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Abstract
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The extropy is considered to be a complementary dual of the well-known Shannon’s entropy and has wide
applications in many fields. This article discusses estimating the extropy and cumulative residual extropy of the Pareto 

distribution using the maximum likelihood and Bayesian methods. We obtain the maximum likelihood of extropies measures 

in presence of outliers. These estimators are specialized to homogenous case (no-outliers). The Bayesian estimators of both 

extropy measures are derived based on symmetric and asymmetric loss functions. The Markov chain Monte Carlo methods 

are used to accomplish some complex calculations. The precision of the Bayesian and the maximum likelihood estimates for 

both extropy are examined through simulations. Regarding results of simulation study, we conclude that the performances 

of both estimation methods improve with sample sizes. Also, Bayesian estimates of the extropy and cumulative residual 

extropy under linear exponential loss function are superior to the Bayesian estimates under the other loss functions in most 

of cases. As the exact values of extropy and cumulative residual extropy decreased, the mean squared errors and the absolute 

biases of maximum likelihood and Bayesian estimates of extropy and cumulative residual extropy decreased with number 

of outliers. The performance for the extropy and cumulative residual extropy estimates increase with number of outliers 

in almost cases. Generally, there is a great agreement between the theoretical and empirical results. Further performance 

comparison is conducted by the experiments with real data.
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1. Introduction

Pareto distribution is a well-known distribution used to model heavy tailed phenomena. It has many applications in
actuarial science, insurance risk, business failures, life testing, hydrology, finance, telecommunication, reliability
analysis, physics and engineering. The probability density function (PDF) and survival function (SF) of the Pareto
distribution with scale parameter λ and shape parameter γ are given, respectively, by

f(x; γ, λ) = γ λγ x−(γ+1) ; λ < x <∞ , γ, λ > 0 , (1)

and

F̄ (x; γ, λ) =

(
λ

x

)λ
. (2)

The estimation of the parameters of the Pareto distribution have been discussed in [1] . Comparisons of methods
of estimation for a Pareto distribution of the first kind have been considered in [2]. [3] considered the Bayesian
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survival estimation of the Pareto distribution of the second kind on failure censored data. [4] introduced Bayesian
inference for the Pareto lifetime model under progressive censoring with binomial removals. [5] discussed the
efficient estimation of the parameters of the Pareto distribution in the presence of outliers. Bayesian inference for
the Pareto lifetime model in the presence of outliers under progressive censoring with binomial removals have been
discussed in [6].
According to [5], let a set of random variables X1, X2, . . . , Xn exemplify the claim amounts of a motor insurance
company. It is considered that claims of some of vehicles (expensive/severely damaged vehicle) are β times higher
than normal vehicles. Hence, they assumed that the random variables (X1, X2, . . . , Xn) are such that any k of them
(the number of outliers) are distributed as Pareto distribution with the following PDF

g(x; Θ) = γ (βλ)
γ
x−(γ+1), βλ < x <∞, γ > 0, β > 1, λ > 0, (3)

where, λ, β are the scale parameters, γ is the shape parameter, Θ ≡ (γ, β, λ) is the set of parameters and the
remaining (n− k) random variables are distributed as Pareto distribution with parameters γ and λ having PDF (1).
The corresponding SF is given by

Ḡ(x; Θ) =

(
βλ

x

)γ
. (4)

The joint distribution of X1, X2, . . . , Xn in the presence of k outliers can be obtained as

f(x; Θ) =
γnλnγβkγ

C(n, k)

n∏
i=1

x
−(γ+1)
i

∑
A

k∏
j=1

I(xAj
− βλ), (5)

where, C(n, k) = n!
k!(n−k)! ,

∑
A

= Σn−k+1
A1=1 Σn−k+2

A2=A1+1...Σ
n
Ak=Ak−1+1 , and I(.) represents the indicator function

defined as:

I(x) =

{
1, x > 0
0 otherwise.

Then, the marginal distribution of the Pareto distribution in the presence of k outliers is expressed as:

f(x; Θ) =
k

n
g(x; Θ) +

n− k
n

f(x; γ, λ)

= γλγ
(
bβγ + b̄

)
x−(γ+1) (6)

The SF is given by:

F̄ (x; Θ) =
k

n
Ḡ(x; Θ) +

n− k
n

F̄ (x; γ, λ)

=

(
λ

x

)γ (
bβγ + b̄

)
, (7)

where, b = k/n, b̄ = (1− b) = (n− k)/n.

Measurement of uncertainty associated with a random variable has been of great interest at all times. [7]
proposed a measure of uncertainty associated with a probability distribution called Shannon entropy. Shannon
entropy plays a significant role in numerous fields such as financial analysis, data compression, molecular biology,
hydrology, meteorology, computer science and information theory. Despite the massive success of Shannon’s
entropy, this measure has some defects and may not be adequate in every situation. To overcome these defects an
alternate measure of uncertainty called extropy has been proposed in the literature that expands Shannon’s entropy.
As is entropy, the extropy is explicated as a measure of the amount of uncertainty exemplified by X . However, the
two measures are various and essentially intertwined with each other. The detection of extropy was stimulated by
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a problem that manifests in the application of the theory of proper scoring rules for alternate forecast distributions.
[8] was introduced the complementary dual of entropy as an alternative measure of uncertainty, called extropy.
Entropy and extropy measures relate as the positive and negative images of a photographic film relate to each
other. Let X be a non-negative random variable with PDF f(x), then the extropy of X is defined as:

J(X) =
−1

2

∫ ∞
0

f2(x) dx . (8)

Several properties of this new information measure such as the maximum extropy distribution and its statistical
applications were studied in [8]. One statistical application of extropy is to score the forecasting distributions.
For example, under the total log scoring rule, the expected score of a forecasting distribution equals the negative
sum of the entropy and extropy of this distribution provided in [9]. In commercial or scientific areas such as
astronomical measurements of heat distributions in galaxies, the extropy has been universally investigated in [10]
and [11].
Few works of estimating the extropy have studied and discussed. For example, [12] handled with the estimation
of extropy using two estimators and developed a test using extropy. Two estimators for extropy were introduced
and a goodness of test for standard uniform distribution was developed in [13]. Some estimators of extropy of a
continuous random variable were introduced in [14].
Lately, a cumulative residual extropy (CREx) which is analogous to cumulative residual entropy was proposed in
[15], as follows:

