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1. Introduction

The statistical analysis and modeling of complex real data sets such as lifetime data are incapable to do with
well-known standard distributions. This matter is created some grave concerns among researchers who attempt
for modeling using new distributions and a lot of attention has been recently paid in researches. Nevertheless,
many types researches in their pursuit have attempted for modeling complex real data by introducing new family
distributions with three or four parameters. To this end, researchers have recently suggested diverse methods for
generating new continuous family distributions in concerning to lifetime data analysis such that these distributions
are able to fit various lifetime real data sets that have very complex with a high degree of kurtosis and skewness.
Such distributions are usually obtained based on the T-X class which is defined by Alzaatreh et al. [8]. The
distribution theory has widely extended using the T-X class. Given the vast amount of papers published after
2013, we can only mention a few of the most recent contributions: Kumaraswamy generated, beta generated, odd
log-logistic family.

The most well-known one-parameter statistical distributions that use for modeling lifetime data are as:
exponential, gamma, Weibull, Lindley and lognormal. In the recent past, since the cumulative distribution function

∗Correspondence to: Morad Alizadeh(Email: m.alizadeh@pgu.ac.ir ). Department of Statistics, Persian Gulf University, Bushehr, 75169,
Iran.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2021 International Academic Press



850 AN EXTENDED LINDLEY DISTRIBUTION WITH APPLICATION

(cdf) and survival function of the gamma and the lognormal do not have any closed form, so most researchers chose
exponential, Weibull and Lindley distributions for their researches. Among these distributions, although working
with the exponential distribution is easier than that of Weibull and Lindley distributions, but since the hazard
rate function (hrf) of exponential distribution is fixed and we usually interest to apply a distribution in which has
different shapes of hrf and on the other hand, the Lindley distribution has hrf with increasing, decreasing, unimodal
and bathtub shapes, therefore, these reasons can motivate use of Lindley distribution to analyze the real lifetime
data. The Lindley distribution as one parameter distribution with only one scale parameter was first presented by
Lindley [22] in the Bayesian statistics literature. Accordingly Lindley distribution has hrf with various shapes, so it
will be capable of modeling the data with a non-monotonic failure rate as well as with monotonic increasing failure
rate. It is used to analyze failure time data sets, particularly for modeling stress-strength reliability. As mentioned
widely in the literature, the shape parameters play an important role in flexibility behavior of the distribution and
it has caused that researchers to present many extensions of the Lindley distribution. Among these extensions,
some works are more excellent than others: Zakerzadeh and Dolati [29] proposed a generalization of the Lindley
distribution with three parameters that its hrf can be plotted as increasing, bathtub-shaped and decreasing. A two-
parameter generalized Lindley distribution due to Nadarajah et al. [27]. An extension of the Lindley distribution was
obtained by Bakouch et al. [12] by considering a particular exponentiation. A new generalized Lindley distribution
due to Abouammoh et al. [1] on the basis of the weighted mixture of two gamma distributions. Asgharzadeh et al.
[9] investigated the properties of a weighted Lindley distribution that it can be expressed as a mixture of weighted
exponential and gamma distributions. Odd Burr Lindley distribution was suggested by Altun et al. [7]. Asgharzadeh
et al. [10] proposed Weibull Lindley distribution based on three parameters. Recently, using odd log-logistic family
and by considering Lindley distribution as underlying distribution several contributions are presented by Alizadeh
et al. [4], [5] and [6]. Also, we can mention [14] and [16] as other contributions in related to the Lindley distribution.

Authors have presented new various families of distributions based on a cdf as G(·) during the last decade, e.g.
Kumaraswamy generated, Exponentiated-G, gamma generated, proportional odds and generalized beta generated.
In the following, Alizadeh et al. [3] presented another class of distributions which is called extended exponentiated-
G (EE-G) family. The cdf of EE-G family is

F (x; ξ) =
G(x;θ)α

G(x;θ)α + [1−G(x;θ)γ ]
, (1)

where ξ = (θ, α, γ), G(x;θ) is the baseline cdf with a parameter vector θ and α, γ > 0 are additional shape
parameters. Also, the pdf of the family is

f(x; ξ) =
g(x;θ)G(x;θ)α−1 [α+ (γ − α)G(x;θ)γ ]

{G(x;θ)α + [1−G(x;θ)γ ]}2
, (2)

where g(x;θ) is the baseline pdf. It is clear that the EE-G is a two-parameter family without considering the
parameters of the baseline distribution. Since the EE-G family is more flexible than some other families, so this
family can be proposed as a serious competitor for other extended families of distributions.

