moves).
If Antk goes from Ti to Tj between t and t+n, it leaves on Pathij a quantity Q3 by the length Lk of its performed
tour, according to equation (5):

∆τkij(t, t+ 1) = Q3/Lk, (5)

Equation (1), in this case, becomes:

τij(t+ n) = ρ.τij(t) + ∆τij(t, t+ n) (6)

The experimental study on several TSP benchmarks allows the Ant System authors to take the following
decisions:

• m = n;
• Qc=5, Q1=Q2=Q3= 100 (the values do not mater);
• For Ant-Density/Quantity Algorithms, the best parameters set is: α=1, β=5, ρ=0.99; the evaporation is equal

to: 1− ρ = 1− 0.99 ≈ 0, (no evaporation);
• For Ant-Cycle Algorithm, the best parameters set is: α=1, β=5, ρ=0.5; evaporation rate: 1− ρ = 1− 0.5 =

0.5, (50% evaporation);

The authors concluded that the most performing variant was the Ant-Cycle, due to the use of global information
[7, 11, 12].

4. Analysis and Comments on the Exploited Ant System Models and the Three Basic Variants

Figures 1 and 2 illustrate and depict the two models used by the three AS basic variants presented in Section 3,
respectively, the Ant-Density/Quantity and the Ant-Cycle variants.

Figure 1. Illustration of the Ant-Density/Quantity model.

The obvious observation on these three variants is the fact that the Ant-Cycle variant biases, clearly, the natural
ant’s behavior. In this case, ants carry out the updates (pheromone’s evaporation and deposit) after an entire cycle,
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using the realized tour’s length. After that, they join the start line and wait for a given next iteration, defining,
“undeliberately”, an “implicit synchronization point” (See the model Figure 2 and Algorithm 2 as a proposed
algorithm for the case).

Whereas Ant-Density and Ant-Quantity reflect the ant behavior in nature, and the latter even more; considering
the possible effect of distance on the pheromone evaporation in nature. In this first used model and for both options,
ants carry out the updates (pheromone’s evaporation and deposit) with each step, after any single move between two
towns, either taking in consideration or not the distance between towns (See the model, Figure 1 and the proposed
algorithm for the case, Algorithm 1).

Algorithm 1 (Ant-Density/Quantity Algorithm)
Initialization % t=0

For k = 1 to m % m Ant
Tabulistk[1] = Tk % Antk Start Town Tk

End For
For t = 1 to tmax % tmax iterations

Parallel % Parallel treatment
Ant Ant1 : % The first Ant

...
〈Instructions〉
...

End Ant
...
...
Ant Antk : % The kth Ant

For i = 2 to n % Perform a tour
Select Tj , % Next Town
using equation (2) % Best Pij
Tabulistk[i] = Tj % Ant moved to Tj
Update τij % Each ant alone, after any single move
using equation (1) and equation (3)/(4)

End For
End Ant
...
...
Ant Antm : % The last Ant

...
〈Instructions〉
...

End Ant
End Parallel

Get the shortest tour among the m tours
End For
Get the shortest tour among the tmax tours

So, how can the Ant-Cycle variant as a “biased” imitation, implementing an “abnormal” ant behavior perform
better than an “exact” imitation of nature realized with the Ant-Density or the Ant-Quantity variants? [35].

This “abnormal” behavior adopted by the Ant-Cycle variant, forces ants to “synchronize” the pheromone updates
after a whole cycle, all together, just before starting a next iteration (See Figure 2), such behavior, paradoxically,
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Figure 2. Illustration of the Ant-Cycle model.

increases the ants’ reactivity. Effectively this second model provides, for ants, an efficient disseminating data
process in the system by depositing, adequately, the needed data and increases consequently their reactivity.

Algorithm 2 (Ant-Cycle Algorithm)
Initialization % t=0

For k = 1 to m % m Ant
Tabulistk[1] = Tk % Antk Start Town Tk

End For
For t = 1 to tmax % tmax iterations

Parallel % Parallel treatment
Ant Ant1 : % The first Ant

...
〈Instructions〉
...