Ξ(X) =
−1

2

∫ ∞
0

F̄ 2(x) dx . (9)

Also, CREx have successfully applied in risk measurement using the Pareto distribution as an example in [15].
From the previous literatures, the Pareto distribution arrest attention from theoretical and statisticians essentially
due to its applicability in numerous areas. In the literature, there is no work that has been done about the estimation
problem of extropy of Pareto distribution in the presence of outliers. So, our motivation here is to consider the
maximum likelihood (ML) and Bayesian estimation methods of extropy and CREx for Pareto distribution in the
presence of outliers. The considered loss functions are squared error loss function (SELF), linear exponential loss
function (LLF), minimum expected loss function (MLF), and Degroot loss function (DLF). Markov Chain Monte
Carlo (MCMC) technique using the Metropolis-Hastings (M-H) algorithm is used due to the complicated forms of
extropy and CREx Bayesian estimators. Further, application to real data is employed.
The form of the article is as follows. Expressions of the extropy and CREx for Pareto distribution in the presence
of outliers and the homogenous case are derived in Section 2. Section 3 gives the ML and Bayesian estimators of
extropy and CREx in the presence of outliers and the homogenous case. The accuracy and precision of both extropy
estimates are examined with simulation results and data analysis in Section 4. The paper ends with discussion and
summary.

2. Expressions of the Extropy and Cumulative Residual Extropy

In this section, outright expressions for the extropy and CREx for the Pareto distribution in the presence of outliers
are derived. Assume X be a random variable following the Pareto distribution, hence the extropy of X is given by
substituting (6) in (8) as follows:

J(X) =
−1

2

∫
Dx

(γλγ)2
(
bβγ + b̄

)2
x−2(γ+1) dx =

−1

2
Q. (10)

For the purpose of computing extropy, it must be to obtain Q, as follows:
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Q = (γλγ)2(bβγ + b̄)

[
bβγ

∫ ∞
βλ

x−2(γ+1) dx+ b̄

∫ ∞
λ

x−2(γ+1) dx

]
=

γ2λ−1(bβγ + b̄)

2γ + 1

[
bβ−(γ+1) + b̄

]
. (11)

Hence, the extropy of Pareto distribution in the presence of outliers is given by substituting (11) in (10) as
follows:

J(x) =
−γ2λ−1

2(2γ + 1)

(
b2

β
+ b̄2 + bb̄βγ + bb̄β−(γ+1)

)
. (12)

By the same way, the CREx is obtained by substituting (7) in (9) as follows:

Ξ(x) =
−λ

2(2γ − 1)

(
b2β + b̄2 + bb̄β−γ+1 + bb̄βγ

)
, γ > 0.5. (13)

Expressions (12) and (13) of extropy and CREx are functions of parameters. For β = 1 or k = 0 in (12) and
(13), the required expressions of extropy and CREx of the Pareto distribution in homogenous case (no-outliers) are
provided.

3. Estimation of Extropies in the Presence of Outliers

This section handled with the ML and Bayesian estimators of extropy and CREx measures from Pareto distribution
in the presence of outliers. Further, the theoretical results are specialized to the homogenous case (i.e., k = 0 or
β = 1).

3.1. Estimation of Extropies in the Presence of Outliers

The ML method is widely used due to its desirable properties including consistency, asymptotic efficiency and
invariance property. Here, we derive the ML estimators of the extropy and CREx extropy for the Pareto distribution
in the presence of k outliers.
Let X1, X2, . . . , Xn be a random sample of size n from the Pareto distribution in the presence of k outliers with
PDF (5). The log-likelihood function, denoted by ln l , from a sample of n observations X1, X2, . . . , Xn is given
by

ln l = n ln γ + nγ lnλ+ kγ lnβ − ln [C(n, k)]− (γ + 1)Σni=1 lnxi + ln

∑
A

k∏
j=1

I(xAj
− βλ)

 .
Assuming that the parameter λ is known, also, it is known that the estimate of βλ is the sample minimum, i.e βλ

is X(1) = min(X1, X2, ..., Xn), so,
β̄ = X(1)/λ. (14)

The partial derivative of the log-likelihood function with respect to γ can be obtained as

∂ ln l

∂γ
=
n

γ
+ n ln(λ) + k ln(β)− Σni=1 lnxi. (15)

Substituting (14) in (15) and equating by zero, then, the ML estimator of γ, denoted by γ̄ is given by

γ̄ =
n

Σni=1 lnxi − k ln(X(1))− (n− k) ln(λ)
. (16)

Based on invariance property of ML method, the ML estimators of J(X) and Ξ(X), denoted by J̄(X) and Ξ̄(X)
are obtained by directly substituting (14) and (16) in (12) and (13), respectively. Furthermore, the ML estimators
of J(X) and Ξ(X) are obtained in case of homogenous case by taking β = 1 or k = 0.
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3.2. Extropy and CREx Bayesian estimators

Here, Bayesian estimators of J(X) and Ξ(X) for the Pareto distribution in the presence of outliers are derived
based on SELF, LLF, MLF and DLF. Also, the theoretical results of Bayesian estimators of J(X) and Ξ(X) in the
presence of outliers are specialized to the homogenous case (i.e., k = 0 or β = 1).
To compute the Bayesian estimators of J(X) and Ξ(X), we must obtain firstly the Bayesian estimators of λ, β
and γ. The Bayesian estimators cannot be obtained in explicit forms. So, the MCMC technique based on M-H
algorithm is used to generate samples from the posterior distributions and consequently computing the Bayesian
estimators. Consider a random sample of size n from the Pareto distribution with set of parameters Θ, where their
likelihood function is defined in (5). Following [6], the joint conjugate prior for (γ, λ) has the following power
gamma prior

T1(γ, λ) =
δ

Γ(ν)
(ln(µ)− δ ln(ρ))ν λδγ−1 γν µ−γ ; γ > 0 , 0 < λ < ρ , δ, µ, ρ > 0 , 0 < ρδ < µ.