In order to obtain more flexibility in modeling observed data in comparison with other generalizations that
already introduced, we introduce another class of distributions using the ideas of EE-G and Marshal-Olkin families.
In fact, we can add another parameter, which is called the Marshal-Olkin parameter, to EE-G family. This family is
called extended Marshal-Olkin generalized-G (EMOG-G). Based on the T-X class and given a continuous baseline
cdf G(x;θ) with a parameter vector θ, the cdf of the EMOG-G family is given by

F (x; ξ) =

∫ G(x;θ)α

1−G(x;θ)γ

0

β dt

(1 + β t)2
=

G(x;θ)α

G(x;θ)α + β(1−G(x;θ)γ)
, (3)

where β > 0 is the Marshal-Olkin parameter and ξ = (θ, α, γ, β). It is obviously that in special case, the EMOG-G
family reduces to EE-G family when β = 1. For α = γ = 1, it reduces to Marshal-olkin family. If β = 1 and α = γ,
then it reduces to Exp-G family. By considering α = β = γ = 1, we obtain the baseline distribution G.
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Since the EMOG-G is a three-parameter family without considering the parameters of the baseline distribution,
so use of the baseline distribution with only one parameter such as exponential and Lindley is more efficient than
that of with two or three parameters. On the other hand, because of the Lindley distribution has hrf with increasing,
decreasing, unimodal and bathtub shapes and is usually applied for the lifetime real data, so we consider the Lindley
distribution as the baseline distribution in this paper. Suppose that the cdf of Lindley distribution is as follows

G(x;λ) = 1− (1 +
λx

1 + λ
)e−λ x, x > 0, (4)

where λ > 0 is the scale parameter and pdf corresponding to (4) is given by

g(x;λ) =
λ2

1 + λ
(1 + x) e−λx. (5)

By consideringG(x;θ) as (4) in Eq. (3) where θ = λ, we obtain a new distribution that is called extended Marshal-
Olkin generalized Lindley (EMOGL) distribution. In the next section, we present the cdf, pdf and some properties
of EMOGL distribution.

The rest of the paper is organized as follows. In Section 2, the EMOGL distribution is introduced. Some
properties of the EMOGL distribution such as the nth moment, the nth incomplete moment, moment generating
function and Bonferroni and Lorenz curves are presented in Section 3. In Section 4, some asymptotic properties and
extreme values of the EMOGL distribution are investigated. The maximum likelihood estimators for the unknown
parameters of the EMOGL distribution are obtained in Section 5. A simulation study is presented in Section 6. In
Section 7, the applications using two real data sets are reported. Bayesian inference and a Gibbs sampling procedure
for the considered data sets are investigated in Section 8. Finally, some conclusions are stated in Section 9.

2. The extended Marshal-Olkin generalized lindley distribution

By substituting (4) in (3), the distribution function of the EMOGL is derived as

F (x; ξ) =

[
1− (1 + λx

1+λ )e
−λ x

]α[
1− (1 + λx

1+λ )e
−λ x

]α
+ β

[
1− (1− (1 + λx

1+λ )e
−λ x)γ

] , (6)

and pdf

f(x; ξ) =
β λ2(1 + x)e−λ x

[
1− (1 + λx

1+λ )e−λ x
]α−1 {

α+ (γ − α)
[
1− (1 + λx

1+λ )e−λ x
]γ}

{[
1− (1 + λx

1+λ )e−λ x
]α

+ β
[
1− (1− (1 + λx

1+λ )e−λ x)γ
]}2

. (7)

Throughout this paper, the EMOGL distribution with parameters ξ = (λ, α, β, γ) will be denoted by EMOGL(λ, α, β, γ).

Special cases: Let X ∼ EMOGL(λ, α, β, γ).

• If β = 1, then X reduces to the extended generalized Lindley (EG-L).
• For α = γ, X coincides with Marshall- Olkin generalized Lindley.
• If α = γ = 1, then X reduces to Marshall- Olkin Lindley.
• By taking α = γ and β = 1, X coincides with generalized Lindley.
• For α = β = γ = 1, X is ordinary Lindley.

Some of the possible shapes of the density function (27) for the selected parameter values are illustrated in Figure 1(a). As
seen in Figure 1(a), the density function can take various forms depending on the parameter values. It is evident that the
EMOGL distribution is much more flexible than the Lindley distribution, i.e. the additional shape parameters cause high
flexibility of the EMOGL distribution. Both unimodal and monotonically decreasing and increasing shapes appear to be
possible.
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By definition of the survival function, we set S(x; ξ) = 1− F (x; ξ) and then we get

S(x; ξ) =
β
[
1− (1− (1 + λx

1+λ )e−λ x)γ
]

[
1− (1 + λx

1+λ )e−λ x
]α

+ β
[
1− (1− (1 + λx

1+λ )e−λ x)γ
] . (8)

Now, using (27) and (8) the hrf of EMOGL is given by

h(x; ξ) =
β λ2(1 + x)e−λ x

[
1− (1 + λx

1+λ )e−λ x
]α−1 {

α+ (γ − α)
[
1− (1 + λx

1+λ )e−λ x
]γ}

[
(1− (1 + λx

1+λ )e−λ x)α + β[1− (1− (1 + λ x
1+λ )e−λ x)γ ]

]
β
[
1− (1− (1 + λx

1+λ )e−λ x)γ
] (9)

By choosing different values of parameters, it observes that the EMOGL distribution has various shapes of the hrf. Some
of these shapes are drawn in Figure 1(b). Figure 1(b) shows that the hrf of the EMOGL distribution can have very flexible
shapes, such as increasing, decreasing, bathtub followed by upside-down bathtub, and bathtub shapes for the selected values
of the model parameters. This attractive flexibility makes the hrf of the EMOGL distribution useful and suitable for non-
monotone empirical hazard behaviors which are more likely to be encountered or observed in real life situations.
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Figure 1. Plots of pdf and hrf of the EMOGL distribution for selected λ, α, γ and β.