End Ant
...
...
Ant Antk : % The kth Ant

For i = 2 to n % Perform a tour
Select Tj , % Next Town
using equation (2) % Best Pij
Tabulistk[i] = Tj % Ant moved to Tj

End For
Synchronization

Update τij % All ants together, after an entire cycle
using equation (6) and equation (5)

End Synchronization
End Ant
...
...
Ant Antm : % The last Ant

...
〈Instructions〉
...

End Ant
End Parallel

Get the shortest tour among the m tours
End For
Get the shortest tour among the tmax tours
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Consequently, all improved variants of this heuristic for TSP such as: Ant Colony System (ACS) in [11], MAX-
MIN Ant System; MMAS in [30], Rank Based Ant System; ASrank in [3] and Elitist Ant System; ASelit or EAS in
[3, 10] (Table 1) gained on behalf of the Ant-Cycle model’s adequacy (Figure 2).

Table 1. Ant System ameliorated variants’ characteristics [36].

Variants Updates Frequency Ants behavior
MMAS Evaporate + A Tour Only Elitist Ants∗

Q / Lbest
ASelit Evaporate + A Tour Only Elitist Ants

Q / Lk +
σ.Q / Lbest

ASrank Evaporate + A Tour Only Elitist Ants
(σ − µ).Q / Lµ +
σ.Q / Lbest

Q: Pheromone, Lbest : Best performed tour’s length,
σ: Elitist Ant’s number, µ: Elitist Ant’s rank,
Lk: Antk tour’s length, Lµ : Antµ tour’s length.
∗: Under Upper/Lower pheromone bounds.

For most cases, the obtained results place the AS approach among the best available heuristics, which encouraged
Dorigo to propose the ACO meta-heuristic [12].
We have to highlight here that the application of an ant approach for a given problem is constrained by the following
facts and conditions [9]:

1. The problem has to be seen as a graph;
2. The emerging collective behavior is autocatalytic, it defines a positive feedback loop process: the more

pheromone trail on a path, the more it is attractive and used by ants;
3. The greedy force to construct a solution and to guide the autocatalytic process: the transition probability

between towns;
4. The satisfaction and stop criterion to avoid a pheromone trail combinatorial explosion: the tabu list.

5. The Overlooked Ant System Model and the Ant-Step Basic Variants

The use of “global information”, within the Ant-Cycle model, results from the ants’ attitude to update pheromones,
all together, after an entire tour, so, if we provide “global information” in the case of the alternative Ant-Density
and Ant-Quantity variants, it “can” improve their performance too.

Analogically, using “global information”, in the case of Ant-Density or Ant-Quantity, can be performed if the
ants “choose” to “wait” for the others to update pheromones, all together, after every single move or step, defining,
“deliberately”, an “explicit synchronization point”.

So when analyzing the two choices explored by Dorigo et al. to define their three AS basic variants, an idea
emerges to explore a third “overlooked” choice as follow:

• Model 3: Synchronized updates after every single move (See Figure 3 and Algorithm 3).

It is a “combination” of the two previous models: Model 1 and Model 2; the updates are realized after every
single move (like in Model 1), all ants synchronize together their updates (such in Model 2) either or not to
consider the distances between towns (like offered in Model 1). It generates two new basic variants, as presented
in the following subsections.
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Figure 3. Illustration of the Ant-Step-Density/Quantity model.

Algorithm 3 (Ant-Step-Density/Quantity Algorithm)
Initialization % t=0

For k = 1 to m % m Ant
Tabulistk[1] = Tk % Antk Start Town Tk

End For
For t = 1 to tmax % tmax iterations

Parallel % Parallel treatment
Ant Ant1 : % The first Ant

...
〈Instructions〉
...

End Ant
...
...
Ant Antk : % The kth Ant

For i = 2 to n % Perform a tour
Select Tj , % Next Town
using equation (2) % Best Pij
Tabulistk[i] = Tj % Ant moved to Tj

Synchronization
Update τij % All ants together, after any single move
using equation (7) and equation (3)/(4)

End Synchronization
End For

End Ant
...
...
Ant Antm : % The last Ant

...
〈Instructions〉
...

End Ant
End Parallel

Get the shortest tour among the m tours
End For
Get the shortest tour among the tmax tours
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5.1. The Fourth Variant: Ant-Step-Density Algorithm

Synchronized updates are performed after every single move and distances between towns aren’t considered.
All ants Antk going from any given Ti to Tj leave, simultaneously, a Q units of pheromone on all used Pathij ,
between t and t+1 according to equation (3).