Also, they assumed the following prior density function for parameter β is given as

T2(β) =
1

β ln(d)
; 1 < β < d , d > 1.

Hence, the independence of parameters are considered, then the joint prior distribution for γ, λ and β is given by

π(Θ) =
δ

Γ(ν) ln(d)
(ln(µ)− δ ln(ρ))ν λδγ−1 γν µ−γ β−1 ; γ > 0 , 0 < λ < ρ , 1 < β < d , d > 1 δ, µ, ρ > 0 , 0 < ρδ < µ.

(17)
Combining (5) and (17), the joint posterior distribution can be written as:

π∗(Θ|x) ∝ λγ(δ+n)−1 exp [−γ (Σni=1 lnxi + lnµ− k lnβ)− lnβ − Σni=1 lnxi + (ν + n) ln γ] . (18)

Hence, the marginal posterior distributions of γ, β and λ take the following forms, respectively,

π∗∗1 (γ|x) = 4−1e[−γ(Σn
i=1 ln xi+lnµ)−Σn

i=1 ln xi+(ν+n) ln γ]

∫ ρ

0

∫ d

1

λγ(δ+n)−1βkγ−1 dβ dλ , (19)

π∗∗2 (β|x) = 4−1e[− ln β−Σn
i=1 ln xi]

∫ ρ

0

∫ ∞
0

λγ(δ+n)−1e[−γ(Σn
i=1 ln xi+lnµ−k ln β)+(ν+n) ln γ] dγ dλ , (20)

and

π∗∗3 (λ|x) = 4−1λ−1e[−Σn
i=1 ln xi]

∫ d

1

∫ ∞
0

λγ(δ+n)e[−γ(Σn
i=1 ln xi+lnµ−k ln β)−ln β+(ν+n) ln γ] dγ dβ . (21)

where 4 =
∫ ρ

0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγdβdλ, is the normalizing

constant.

(i) Bayesian Estimator under SELF

A quadratic or SELF is one of the useful symmetric loss functions in nature; i.e. it gives equal importance to
both over and under estimation. The SELF is defined as

lSELF

(
ϑ̂, ϑ
)

=
(
ϑ̂− ϑ

)2

.
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Therefore, the Bayesian estimators of γ, β and λ for Pareto distribution in presence of outliers under SELF, say
γ̂SELF , β̂SELF and λ̂SELF are obtained as a posterior mean as follows

γ̂SELF = E(γ|x) = 4−1

∫ ρ

0

∫ d

1

∫ ∞
0

λγ(δ+n)−1e[−γ(Σn
i=1 ln xi+lnµ−k ln β)−ln β−Σn

i=1 ln xi+(ν+n+1) ln γ] dγ dβ dλ,

(22)

β̂SELF = E(β|x) = 4−1

∫ ρ

0

∫ d

1

∫ ∞
0

λγ(δ+n)−1e[−γ(Σn
i=1 ln xi+lnµ−k ln β)−Σn

i=1 ln xi+(ν+n) ln γ] dγ dβ dλ, (23)

λ̂SELF = E(λ|x) = 4−1

∫ ρ

0

∫ d

1

∫ ∞
0

λγ(δ+n) e[−γ(Σn
i=1 ln xi+lnµ−k ln β)−ln β−Σn

i=1 ln xi+(ν+n) ln γ] dγ dβ dλ.

(24)
(ii) Bayesian Estimator under LLF

The LLF is asymmetric loss function proposed in [16] . The LLF with parameters τ and h is given by

lLLF

(
ϑ̂, ϑ
)

= λ
[
eτ(ϑ̂−ϑ) − τ

(
ϑ̂− ϑ

)
− 1
]
,

where τ and h are constants. The sign and magnitude of τ represent the direction and degree of symmetry,
respectively τ > 0 means overestimation is more serious than underestimation, and τ < 0 means the opposite).
The Bayesian estimators of γ, β and λ for Pareto distribution in presence of outliers under LLF, say γ̂LLF , β̂LLF
and λ̂LLF are obtained as follows:

γ̂LLF =
−1

τ
E[e−τγ ] =

−1

τ
ln

[∫ ∞
0

e−τγ π∗∗1 (γ|x) dγ

]
=
−1

τ
ln

[
4−1

∫ ρ

0

∫ d

1

∫ ∞
0

λγ(δ+n)−1e[−γ(τ+Σn
i=1 ln xi+lnµ−k ln β)−ln β−Σn

i=1 ln xi+(ν+n) ln γ]dγdβdλ

]
,(25)

β̂LLF =
−1

τ
ln

[
4−1

∫ ρ

0

∫ d

1

∫ ∞
0

λγ(δ+n)−1 e[−γ(Σn
i=1 ln xi+lnµ−k ln β)−τβ−ln β−Σn

i=1 ln xi+(ν+n) ln γ] dγ dβ dλ

]
,

(26)

λ̂LLF =
−1

τ
ln

[
4−1

∫ ρ

0

∫ d

1

∫ ∞
0

λγ(δ+n)−1 e[−γ(Σn
i=1 ln xi+lnµ−k ln β)−ln β−Σn

i=1 ln xi+(ν+n) ln γ−τλ] dγ dβ dλ

]
.

(27)
where, τ is real number.