2.1. Mixture representations for the pdf and cdf
The cdf and pdf of the EMOGL can be written as mixture representations and such forms of cdf and pdf can be used to derive
some mathematical properties, e.g. moments, moments of residual life and incomplete moments. To this purpose, first, let us
remind inverse of a power series using the following Remark.

Remark 1
[17, p.18]
Inverse of a power series

∑∞
k=0 bkx

k is

1∑∞
k=0 bkx

k
=

∞∑
k=0

ckx
k,

where c0 = 1
b0

and ck = − 1
b20

∑k
r=1 ck−rbr for k ≥ 1.
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To obtain the mixture representation of the cdf of EMOGL, note that for any 0 < u < 1,

uα =

∞∑
i=1

(−1)i

(
α

i

)
(1− u)i =

∞∑
i=1

i∑
k=0

(−1)i+k

(
α

i

)(
i

k

)
uk

=

∞∑
k=0

∞∑
i=k

(−1)i+k

(
α

i

)(
i

k

)
uk =

∞∑
k=0

aku
k,

where ak = ak(α) =
∑∞
i=k(−1)i+k

(
α
i

)(
i
k

)
. By similar argument, we have

[1− (1 +
λ

1 + λ
x)e−λx]α + β

{
1− [1− (1 +

λ

1 + λ
x)e−λx]γ

}
=
∑∞
k=0 bk[1− (1 + λ

1+λx)e−λx]k,

where b0 = a0(α) + β − a0(γ) and bk = ak(α)− βak(γ), for k ≥ 1. Now, using Remark 1, we get

F (x) =
[1− (1 + λ

1+λx)e−λx]α∑∞
k=0 bk[1− (1 + λ

1+λx)e−λx]k

=

∞∑
k=0

ck[1− (1 +
λ

1 + λ
x)e−λx]k+α

=

∞∑
k=0

ckG(x;λ)k+α, (10)

where c0 = 1
b0

and ck = − 1
b2
0

∑k
r=1 brck−r , for k ≥ 1.

The Eq. (10) can be interpreted as a linear combination of generalized Lindley distribution. Using this equation, the
mixture representation of pdf is given by

f(x) =

∞∑
k=0

(k + α) ck g(x;λ)G(x;λ)k+α−1. (11)

3. Mathematical properties

The formulae obtained in this paper can be simply used in some mathematical and statistical software such as Mathematica,
Maple and R. These software be able to deal with complex analytic expressions. To determine mathematical properties of
EMOGL distribution, use of some algebraic expansions can be more efficient than computing these properties directly. In
what follows, we derive the nth moment, kth central moment and moment generating function of EMOGL distribution. In
addition, we provide the nth incomplete moment, mean deviations, Bonferroni and Lorenz curves and present numerical
values of skewness and kurtosis using the first four ordinary moments. First of all, assume that X ∼ EMOGL(λ, α, β, γ).
Using (11), we define

A(a1, a2, a3, a4;λ) =

∫ ∞
0

xa1 (1 + x)a2 e−a3 x
[
1− (1 +

λ

1 + λ
x)e−λx

]a4
dx.

By using generalized binomial expansion it can be shown that

A(a1, a2, a3, a4;λ) =

∞∑
l,r=0

l∑
k=0

(−1)l

(
a4
l

)(
l

k

)(
a2
r

)
(

λ

1 + λ
)l × Γ(a1 + 1 + k + r)

(λ l + a3)a1+1+k+r
. (12)

So, the nth moment of EMOGL distribution is given by

E
[
Xn] =

λ2

1 + λ

∞∑
k=0

(k + α) ck A(n, 1, λ, k + α− 1;λ). (13)
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The central moments µk = E(X − µ)k of EMOGL distribution can be derived from (13) as

µk = E(X − µ)k =

k∑
r=0

(
k

r

)
µ′r(−µ)k−r. (14)

where µ′k = E(Xk), µ = µ′1 = E(X) and k is an integer value.
The mean and variance of X can be particularly obtained using Eq.s (13) and (14). Furthermore, these equations are used

to derive the skewness as

S =
µ3

µ
3/2
2

=
µ′3 − 3µ′2µ

′
1 + 2µ′31

(µ′2 − µ′21 )3/2
,

and the kurtosis as

K =
µ4
µ22

=
µ′4 − 4µ′1µ

′
3 + 6µ′21 µ

′
2 − 3µ′41

µ′2 − µ′21
.

It is to highlight that the Eq. (13) can be easily computed numerically using the mathematical or statistical software. For
this purpose, one can compute this equation for a large natural number, say N , instead of infinity in the sums. Therefore,
several quantities of X such as moments, skewness and kurtosis can be computed numerically using (13). Table 1 shows
numerical values of the first four ordinary moments, skewness and kurtosis of the EMOGL distribution for different values
of parameters λ, α, β, γ. Also, the skewness and kurtosis plots of the EMOGL distribution for selected values of α, β and γ
when λ = 2 are drawn in Figure 2.