5.2. The Fifth Variant: Ant-Step-Quantity Algorithm

Synchronized updates are performed after every single move and distances between towns are considered.
All ants Antk going from any given Ti to Tj leave, simultaneously, a quantity Q of pheromone for every unit of
length on all used Pathij , between t and t+1 according to equation (4).

Equation (1), for these cases, becomes:

τij(t+ 1) = ρ.τij(t) + ∪ki=1∆τij(t, t+ 1) (7)

Table 2 recapitulates features of the three AS basic variants presented in Section 3, and our two new proposed
ones (proposed in Section 5).

Table 2. Former and new Ant System basic variants’ characteristics [36].

Variants Updates Frequency Ants behavior
Ant-Density Evaporate + Q A Move Individualized
Ant-Quantity Evaporate + Q / dij A Move Individualized

Ant-Cycle Evaporate + Q / Lk A Tour Synchronized
Ant-Step-Density Evaporate + Q A Move Synchronized
Ant-Step-Quantity Evaporate + Q / dij A Move Synchronized
Q: Pheromone, dij : Distance (Towns Ti, Tj) , Lk: Antk tour’s length.

We recognize and agree that these new variants (Ant-Step-Density Algorithm and Ant-Step-Quantity Algorithm)
display, even “more or less”, deeper “abnormal” ant behavior, forcing the ants to “wait” every single move between
two towns, to perform, at the same time, the pheromone updates, instead of an entire cycle within the Ant-Cycle
variant (See the model, Figure 3 and the proposed algorithm for the case, Algorithm 3) [35]. To be more precise,
considering the frequency of the “abnormal” ant behavior (every single move), the Ant-Step is more “abnormal”,
but considering the waiting delay (a whole complete tour), the Ant-Cycle will be, then, more “abnormal”.

6. Experimental Validation

To validate our proposed new algorithms, we perform many executions for each variant implementation (100-500
iterations) on various symmetric TSP benchmarks.

First, we implement the previous three AS basic variants to produce Ant-Density Algorithm, Ant-Quantity
Algorithm using Algorithm 1, and the Ant-Cycle Algorithm using Algorithm 2, namely:

• A-D A: Ant-Density Algorithm.
• A-Q A: Ant-Quantity Algorithm.
• A-C A: Ant-Cycle Algorithm.

Table 3 provides a results’ synthesis of these three basic AS variants.

After that, we use Algorithm 3 to implement our two proposed variants: the Ant-Step-Density and the Ant-Step-
Quantity Algorithms. These last algorithms define the “overlooked” basic AS variants, namely:
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Table 3. Comparing performed tours’ lengths for the Ant-Density/Quantity/Cycle Algorithms on symmetric TSP benchmarks
[36].

Variants
Benchmarks A-D A A-Q A A-C A
Ulysses16.tsp 84.43 84.43 84.27
Bayg29.tsp 10810.48 10810.48 10810.48

30.tsp 28836.83 28518.71 28836.83
Att48.tsp 38689.80 40931.70 38462.74
Eil51.tsp 510.78 489.06 487.74

Berlin52.tsp 8422.98 8093.35 8093.35
Eil76.tsp 619.06 646.09 583.29
Rd100.tsp 9449.85 9531.01 9274.34
Eil101.tsp 760.58 751.89 749.59
Lin105.tsp 15946.13 16235.62 15441.64

Bold Values: Best Performed Tour’s Length.

• A-S-D A: Ant-Step-Density Algorithm.
• A-S-Q A: Ant-Step-Quantity Algorithm.

Table 4 provides a results’ synthesis of the two new proposed variants, compared to the Ant-Cycle Algorithm.

Table 4. Comparing performed tours’ lengths for the Ant-Step-Density/Quantity and the Ant-Cycle Algorithms on symmetric
TSP benchmarks [36].