(iii) Bayesian Estimator under MLF

Minimum expected loss function was developed in [17] which defined by:

lMLF

(
ϑ̂, ϑ
)

=

(
ϑ̂− ϑ

)2

ϑ2
,
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where, ϑ̂MLF is an estimator of ϑ. Hence, the Bayesian estimators of γ, β and λ for Pareto distribution in
presence of outliers under MLF, say γ̂MLF , β̂MLF and λ̂MLF , are derived as follows:

γ̂MLF =
E(γ−1| x)

E(γ−2|x)
=

[ ∫∞
0

γ−1 π∗∗1 (γ|x) dγ∫∞
0

γ−2 π∗∗1 (γ|x) dγ

]

=

[ ∫ ρ
0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n−1) ln γ] dγ dβ dλ∫ ρ

0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n−2) ln γ] dγ dβ dλ

]
, (28)

β̂MLF =

[ ∫ ρ
0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−2 ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ∫ ρ

0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−3 ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ

]
, (29)

λ̂MLF =

[ ∫ ρ
0

∫ d
1

∫∞
0
λγ(δ+n)−2 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ∫ ρ

0

∫ d
1

∫∞
0
λγ(δ+n)−3 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ

]
. (30)

(iv) Bayesian Estimator under DLF

The DLF was provided in [18] as follows:

lDLF

(
ϑ̂, ϑ
)

=

(
ϑ̂− ϑ

)2

ϑ2
,

where, ϑ̂DLF is an estimator of ϑ. Hence, the Bayesian estimators of γ, β and λ for Pareto distribution in presence
of outliers under DLF, say γ̂DLF , β̂DLF and λ̂DLF , are derived as follows:

γ̂DLF =
E(γ2| x)

E(γ|x)
=

[∫∞
0

γ2 π∗∗1 (γ|x) dγ∫∞
0

γ π∗∗1 (γ|x) dγ

]

=

[ ∫ ρ
0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n+2) ln γ] dγ dβ dλ∫ ρ

0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n+1) ln γ] dγ dβ dλ

]
, (31)

β̂DLF =

[∫ ρ
0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)+ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ∫ ρ

0

∫ d
1

∫∞
0
λγ(δ+n)−1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ

]
, (32)

λ̂DLF =

[∫ ρ
0

∫ d
1

∫∞
0
λγ(δ+n)+1 e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ∫ ρ

0

∫ d
1

∫∞
0
λγ(δ+n) e[−γ(Σn

i=1 ln xi+lnµ−k ln β)−ln β−Σn
i=1 ln xi+(ν+n) ln γ] dγ dβ dλ

]
. (33)

Integrals (22) to (33) are difficult to be obtained; therefore the M-H algorithm is employed to generate MCMC
samples from posterior density functions (18). After acquiring MCMC samples from the posterior distribution, we
can get the Bayes estimate of γ, β and λ. Hence, the Bayesian estimators of J̄(X) and Ξ̄(X) denoted by Ĵ(X) and
Ξ̂(X) are obtained after inserting the Bayes estimates of parameters in (12) and (13). Furthermore, for β = 1 or
k = 0 the Ĵ(X) and Ξ̂(X) are resulted in homogenous case.
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4. Simulation and Application

This section discussed the performance of J(X) and Ξ(X) estimates and provided a real data example to illustrate
the theoretical results. The performances of the two methods are investigated through Monte Carlo simulations
using R software.

4.1. Simulation experiment

Here, we carried out a simulation study in order to check the behavior of the ML estimates (MLEs) and Bayes
estimates (BEs) of J(X) and Ξ(X) for the Pareto distribution in the presence of outliers. The study was executed
for number of outliers k = 0, 1 and 2 and different sample sizes n = 10, 20, 30, 40, 50. The parameter values were
selected as set 1 ≡ (γ = 1.5, β = 2, λ = 0.5) and set 2 ≡ (γ = 3.5, β = 2, λ = 0.5). The hyper-parameters were
selected as ν = 0.5, µ = 5, δ = 0.2, ρ = 6 and d = 6. Also, the value of τ was selected as τ = 2 and−2. The MLEs
of J̄(X) and Ξ̄(X) were computed. Also, BEs were obtained under SELF, LLF, MLF and DLF. Then, the absolute
biases (ABs) and mean squared errors (MSEs) for different sample sizes and number of outliers were calculated.
Due to the complicated form of the posterior distribution, the MCMC technique is used to generate samples from
the posterior distributions. Here, M-H algorithm will be used via R 4.0.3 program. All the results were based on
the number of replications N = 1000. Finally, we have done the same M–H algorithm presented in [19].

4.2. Numerical outcomes

Here, we summarized the simulation outputs of the theoretical study provided in Section 3. The observed numerical
values were recorded in Tables 1–4 and and represented in Figures 1–7.
• As anticipated, it is noticed that the performance of J(X) and Ξ(X) estimates improved with sample sizes.
• The MSEs of the MLEs of J(X) and Ξ(X) in homogenous and outliers cases decrease with sample sizes. Also,
the BEs of J(X) and Ξ(X) under different loss functions improved with sample sizes for k = 0, 1 and 2 (see for
example Figures 1–4 and Tables 1–4).

Figure 1: MSEs of MLEs of extropy at
k = 0, 1 and 2 for Set 1.

Figure 2: MSEs of MLEs of CREx at
k = 0, 1 and 2 for Set 2.

• The MSEs and the ABs of the Ĵ(X) and Ξ̂(X) were increasing with number of outliers in majority of
situations (see Tables 1–4).
• The MSEs of the Ĵ(X) and Ξ̂(X) under SELF, MLF, DLF and LLF at τ = −2 had the smallest values compared
to Ĵ(X) and Ξ̂(X) under SELF, MLF, DLF and LLF at τ = −2 in majority of situations (see for example Figures
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Figure 3: MSEs of extropy BEs at k = 1 for
Set 1.

Figure 4: MSEs of CREx BEs at k = 0 for
Set 2.

3–6 and Tables 3 and 4).
• As the exact values of J(X) and Ξ(X) decreased, the MSEs and the ABs of MLEs and BEs of extropy and

Figure 5: MSEs of Extropy BEs for Set 2 at
k = 0, 1, 2 and n = 50.

Figure 6: MSEs of CREx BEs for Set 1 at
k = 0, 1, 2 and n = 30.