Moreover, it is easy to verify that the moment generating function for EMOGL distribution is given by

MX(t) = E
[
et X
]

=
λ2

1 + λ

∞∑
k=0

(k + α) ck A(0, 1, λ− t, k + α− 1;λ).

In order to obtain the nth incomplete moment of the EMOGL distribution let us define

B(a1, a2, a3, a4; y, λ) =

∫ y

0

xa1 (1 + x)a2 e−a3 x
[
1− (1 +

λ

1 + λ
x)e−λx

]a4
dx

=

∞∑
l,r=0

l∑
k=0

(−1)l

(
a4
l

)(
l

k

)(
a2
r

)
(

λ

1 + λ
)l ×

γ(a1 + 1 + k + r, y
λ l+a3

)

(λ l + a3)a1+1+k+r
, (15)

where γ(λ, z) =
∫ z
0
tλ−1 e−t dt stands for the incomplete gamma function. Note that the second equality of (15) is obtained

by generalized binomial expansion. Hence, using (15) the nth incomplete moment of the EMOGL distribution is derived by

mn(y) = E
[
Xn |X < y

]
=

λ2

1 + λ

∞∑
k=0

(k + α) ck B(n, 1, λ, k + α− 1, y;λ). (16)

In what follows, we provide two measures of deviation, i.e. mean deviation about the mean (δ1) and the mean deviation
about the median (δ2). By definition of these measures, it is easy to show that

δ1 (X) = 2µF (µ)− 2

∫ µ

0

x f(x) dx,

and

δ2 (X) = µ− 2

∫ M

0

x f(x) dx,

where M denotes the median of X. Therefore, it can be verified that measures δ1 (X) and δ2 (X) are given by

δ1 (X) = 2µF (µ)− λ2

1 + λ

∞∑
k=0

(k + α)ck A(β, 1, λ, k + α− 1;λ, β),

and

δ2 (X) = µ− 2β λ2

1 + λ

∞∑
k=0

(k + α)ck+1B(β, 1, λ, k + α− 1;M,λ, β).

Stat., Optim. Inf. Comput. Vol. 9, December 2021



M. ALIZADEH, V. RANJBAR, A. EFTEKHARIAN AND O. KHARAZMI 855

Table 1. Moments, skewness, and kurtosis of EMOGL distribution for some parameter values.

α β γ λ µ′1 µ′2 µ′3 µ′4 Skewness Kurtosis

0.5 0.5 0.5 0.5 1.396277 5.928780 40.532130 373.99553 2.663484 51.660924
0.5 0.5 0.5 2.0 0.263184 0.253219 0.4109636 0.9153027 3.136901 3.1176889
0.5 0.5 2.0 0.5 2.452451 15.01126 125.69743 1298.3496 1.658489 55.405829
0.5 0.5 2.0 2.0 0.495022 0.686221 1.3388687 3.2811819 1.919220 3.3068528
0.5 2.0 0.5 0.5 3.067353 17.58323 138.73628 1377.3817 1.482694 49.202303
0.5 2.0 2.0 2.0 1.063595 1.902021 4.2792546 11.456124 0.911271 3.0115553
3.0 1.5 0.5 0.5 4.224679 22.60495 153.88846 1329.7518 1.753745 40.844270
1.5 0.5 2.0 1.5 0.959045 1.622247 3.9336620 12.353666 1.750124 5.2358174
2.0 2.5 1.5 3.0 0.789251 0.858329 1.1827318 1.9781510 1.170519 1.2242069
2.0 0.5 0.5 1.0 1.144500 2.066153 5.6910130 22.502296 2.425476 9.9698970
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Figure 2. The skewness and kurtosis plots of EMOGL distribution for selected values of α, β and γ when λ = 2.

3.1. Bonferroni and Lorenz curves
Bonferroni and Lorenz curves were first presented by Bonferroni [13] and Lorenz [23] to measure the inequality of the
distribution for a random variable, respectively. These curves are widely used in the literature related to some fields such as
reliability, economics, insurance, and etc. The Bonferroni and Lorenz indexes are defined as

B(p) =
1

pµ

∫ q

0

xf(x)dx,

and

L(p) =
1

µ

∫ q

0

xf(x)dx,

respectively, where q = F−1(p) is the quantile function. If X ∼ EMOGL(λ, α, β, γ), then it can be shown that the
Bonferroni curve of the EMOGL distribution is as follows

B(p) =
1

µ p
× β λ2

1 + λ

∞∑
k=0

(k + α)ck B(β, 1, λ, k + α− 1; q, λ, β).
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Moreover, the Lorenz curve of the EMOGL distribution can be easily demonstrated as

L(p) =
1

µ
× β λ2

1 + λ

∞∑
k=0

(k + α)ck B(β, 1, λ, k + α− 1; q, λ, β).