Variants
Benchmarks A-S-D A A-S-Q A A-C A
Ulysses16.tsp 84.27 84.27 84.27
Bayg29.tsp 9621.14 9371.47 10810.48

30.tsp 28193.93 28535.05 28836.83
Att48.tsp 39528.07 38800.77 38462.74
Eil51.tsp 472.57 472.57 487.74

Berlin52.tsp 8172.42 8093.35 8093.35
Eil76.tsp 609.42 598.96 583.29
Rd100.tsp 8517.11 8985.40 9274.34
Eil101.tsp 758.79 731.59 749.59
Lin105.tsp 15197.88 15240.11 15441.64

Bold Values: Best Performed Tour’s Length.

The first set of tests returned the following results:

1. The Ant-Cycle Algorithm performs better than the Ant-Density / Quantity Algorithms, with 7/10 cases, less
performant in 1/10 cases and with equal performance in 2/10 cases (Table 3);

2. The Ant-Step Algorithm (with its two variants: Ant-Step-Density or Ant-Step-Quantity) performs better than
the Ant-Cycle Algorithm, in 6/10 cases, less performant in 2/10 cases and with equal performance in 2/10
cases (Table 4).

These results are a consequence of exploiting global information in the AS, by using an efficient data distribution
and availability process. That is a result of the simultaneous pheromone updates operated in a “synchronous”
manner, after every ants’ move. This process provides more efficient data, exactly when and where needed.
Consequently, it improves the information dissemination mechanisms and increases the system’s reactivity.

Another interesting outcome is the fact that the use of a synchronous ants’ updates, such as with the Ant-Cycle
Algorithm or with our new variants; Ant-Step-Density and Ant-Step-Quantity, works as a knowledge enhancement,
and has to be moderated, neither more nor less than the ant system’s need. For that, we have to evaporate the
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pheromone, allowing ants to forget part of their previous experiences. A balance has to be maintained between the
pheromone deposit and its evaporation to advantage less-used good-path, to be chosen, and to disadvantage the
used bad ones. A similar observation had been highlighted in [35], and still needs further investigations.

The pheromone evaporation in the Ant System, as defined by Dorigo et al. (Section 3), is controlled by the
evaporation coefficient, ρ, used in equation (1).

For Ant-Density/Quantity Algorithms, the best, experimentally, chosen value for the evaporation coefficient is:
ρ=0.99; the evaporation is equal to: 1− ρ = 1− 0.99≈ 0, i.e. no pheromone evaporation. For Ant-Cycle Algorithm,
the best value is: ρ=0.5; evaporate: 1− ρ = 1− 0.5 = 0.5, i.e. evaporate half the pheromone quantity (Section 3). For
Ant-Step-Density/Quantity Algorithms, the best values for the evaporation coefficient to promote the pheromone
evaporation are 0.3, 0.5 or 0.7 (Table 5).

We notice that in these three last variants, the synchronized pheromone update process provides more useful
knowledge used by ants for their choice of path. In this case, ants must forget part of their previous experience
through the evaporation process (Table 5).

On the other side, authors in [7] give some comments on what has been presented at the end of Section 4 about
the four conditions to be verified in a given problem to apply an ant approach as follow:

1. A greedy force alone will not be able to construct a solution, but any given tour of towns;
2. The autocatalytic process alone will converge in an exponential manner to a local optimum;

The greedy force proposes the best suggestions to the autocatalytic process, guiding it to converge faster to
an optimal solution. To help the greedy force to perform this important and crucial job, the pheromone trail
must be controlled by evaporation and the synchronized pheromone update process. Thus avoiding misguiding
the transaction probability (the greedy force), this confirms our previous statements.

Table 5. The AS variants and the evaporation coefficient [36].

Variants ρ Evaporation Knowledge Forget
Ant-Density 0.99 0 % Not Enhanced 0 %
Ant-Quantity 0.99 0 % Not Enhanced 0 %

Ant-Cycle 0.5 50 % Enhanced 50 %
Ant-Step-Density 0.3/0.7 70/30 % Enhanced 70/30 %
Ant-Step-Quantity 0.3/0.7 70/30 % Enhanced 70/30 %

At the end, the main contribution of our paper is:

• Defining a new AA; the Ant-Step Algorithm with its two variants: Ant-Step-Density Algorithm and Ant-Step-
Quantity Algorithm.

The performance shown by these new variants with respect to the previous claimed best one: Ant-Cycle variant,
defines a new fact, and encourages us to reconsider the use of the previously best variant in the improvement of
AA and try to use, instead, the Ant-Step Algorithms.