CREx decreased with k.
• The MSEs and ABs of J(X) and Ĵ(X) increased with the value of γ in the presence of outliers and in the
homogenous case. While the MSEs and ABs of Ξ(X) and Ξ̂(X) decreased with the value of γ in outliers and
homogenous cases.
• History plots for different estimates of J(X) and Ξ(X) under the symmetric and asymmetric loss functions
look like a horizontal band with no long upward or downward trends which are indicators to convergence (see for
example Figure 7 (a) for outlier case and Figures 7 (b) for homogenous case).
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(a) Extropy under SELF and LLF at τ = 2, k = 1 and n = 50 for Set 1.

(b) CREx under MLF and DLF at k = 0 and n = 50 for Set 2.
Figure 7: Bayesian estimators for extropy and CREx in outliers and homogenous cases for Set 1and Set 2

Table 1. ABs and MSEs of MLEs for Extropy in Homogenous and Outliers Cases.

Set 1 ≡ (γ = 1.5, β = 2, λ = 0.5) Set 2 ≡ (γ = 3.5, β = 2, λ = 0.5)
k = 0 k = 0

n 10 20 30 40 50 n 10 20 30 40 50
Exact value -0.56250 Exact value -0.56125
MLE AB 0.0784 0.0290 0.0140 0.0109 0.0147 MLE AB 0.1455 0.1019 0.0372 0.0119 0.0101

MSE 0.0800 0.0269 0.0181 0.0124 0.0111 MLE MSE 0.2952 0.1116 0.0866 0.0674 0.0598
k = 1 k = 1

Exact value -0.4246 -0.4905 -0.5138 -0.5258 -0.5330 Exact value -1.1841 -1.3502 -1.4089 -1.4388 -1.4570
MLE AB 0.1606 0.0848 0.0482 0.0319 0.0292 MLE AB 0.1864 0.2317 0.1510 0.01106 0.0956

MSE 0.1294 0.0419 0.0219 0.0137 0.0125 MLE MSE 0.4380 0.1481 0.0947 0.0746 0.0634
k = 2 k = 2

Exact value -0.3112 -0.4246 -0.4679 -0.4905 -0.5044 Exact value -0.8971 -1.1841 -1.2931 -1.3502 -1.3852
MLE AB 0.2802 0.1371 0.0892 0.0633 0.0527 MLE AB 0.8052 0.4723 0.3184 0.2594 0.2062

MSE 0.4057 0.0623 0.0296 0.0193 0.0149 MLE MSE 0.6783 0.2683 0.1453 0.1079 0.0894
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Table 2. ABs and MSEs of MLEs for CREx in Homogenous and Outliers Cases.

Set 1 ≡ (γ = 1.5, β = 2, λ = 0.5) Set 2 ≡ (γ = 3.5, β = 2, λ = 0.5)
k = 0 k = 0

n 10 20 30 40 50 n 10 20 30 40 50
Exact value -0.12500 Exact value -0.04167
MLE Bias 0.0478 0.0237 0.0208 0.0132 0.0006 MLE Bias 0.0056 0.0034 0.0022 0.0008 0.0006

MSE 0.1028 0.0335 0.0208 0.0157 0.0115 MLE MSE 0.0046 0.0019 0.0013 0.0009 0.0007
k = 1 k = 1

Exact value -0.1215 -0.1224 -0.1236 -0.1239 -0.1248 Exact value -0.0375 -0.0395 -0.0409 -0.0410 -0.0412
MLE Bias 0.0555 0.0340 0.0235 0.0148 0.0080 MLE Bias 0.0949 0.0530 0.0359 0.0254 0.0206

MSE 0.1502 0.0419 0.0276 0.0166 0.0123 MLE MSE 0.0137 0.0050 0.0025 0.0016 0.0013
k = 2 k = 2

Exact value -0.1195 -0.1219 -0.1228 -0.1237 -0.1242 Exact value -0.0357 -0.393 -0.0398 -0.0399 0.0410
MLE Bias 0.1035 0.0374 0.0293 0.0114 0.0080 MLE Bias 0.1559 0.0953 0.0644 0.0523 0.0421

MSE 0.2297 0.0479 0.0287 0.0185 0.0133 MLE MSE 0.0301 0.0111 0.0057 0.0038 0.0026

Table 3. ABs and MSEs of BEs for Extropy in Homogenous and Outliers Cases.

Set 1 ≡ (γ = 1.5, β = 2, λ = 0.5)
k = 0

n 10 20 30 40 50
Exact value -0.56250

SELF AB 1.1797E-03 1.7250E-03 1.0282E-03 9.7250E-04 8.1797E-04
MSE 2.4492E-02 7.0504E-04 7.1419E-04 6.9169E-04 5.4091E-04

LLF (ν = 2) AB 2.9640E-02 9.8057E-04 7.9870E-04 6.2235E-04 2.7558E-04
MSE 2.4496E-03 4.3383E-04 3.6506E-04 3.4246E-04 3.6061E-04

LLF (ν = −2) AB 2.9640E-02 8.8057E-04 6.3841E-04 5.8858E-04 6.9100E-04
MSE 1.2496E-03 3.9383E-04 3.5963E-04 2.4689E-04 2.4528E-04

MLF AB 2.4074E-02 5.3633E-04 3.6634E-04 1.6916E-04 2.9733E-04
MSE 5.7160E-03 8.4604E-04 7.1596E-04 6.3465E-04 7.3879E-04

DLF AB 2.9802E-02 3.8569E-04 6.1788E-04 7.2220E-04 6.7032E-04
MSE 1.2654E-03 4.3401E-04 3.9959E-04 3.5258E-04 3.4521E-04

k = 1
Exact value -0.42463 -0.49052 -0.51383 -0.52575 -0.53298

SELF AB 3.4674E-02 1.9975E-02 1.3531E-02 9.8712E-03 9.0786E-03
MSE 1.6190E-03 9.9065E-04 7.8938E-04 7.2129E-04 6.5619E-04

LLF (ν = 2) AB 3.4447E-02 1.8347E-02 1.2383E-02 9.2582E-03 7.0125E-03
MSE 1.4206E-03 6.3910E-04 4.7105E-04 4.1086E-04 3.8231E-04