In order to use the Lorenz curve as a measure of inequality of income, one should investigate the area between the Lorenz
curve and the line L(p) = p that is called the area of concentration and such area is important in economics, reliability,
insurance, and medicine.

4. Asymptotic properties and extreme value

In this section, we present some asymptotic properties and extreme values of EMOGL distribution. For simplicity, assume
that F (x), f(x) and h(x) are cdf, pdf, and hrf of EMOGL distribution, respectively. If X1, ..., Xn is a random sample
from EMOGL distribution, then asymptotic properties and extreme values based on the EMOGL distribution are obtained as
follows.

4.1. Asymptotic properties
The asymptotic of cdf, pdf and hrf of the EMOGL distribution as x→ 0 are, respectively, given by

F (x) ∼ (λx)α

β
as x→ 0,

f(x) ∼ αλαxα−1

β
as x→ 0,

h(x) ∼ αλαxα−1

β
as x→ 0.

The asymptotic of cdf, pdf and hrf of the EMOGL distribution as x→∞ are, respectively, as follows

1− F (x) ∼ βγλ

1 + λ
xe−λx as x→∞,

f(x) ∼ βγλ2

1 + λ
xe−λx as x→∞,

h(x) ∼ λ as x→∞.

These equations show the effect of parameters on the tails of the EMOGL distribution.

4.2. Extreme value
If X̄ = (X1 + ...+Xn)/n denotes the sample mean, then by the usual central limit theorem,

√
n(X̄ − E(X))/

√
Var(X)

approaches the standard normal distribution as n→∞. One may be interested in the asymptotic of the extreme values
Mn = max(X1, ..., Xn) and mn = min(X1, ..., Xn). Let τ(x) = 1

λ , we obtain following equations for the cdf in (6) as

lim
t→0

F (t x)

F (t)
= lim
t→0

G(t x)α

G(t)α
= lim
t→0

[
1−

(
1 + λ t x

1+λ

)
e−λ t x

]α
[
1−

(
1 + λ t

1+λ

)
e−λ t

]α = lim
t→0

[
1− e−λ t x

]α
[
1− e−λ t

]α
= lim
t→0

(λ t x)α

(λ t)α
= xα (17)

and

lim
t→∞

1− F (t+ x τ(t))

1− F (t)
= lim
t→∞

1−G(t+ x τ(t))γ

1−G(t)γ
= e−x. (18)
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Thus, from [20], there must be norming constants an > 0, bn, cn > 0 and dn such that

Pr [an(Mn − bn) ≤ x]→ e−e
−x

,

and
Pr [cn(mn − dn) ≤ x]→ 1− e−x

α

,

as n→∞. The form of the norming constants can also be determined. For instance, using Corollary 1.6.3 in [20], one can
see that bn = F−1(1− 1

n ) and an = λ, where F−1(·) denotes the inverse function of F (·).

5. Estimation

Point estimation is the first step of statistical inference on the unknown parameters of the underlying population. In order to
find point estimations there are different methods which the most well-known of them is the maximum likelihood estimation
(MLE) method. In the present paper, we obtain the MLEs of the unknown parameters of the EMOGL distribution. To this
end, let X1, X2, ..., Xn be a random sample from EMOGL(λ, α, β, γ) with observed values as x1, x2, ..., xn. According to
the sample, it is easy to see that the log-likelihood function of (α, γ, λ, β) is as

`n = n log(
β λ2

1 + λ
) +

n∑
i=1

log(1 + xi)− λ
n∑
i=1

xi + (α− 1)

n∑
i=1

log ki

+

n∑
i=1

log(α+ (γ − α)kαi )− 2

n∑
i=1

log(kαi + β(1− kγi )),

where
ki = 1− (1 +

λ

1 + λ
xi)e

−λxi .

By differentiating from the log-likelihood function with respect to the parameters α, γ, λ and β and after simple algebra, we
have

∂`n
∂α

=

n∑
i=1

log ki +

n∑
i=1

1− kγi
α+ (γ − α)kγi

− 2

n∑
i=1

kαi log(ki)

kαi + β(1− kγi )
, (19)

∂`n
∂β

=
n

β
− 2

n∑
i=1

1− kγi
kαi + β(1− kγi )

, (20)

∂`n
∂γ

=

n∑
i=1

kγi
α+ (γ − α)kγi

+

n∑
i=1

(γ − α) kγi log(ki)

α+ (γ − α)kγi
+ 2β

n∑
i=1

kγi log(ki)

kαi + β(1− kγi )
, (21)

∂`n
∂λ

=
2n

λ
− n

1 + λ
−

n∑
i=1

xi + (α− 1)

n∑
i=1

k
(λ)
i

ki
+

n∑
i=1

γ(γ − α)k
(λ)
i kγ−1i

α+ (γ + α)kγi

− 2

n∑
i=1

αk
(λ)
i kα−1i − βγk(λ)i kγ−1i

kαi + β(1− kγi )
, (22)

where

k
(λ)
i =

∂ki
∂λ

= xie
−λxi

[
1 +

λ

λ+ 1
xi +

1

(1 + λ)2

]
.