7. Conclusion

Our contribution takes place at an heuristic level and will have consequences at the metaheuristic one. Indeed, we
reconsider, in this paper, the Ant System heuristic through an analysis and a study leading to discover an overlooked
choice to implement the Ant Algorithms. Exploring this third choice to deal with the AS heuristic, we defined a
new alternative: the Ant-Step Algorithms.

The Ant-Step Model increases the ants’ reactivity using a data dissemination process, providing, in the system,
an efficient information availability/distribution. This process acts as a knowledge enhancement, and has to be
watched to keep a balance between attractive bad paths and less attractive good ones. This equilibrium is handled
by the evaporation process, allowing ants to forget part of their previously used data to choose the next move.
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It improves, also, the heuristic exploration mechanism of the problem’s search space to discover a more optimal
solution.

So, at the heuristic level, the main outcome of our work is the definition of new best AS basic variants: Ant-Step-
Density or Ant-Step-Quantity, which we strongly recommend and argue for their use in any improvement of the ant
algorithm, instead of the Ant-Cycle variant.

The perspective is to think about “reloading” the Ant Algorithm by considering our new model; Ant-Step
Algorithm through its two new best variants; Ant-Step-Density or Ant-Step-Quantity as an improved Computational
Model in any future application of Ant Algorithm for TSP or others NP-hard problems. These new applications
have to be assessed in respect to the existing ones. Extremely, at this metaheuristic level, the perspective will be to
give an improved version of the ACO metaheuristic.

Acknowledgement

This work was accomplished at the LISCO Laboratory and in collaboration with the LICUS Laboratory.
The authors would like to thank the DGRSDT (General Directorate of Scientific Research and Technological
Development) - MESRS (Ministry of Higher Education and Scientific Research), ALGERIA.

REFERENCES

1. E. Bonomi, and J. L. Lutton, The N-city travelling salesman problem: Statistical mechanics and the metropolis algorithm, SIAM
review, vol. 26, no. 4, pp. 551–568, 1984.

2. M. R. Bonyadi, M. R. Azghadi, and H. S. Hosseini, Population-Based Optimization Algorithms for Solving the Travelling Salesman
Problem, Travelling Salesman Problem, BoD–Books on Demand, pp. 1–34, 2008.

3. B. Bullnheimer, R. F. Hartl, and C. Strauss, A new rank based version of the Ant System. A computational study, SFB Adaptive
Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business,
1997.

4. B. Bullnheimer, R. F. Hartl, and C. Strauss, An improved ant System algorithm for thevehicle Routing Problem, Annals of operations
research, Springer, vol. 89, pp. 319–328, 1999.

5. S. S. Chen, and C. W. Shih, Solving TSP by Transiently Chaotic Neural Networks, Travelling Salesman Problem, BoD–Books on
Demand, pp. 117–134, 2008.

6. S. S. Choong, L. Wong, and C. P. Lim, An artificial bee colony algorithm with a modified choice function for the Traveling Salesman
Problem, Swarm and evolutionary computation, Elsevier, vol. 44, pp. 622–635, 2019.

7. A. Colorni, M. Dorigo, and V. Maniezzo, Distributed optimization by ant colonies, Proceedings of the first European conference on
artificial life, vol. 142, pp. 134–142, 1991.

8. D. Costa, and A. Hertz, Ants can colour graphs, Journal of the operational Research Society, Palgrave Macmillan, vol. 48. no. 3,
pp. 295–305, 1997.

9. M. Dorigo, V. Maniezzo, and A. Colorni, The ant system: An autocatalytic optimizing process, Italy: Dipartimento di Elettronica,
Politecnico di Milano, pp. 91–116, 1991.

10. M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of cooperating agents, Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, IEEE, vol. 26, no. 1, pp. 29–41, 1996.

11. M. Dorigo, and L.M. Gambardella, Ant colonies for the travelling salesman problem, BioSystems, Elsevier, vol. 43, no. 2, pp.
73–81, 1997.

12. M. Dorigo, and G. Di Caro, Ant colony optimization: a new meta-heuristic, Evolutionary Computation, CEC 99. Proceedings of the
1999 Congress on, IEEE, vol. 2, pp. 1470–1477, 1999.
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