LLF (ν = −2) AB 3.4294E-02 1.7578E-02 1.1955E-02 7.8834E-03 6.9902E-03
MSE 1.3815E-03 5.6528E-04 4.3105E-04 3.3216E-04 2.9191E-04

MLF AB 3.3960E-02 1.7032E-02 1.2480E-02 8.9628E-03 6.9879E-03
MSE 1.5858E-03 8.6638E-04 7.6356E-04 7.1021E-04 6.7194E-04

DLF AB 3.4277E-02 1.8443E-02 1.2935E-02 9.3572E-03 7.9698E-03
MSE 1.3904E-03 6.4264E-04 4.8041E-04 4.1287E-04 3.9154E-04

k = 2
Exact value -0.31115 -0.424623 -0.46788 -0.49052 -0.50443

SELF AB 6.1378E-02 3.4701E-02 2.5571E-02 2.0747E-02 1.5592E-02
MSE 4.0448E-03 1.6961E-03 1.2003E-03 9.4894E-04 8.8997E-04

LLF (ν = 2) AB 6.0448E-02 3.4746E-02 2.4033E-02 2.8329E-02 1.4954E-02
MSE 3.7863E-03 1.4563E-03 8.3837E-04 6.8507E-04 5.7615E-04

LLF (ν = −2) AB 6.0094E-02 3.3738E-02 2.3033E-02 1.9329E-02 1.4854E-02
MSE 3.6644E-03 1.3669E-03 8.2837E-04 6.4907E-04 5.2615E-04

MLF AB 5.9379E-02 3.4891E-02 2.2808E-02 1.7970E-02 1.4253E-02
MSE 3.8472E-03 1.7018E-03 1.0147E-03 8.9154E-04 8.0907E-04

DLF AB 6.0337E-02 3.8729E-02 2.4125E-02 2.9310E-02 1.5684E-02
MSE 3.7946E-03 1.5551E-03 8.4265E-04 6.9836E-04 5.8556E-04

Note: E-a: stands for 10−a.
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Continued Table 3.

Set 1 ≡ (γ = 1.5, β = 2, λ = 0.5)
k = 0

n 10 20 30 40 50
Exact value -1.53125

SELF AB 4.9271E-01 4.2498E-01 3.8485E-01 3.3586E-01 1.2515E-01
MSE 2.2071E-01 1.8089E-01 1.4835E-01 1.1303E-01 2.2912E-02

LLF (ν = 2) AB 1.8333E-01 1.6260E-01 1.3453E-01 1.0228E-01 6.4583E-02
MSE 3.3962E-02 2.7427E-02 1.8375E-02 1.0721E-02 6.0756E-03

LLF (ν = −2) AB 1.8126E-01 1.6140E-01 1.2348E-01 1.0154E-01 6.3457E-02
MSE 3.1239E-02 2.6389E-02 1.7654E-02 1.0347E-02 5.9874E-03

MLF AB 1.4261E-01 1.5001E-01 1.6171E-01 1.7408E-01 2.8643E-01
MSE 2.1461E-02 2.3529E-02 2.1069E-02 1.1116E-02 8.5603E-03

DLF AB 1.8327E-01 1.6344E-01 1.3479E-01 1.0245E-01 6.5643E-02
MSE 3.3940E-02 2.6701E-02 1.8569E-02 1.0754E-02 6.1898E-03

k = 1
Exact value -1.18408 -1.35015 -1.40885 -1.43882 -1.45701

SELF AB 4.9122E-01 4.9209E-01 4.9077E-01 4.9003E-01 1.9876E-01
MSE 2.4249E-01 2.4165E-01 2.4118E-01 2.4046E-01 9.0836E-02

LLF (ν = 2) AB 2.0663E-01 2.0577E-01 2.0494E-01 2.0445E-01 3.0954E-02
MSE 4.3112E-02 4.2722E-02 4.2366E-02 4.2186E-02 7.9107E-03

LLF (ν = −2) AB 2.0213E-01 2.0433E-01 2.0348E-01 2.0342E-01 2.9864E-02
MSE 4.0865E-02 4.0346E-02 4.0023E-02 3.9874E-02 6.5432E-03

MLF AB 1.3429E-01 1.3208E-01 1.3179E-01 1.3090E-01 1.2576E-01
MSE 1.9680E-02 1.9286E-02 1.8640E-02 1.8516E-02 1.8464E-02

DLF AB 2.0657E-01 2.0588E-01 2.0570E-01 2.0439E-01 3.0894E-02
MSE 4.3458E-02 4.3091E-02 4.2898E-02 4.2159E-02 7.9342E-03

k = 2
Exact value -0.89705 -1.18408 -1.29312 -1.35015 -1.38517

SELF AB 4.9901E-01 4.4839E-01 4.3426E-01 4.1079E-01 3.3514E-01
MSE 2.6758E-01 2.0135E-01 1.8887E-01 1.6904E-01 1.1255E-01

LLF (ν = 2) AB 2.9436E-01 1.7702E-01 1.6747E-01 1.5185E-01 1.0252E-01
MSE 4.2998E-02 3.1690E-02 2.8369E-02 2.3381E-02 1.0787E-02

LLF (ν = −2) AB 1.9324E-01 1.7654E-01 1.5642E-01 1.4653E-01 9.2518E-03
MSE 4.1346E-02 3.0764E-02 1.9864E-02 2.1347E-02 9.8779E-03

MLF AB 2.2851E-01 1.4382E-01 1.4790E-01 1.5454E-01 1.5252E-01
MSE 5.5014E-02 2.1792E-02 2.2978E-02 2.4913E-02 2.0637E-02

DLF AB 1.9551E-01 1.7694E-01 1.6740E-01 1.5179E-01 1.0246E-01
MSE 4.9977E-02 3.1662E-02 2.8347E-02 2.3363E-02 1.0775E-02

Note: E-a: stands for 10−a.