We denote the MLEs of (α, γ, λ, β), by (α̂, γ̂, λ̂, β̂), where these estimations are derived by solving simultaneously the
equations ∂`n

∂α = 0; ∂`n∂γ = 0; ∂`n∂λ = 0; ∂`n∂β = 0. Since Eq.s (19)-(22) are non-linear with respect to parameters, so we can
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not obtain the explicit expression of (α̂, γ̂, λ̂, β̂). However, by using some numerical iterative techniques we can solve these
equations and compute the global maxima of the log-likelihood. Moreover, using Eq.s (19)-(22), we can present the Fisher
information matrix as follows

I(θ) = −

Iαα Iαγ Iαλ Iαβ
Iγα Iγγ Iγλ Iγβ
Iλα Iλγ Iλλ Iλβ
Iβα Iβγ Iβλ Iββ


where Iii = ∂2`n

∂i2
; Iij = ∂2`n

∂i∂j for any i, j = α, γ, λ, β. According to importance of the Fisher information matrix for interval
estimating, we follow asymptotical properties of the MLEs. Let θ = (α, γ, λ, β)T , then under standard regularity conditions
(see [21, pp. 461-463]),

√
n(θ − θ̂)→d N4(0,K(θ)−1), where θ̂ and K(θ) stand for the MLE of θ and the expected Fisher

information matrix, respectively. The asymptotic behavior will be established provided that K(θ) is substituted by the
observed Fisher information matrix which is multiplied by 1/n, that is I(θ)/n, approximated by θ̂, i.e. I(θ̂)/n.

6. Simulation study

The performance of the maximum likelihood method is evaluated for estimating the EMOGL parameters using a Monte Carlo
simulation study. The mean squared error (MSE) and the bias of the parameter estimates are calculated. We are generated
N = 10, 000 samples of sizes n = 50, 55, ..., 500 from the EMOGL distribution with α = 0.5, β = 2, γ = 1.5, λ = 2.5. We
are applied the following Algorithm 1 for generating random data from EMOGL distribution.

Algorithm 1.

• Step 1. Generate random numbers ui from U ∼ U(0, 1) for i = 1, · · · , n.
• Step 2. Select arbitrary values for parameters of EMOGL distribution, i.e. α, β, γ and λ.
• Step 3. Solve numerically the non-linear equation

ui =

[
1− (1 +

λxβi
1+λ )e−λ xβi

]α
[
1− (1 +

λxβi
1+λ )e−λ xβi

]α
+ β

[
1− (1 +

λxβi
1+λ )e−λ xβi

]γ , (23)

and compute values of xi for i = 1, · · · , n.
• Step 4. Repeat Steps 1 to 3 for N times.
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Figure 3. Estimated biases and MSEs for the selected parameter values.
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To compute the MSE and bias of the MLEs, let (α̂, β̂, γ̂, λ̂) be the MLEs of the new model parameters and (sα̂, sβ̂ , sγ̂ , sλ̂)

be the standard errors of the MLEs. The estimated biases and MSEs are given by

B̂iasξ(n) =
1

N

N∑
i=1

(ξ̂i − ξ)

and

M̂SEξ(n) =
1

N

N∑
i=1

(ξ̂i − ξ)2,

for ξ = α, β, γ, λ. Figure 3 displays the numerical results for the above measures. From Figure 3, the following results are
deduced:

X The estimated biases decrease when the sample size n increases,
X The estimated MSEs tend to zero as n increases,

These results reveal the consistency property of the MLEs.

7. Application

In this section, we investigate the performance of fitting the EMOGL ∼ (λ, α, β, γ) model for two real data sets. The first
data set is the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada, and
the second data set is the failure times components. Furthermore, we consider several other families that proposed in the
literature to compare with the obtained results in this paper. These families are as follows:

• Lindley Distribution, FL(x;λ) = 1− (1 + λx
1+λ )e−λ x.

• Power Lindley distribution, FPL(x;λ, β) = 1− (1 + λxβ

1+λ )e−λ xβ .
• Generalized Lindley, GL(α, λ), (see [27]), with distribution function given by

FGL(x;λ, α) =

(
1− (1 +

λx

1 + λ
)e−λ x

)α
.

• Beta Lindley [25], BL(α, β, λ) , with distribution function

FBL(x;α, β, λ) =
1

B(α, β)

∫ 1−(1+ λ x
1+λ )e

−λ x

0

tα−1(1− t)β−1dt,

where B(α, β) =
∫ 1
0
tα−1 (1− t)α−1 dt denotes the beta function.

• Exponentiated power Lindley distribution [11], EPL(α, β, λ), with distribution function as

FEPL(x;α, β, λ) =

(
1− (1 +

λxβ

1 + λ
)e−λ xβ

)α
.

• Odd log-logistic power Lindley distribution [3], OLL− PL(α, β, λ), with distribution function given by

FOLL−PL(x;α, β, λ) =
(1− (1 + λxβ

1+λ )e−λ xβ )α

(1− (1 + λxβ

1+λ )e−λ xβ )α + [1− (1− (1 + λ xβ

1+λ )e−λ xβ )]α
.