4.3. Application to real data

Here, the real data set was used to illustrate the method proposed in previous section. The real data set was studied
in [5]. The data represent 20 claim amounts. For insurance company one of its services is motor insurance. A
claim of at least 500,000 Rials (Iranian Rials) as compensation for the motor insurance can be made. The vehicles
involved are of different costs, of which some of them may have a very high cost. Claim amounts vary according to
the damage to the vehicles. The company had assumed that claims of expensive/severely damaged vehiclesare1.5
times higher than the normal vehicles. The validity of the fitted model was checked in [5].
Regarding the methods of estimation presented in section 3, the outputs have shown in Table 5 and Figures 8 and
9.

The observed results in Table 5 and Figures 8 and 9 showed that the MSEs of J(X), Ξ(X), Ĵ(X) and ξ̂(X) in
the presence of outliers were greater than the corresponding in homogenous case. The MSEs of Ĵ(X) and ξ̂(X)
in the presence of outliers and in the homogenous case under LLF at τ = −2 had the smallest values compared
to MSEs of other BEs of both extropies. Also, we concluded that the extropy and CREx estimates increased with
number of outliers.
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Table 4. ABs and MSEs of BEs for CREx in Homogenous and Outliers Cases.

Set 2 ≡ (γ = 1.5, β = 2, λ = 0.5)
k = 0

n 10 20 30 40 50
Exact value -0.12500

SELF AB 1.0146E-04 3.5476E-05 2.3422E-06 2.2194E-06 1.9683E-06
MSE 2.3456E-05 1.9705E-06 1.4368E-06 3.4268E-07 1.0560E-07

LLF (ν = 2) AB 3.6784E-05 4.4217E-05 1.0433E-06 1.0236E-06 1.9855E-07
MSE 1.7454E-05 1.1892E-06 9.8754E-07 3.9867E-08 3.9875E-08

LLF (ν = −2) AB 1.6578E-04 7.6655E-05 1.0232E-06 1.0045E-06 1.7864E-07
MSE 1.5564E-05 1.1068E-06 8.7653E-07 3.2305E-07 3.5643E-08

MLF AB 3.7643E-05 1.7130E-04 1.5432E-05 1.0226E-05 1.2670E-06
MSE 3.6542E-05 1.5433E-06 1.2316E-06 1.8759E-07 1.9883E-08

DLF AB 1.5433E-04 1.2458E-05 1.2940E-05 1.0236E-06 1.9985E-07
MSE 1.5672E-05 1.2001E-05 1.0232E-06 3.9867E-08 3.9870E-08

k = 1
Exact value -0.12152 -0.12243 -0.12357 -0.12386 -0.12481

SELF AB 1.3589E-04 8.3706E-05 2.4777E-06 8.2343E-05 4.8309E-05
MSE 3.7482E-06 2.2130E-06 1.4158E-05 4.8797E-07 1.5001E-07

LLF (ν = 2) AB 1.5700E-04 6.1418E-05 1.0602E-05 2.5191E-05 2.2338E-05
MSE 1.9804E-06 1.1205E-06 1.1093E-06 1.1009E-07 7.1583E-08

LLF (ν = −2) AB 1.7505E-04 8.5757E-05 1.0602E-05 2.0630E-05 1.8386E-05
MSE 1.6423E-06 1.1176E-06 1.0593E-06 1.0875E-07 7.0445E-08

MLF AB 2.0413E-04 3.0097E-05 3.0860E-05 1.3541E-05 1.2670E-05
MSE 4.3943E-06 1.7219E-06 1.4266E-06 6.3238E-07 1.4683E-07

DLF AB 1.8457E-04 6.2726E-05 1.0777E-05 2.4766E-06 1.8364E-05
MSE 1.6521E-06 1.2213E-06 1.0702E-06 3.0899E-07 7.1783E-08

k = 2
Exact value -0.11954 -0.12189 -0.122782 -0.12368 -0.12423

SELF AB 7.9160E-04 2.1308E-04 5.1231E-06 6.1442E-04 1.2462E-04
MSE 5.1460E-05 4.1015E-06 2.2567E-06 7.5636E-07 2.5683E-07

LLF (ν = 2) AB 6.7858E-04 1.1736E-04 9.1384E-05 1.1037E-05 1.9298E-06
MSE 2.3415E-05 1.8343E-06 1.5035E-06 1.5395E-05 9.7012E-06

LLF (ν = −2) AB 7.0097E-04 1.0672E-04 9.0884E-05 1.1166E-06 1.1283E-07
MSE 2.2320E-05 1.7381E-06 1.4055E-06 5.6428E-07 1.8556E-07

MLF AB 3.3780E-04 2.2720E-05 1.9312E-04 4.7520E-05 8.9813E-06
MSE 5.0942E-05 3.1797E-06 1.6068E-06 9.0754E-07 3.5680E-07

DLF AB 6.9975E-04 1.0709E-04 9.1005E-05 1.0973E-04 1.2836E-05
MSE 2.5315E-05 1.8384E-06 1.6060E-06 4.7658E-07 1.8856E-07

Note: E-a: stands for 10−a.

5. Discussion and summery

In this study, we considered the Bayesian and non-Bayesian estimators of extropy and cumulative residual extropy
for the Pareto distribution in the presence of k outliers and in the homogenous case. We obtained the ML estimators
as well as Bayesian estimators under symmetric and asymmetric loss functions for the considered extropies
measures. The MCMC techniques were employed to compute the Bayes estimates based on M-H algorithm. The
performance of extropies estimates for Pareto distribution was investigated in terms of their absolute biases and
mean squared errors. One application to real data and simulation issue were considered. Regarding the outcomes of
simulation results, we conclude that the precision of extropy and CREx estimates from both methods of estimation
was improved with increasing sample sizes. Generally, as the exact values of extropy and CREx decreased, the
MSEs and the ABs of both MLEs and BEs of extropy and CREx decreased with increasing number of outliers.
The Bayesian estimates of extropy and CREx under LLF at τ = −2 were superior to the observed estimates under
other selected loss functions in majority of situations. Finally, the real data analysis confirmed the theoretical and
simulated studies.
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Continued Table 4.