• Kumaraswamy Power Lindley [24], KwPL(α, β, γ, λ), has distribution function as follows

FKwPL(x;α, β, γ, λ) = 1−
[
1− (1− (1 +

λxβ

1 + λ
)e−λ xβ )α

]γ
.
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• Odd Burr-Power Lindley [7], OBu− PL(α, β, γ, λ), with distribution function

FOBu−PL(x;α, β, γ, λ) = 1−

(
1−

(1− (1 + λxβ

1+λ )e−λ xβ )α

(1− (1 + λxβ

1+λ )e−λ xβ )α + (1− (1− (1 + λ xβ

1+λ )e−λ xβ ))α

)β
.

• Extended generalized Lindley [28], EGL(α, γ, λ), has distribution function as

FEGL(x;α, γ, λ) =
(1− (1 + λx

1+λ )e−λ x)α

(1− (1 + λx
1+λ )e−λ x)α + 1− (1− (1 + λ x

1+λ )e−λ x)γ
.
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Figure 4. Fitted densities and distribution functions for the first data set.

For both data sets, the MLEs of unknown parameters, Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), Cramer Von Mises and Anderson-Darling statistics (W ∗ and A∗) are computed for the EMOGL and all the above
distributions. Moreover, the Kolmogorov-Smirnov (K-S) statistic with its corresponding p-value and the maximized log-
likelihood function (l(ξ̂, x)) are considered. All of the computations were carried out using the software R.

7.1. First application

The first data are the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada.
The data consist of 72 exceedances for the years 1958-1984 rounded to one decimal place and exist in Table 2. These data
were analyzed in [2].
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Table 2. The first data set.

1.70 2.20 14.4 1.10 0.40 20.6 5.30 0.70 1.90 13.0 12.0 9.30 1.40
18.7 8.50 25.5 11.6 14.1 22.1 1.10 2.50 14.4 1.70 37.6 0.60 2.20
39.0 0.30 15.0 11.0 7.30 22.9 1.70 0.10 1.10 0.60 9.00 1.70 7.00
20.1 0.40 2.80 14.1 9.90 10.4 10.7 30.0 3.60 5.60 30.8 13.3 4.20
25.5 3.40 11.9 21.5 27.6 36.4 2.70 64.0 1.50 2.50 27.4 1.00 27.1
20.2 16.8 5.30 9.70 27.5 2.50 27.0

Table 3. Parameter ML estimates and their standard errors (in parentheses) for the first data set.

Model α β γ λ

Lindley(λ) – – – 0.153 (0.0128)
GL(α, λ) 0.508 (0.0767) – – 0.104 (0.01491)
PL(β, λ) – 0.700 (0.0570) – 0.338 (0.0559)
BL(α, β, λ) 0.555 (0.0983) 0.274 (0.2397) – 0.333 (0.2723)
EPL(α, β, λ) 0.730 (0.2351) 0.915 (0.5956) – 0.300 (0.2791)
OLLPL(α, β, λ) 0.557 (0.1781) 1.073 (0.2447) – 0.154 (0.0915)
KwPL(α, β, γ, λ) 1.675 (2.4335) 0.453 (0.4323) 7.563 (11.7366) 0.279 (0.5225)
OBuPL(α, β, λ) 0.611 (0.0680) 0.904 (0.4550) – 0.200 (0.0926)
EGL(α, γ, λ) 0.618 (0.1018) – 2.770 (1.7047) 0.169 (0.0288)
EMOGL(α, γ, λ) 0.737 (0.1158) 0.517 (0.1706) 3.574 (1.8853) 0.152 (0.0288)

The MLEs of unknown parameters and the goodness-of-fit test statistics for the first data set are presented in Tables 3 and
4, respectively. One can easily observe that the smallest values of AIC, BIC, A∗, W ∗ and−l statistics and the largest p-value
belong to the EMOGL distribution. Therefore, the EMOGL distribution has better performance than the other considered
competitors based on these criteria.

Table 4. Goodness-of-fit test statistics for the first data set.

Model AIC BIC p− value W ∗ A∗ −l
Lindley(λ) 530.423 532.700 0.001 0.139 0.852 264.211
GL(α, λ) 509.349 513.902 0.276 0.132 0.822 252.674
PL(β, λ) 508.443 512.996 0.405 0.123 0.766 252.103
BL(α, β, λ) 510.206 517.036 0.297 0.150 0.866 252.221
EPL(α, β, λ) 510.425 517.255 0.395 0.147 0.854 252.212
OLLPL(α, β, λ) 507.937 514.767 0.471 0.093 0.592 250.968
KwPL(α, β, γ, λ) 512.221 521.328 0.371 0.152 0.866 252.110
OBuPL(α, β, λ) 507.990 514.820 0.401 0.098 0.617 250.995
EGL(α, γ, λ) 508.931 515.761 0.174 0.101 0.662 251.465
EMOGL(α, γ, λ) 506.768 515.875 0.780 0.056 0.365 248.163

In addition, the likelihood ratio (LR) test is applied to compare the EMOGL distribution with its sub-models. For
example, a testing hypothesis of H0 : β = 1 versus H1 : β 6= 1 is equivalent to compare the EMOGL distribution with EGL
distribution. To investigate this testing hypothesis, the LR statistic can be computed by the following equation

LR = 2
[
l(α̂, β̂, γ̂, λ̂)− l(α̂∗, 1, γ̂∗, λ̂∗)

]
,
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Table 5. The LR test results for the first data set.