Set 2 ≡ (γ = 3.5, β = 2, λ = 0.5)
k = 0

n 10 20 30 40 50
Exact value -0.04167

SELF AB 1.3818E-04 1.1480E-04 9.6758E-05 5.8320E-05 1.9643E-05
MSE 1.7307E-07 1.3558E-07 1.2153E-07 6.5157E-08 3.9613E-08

LLF (ν = 2) AB 2.4941E-05 2.0807E-05 3.2664E-03 1.9069E-04 6.3864E-05
MSE 1.4321E-07 1.2108E-07 1.0809E-07 4.1400E-08 4.5139E-09

LLF (ν = −2) AB 2.4767E-05 1.2207E-05 1.1881E-05 1.6256E-05 6.4863E-06
MSE 1.3505E-07 1.1011E-07 1.0076E-07 3.4098E-08 4.0138E-09

MLF AB 8.4442E-05 4.0369E-05 3.5536E-05 1.9297E-05 6.6125E-06
MSE 1.6270E-07 1.2350E-07 1.1451E-07 4.9600E-08 5.2485E-09

DLF AB 2.4971E-05 2.2307E-05 3.2660E-03 1.9257E-04 6.4864E-05
MSE 1.4508E-07 2.4108E-07 1.0806E-07 4.1500E-08 4.6239E-09

k = 1
Exact value -0.03754 -0.03953 -0.04086 -0.04095 -0.04123

SELF AB 3.7300E-03 2.0244E-03 1.5682E-03 9.0026E-04 4.7206E-03
MSE 1.4363E-05 4.2268E-06 2.5320E-06 8.4332E-07 2.2348E-05

LLF (ν = 2) AB 1.3228E-03 4.8633E-04 4.8212E-04 2.8254E-04 1.5736E-03
MSE 1.9137E-06 4.6534E-07 3.1120E-07 9.5872E-08 2.5026E-06

LLF (ν = −2) AB 1.2628E-03 4.4673E-04 3.2675E-04 2.7665E-04 1.5676E-03
MSE 1.8537E-06 4.0334E-07 3.1015E-07 9.3972E-08 2.4866E-06

MLF AB 1.1054E-03 6.8966E-04 4.8815E-04 3.3653E-04 1.3465E-03
MSE 1.5957E-06 5.7747E-07 3.1720E-07 1.4246E-07 1.8652E-06

DLF AB 1.4328E-03 4.9733E-04 4.8212E-04 2.8654E-04 1.5776E-03
MSE 1.9737E-06 4.7334E-07 3.1120E-07 9.7872E-08 2.5166E-06

k = 2
Exact value -0.03567 -0.03934 -0.03978 -0.03989 -0.04097

SELF AB 4.4749E-02 1.7124E-02 1.3089E-02 1.1458E-02 5.7627E-03
MSE 2.0091E-03 2.9846E-04 1.7186E-04 1.3838E-04 3.3306E-05

LLF (ν = 2) AB 1.4305E-02 4.6548E-03 4.2982E-03 3.1460E-03 1.9064E-03
MSE 2.0759E-04 1.8573E-04 1.8714E-05 1.0019E-05 3.6775E-06

LLF (ν = −2) AB 1.4265E-02 4.4767E-03 4.9725E-03 2.9725E-03 1.9024E-03
MSE 2.0655E-04 2.7840E-05 1.7998E-05 1.0998E-05 3.6601E-06

MLF AB 3.9914E-03 3.7580E-03 2.6680E-03 3.7166E-03 1.5347E-03
MSE 1.1570E-04 1.5739E-05 7.4594E-06 4.5390E-06 2.1319E-06

DLF AB 1.4134E-02 5.0846E-03 4.2974E-03 2.9729E-03 1.9063E-03
MSE 2.0273E-04 2.7852E-05 1.8706E-05 1.1001E-05 9.6770E-06

Note: E-a: stands for 10−a.

Table 5. Estimates of Extropy and CREx and their MSEs (in brackets) for 20 claim amounts.

Extropy CREx
k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

MLEs -0.05389 -0.05162 -0.04198 -0.32097 -0.30438 -0.28829
(0.31204) (0.29391) (0.28161) (0.02667) (0.02888) (0.03149)

SELF -5.6247E-01 -4.9073E-01 -4.2439E-01 -1.4359E-01 -1.3457E-01 -1.2485E-01
(2.3954E-06) (3.2578E-06) (3.2995E-06) (2.0023E-07) (4.6755E-07) (5.4524E-07)

LLF (τ = 2) -5.6207E-01 -4.9022E-01 -4.2493E-01 -1.4367E-01 -1.3446E-01 -1.2494E-01
(9.0337E-07) (1.3207E-06) (1.3619E-06) (1.3745E-07) (1.50143E-07) (2.4221E-07)

BEs LLF (τ = −2) -5.6224E-01 -4.9076E-01 -4.2438E-01 -1.4356E-01 -1.3435E-01 -1.2473E-01
(6.7159E-07) (1.0484E-06) (1.1606E-06) (9.9551E-08) (1.3759E-07) (1.6938E-07)

MLF -5.6201E-01 -4.8971E-01 -4.2545E-01 -1.4385E-01 -1.3434E-01 -1.2464E-01
(2.0418E-06) (3.0202E-06) (3.2529E-06) (2.6303E-07) (3.6546E-07) (4.2122E-07)

DLF -5.6232E-01 -4.9796E-04 -4.2493E-01 -1.4372E-01 -1.3476E-01 -1.2498E-01
(9.0351E-07) (1.13596E-06) (1.3630E-06) (1.3758E-07) (1.5209E-07) (2.4238E-07)

Note: E-a: stands for 10−a.
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Figure 8: MSEs of Extropy BEs for real data
set at k = 0, 1, 2.

Figure 9: MSEs of CREx MLEs for real data
set at k = 0, 1, 2.
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