Hypotheses LR p-value
EMOGL versus Lindley H0 : α = β = γ = 1 34.0966 < 0.0001
EMOGL versus GL H0 : α = γ, β = 1 11.0223 0.004
EMOGL versus MOL H0 : α = γ = 1 24.2439 < 0.0001
EMOGL versus MOGL H0 : α = γ 7.6962 0.0055
EMOGL versus EGL H0 : β = 1 4.0458 0.0442
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Figure 5. Probability plots for the first data set.

where α̂∗, γ̂∗, and λ̂∗ are the MLEs of α, γ, and λ, obtained under H0, respectively. Under H0 and by considering the
regularity conditions, the LR test statistic converges to χ2r in distribution, where r is equal to difference between the number
of parameters estimated under H0 and the number of parameters estimated in general, that is, under H0 : β = 1, we have
r = 1.

Table 5 gives values of the LR statistics with their corresponding p-values. From Table 5, we can see that the obtained
p-values are too small so, we can reject all the null hypotheses. In other words, based on the LR criterion we conclude that
fitting of the EMOGL has better performance than the considered sub-models for the first data set. Also, the fitted pdfs,
cdfs and P-P plots of the considered models for the sake of visual comparison are provided in Figures 4 and 5, respectively.
Figure 4 suggests that the EMOGL fits the skewed data very well. Figures 5 shows that the plotted points for the EMOGL
distribution best capture the diagonal line in the probability plots. Therefore, the EMOGL distribution can be considered as
an appropriate model for fitting the first data set.
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Figure 6. Fitted densities and distribution functions for the second data set.

Table 6. The second data set.

0.032 0.035 0.104 0.169 0.196 0.260 0.326 0.445 0.449 0.496 0.543
0.544 0.577 0.648 0.666 0.742 0.757 0.808 0.857 0.858 0.882 1.138
1.163 1.256 1.283 1.484 1.897 1.944 2.201 2.365 2.531 2.994 3.118
3.424 4.097 4.100 4.744 5.346 5.479 5.716 5.825 5.847 6.084 6.127
7.241 7.560 8.901 9.000 10.482 11.133

7.2. Second application
The second data set represents the failure times of 50 components, [26, p. 220]. The data set is reported in Table 6. The
MLEs of the unknown parameters and the goodness-of-fit test statistics for the second data set are presented in Tables 7
and 8, respectively. It is easy to see that the EMOGL distribution has smaller values of the AIC, BIC, A∗, W ∗ and −l
statistics than that of the other considered distributions. Moreover, the largest p-value belongs to the EMOGL distribution
in Table 8. Hence, the EMOGL distribution outperforms the other considered competitors on the basis of these criteria.
These conclusions can also be drawn visually in Figures 6 and 7. Furthermore, the values of the LR statistics with their
corresponding p-values are reported in Table 9. From Table 9, we observe that the computed p-values are too small in
comparison with their counterparts so, we can reject all the null hypotheses. That is, accordingly the LR criterion we deduce
that fitting of the EMOGL is more efficient than the considered sub-models for the second data set.
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Table 7. Parameter ML estimates and their standard errors (in parentheses) for the second data set.

Model α β γ λ

Lindley(λ) – – – 0.565 (0.0585)
GL(α, λ) 0.622 (0.1143) – – 0.435 (0.0709)
PL(β, λ) – 0.759 (0.0792) – 0.770 (0.1088)
BL(α, β, λ) 0.660 (0.1407) 0.409 (0.5014) – 0.947 (1.0566)
EPL(α, β, λ) 0.937 (0.6390) 0.682 (0.2687) – 0.937 (0.6390)
OLLPL(α, β, λ) 0.623 (0.2296) 0.698 (0.2916) – 0.623 (0.2296)
KwPL(α, β, γ, λ) 1.329 (0.8622) 0.533 (0.9283) 0.691 (0.2407) 1.485 (1.7167)
OBuPL(α, β, λ) 0.707 (0.0813) 1.417 (1.0283) – 0.468 (0.3014)
EGL(α, γ, λ) 0.619 (0.1068) – 0.414 (0.4174) 0.381 (0.1489)
EMOGL(α, γ, λ) 1.158 (0.2085) 0.388 (0.1345) 14.14 (12.261) 0.701 (0.1488)

Table 8. Goodness-of-fit test statistics for the second data set.

Model AIC BIC p− value W ∗ A∗ −l
Lindley(λ) 215.880 217.792 0.012 0.135 0.741 106.941
GL(α, λ) 210.574 214.398 0.333 0.139 0.757 103.287
PL(β, λ) 209.629 213.453 0.510 0.108 0.606 102.814
BL(α, β, λ) 212.145 217.881 0.337 0.131 0.716 103.072
EPL(α, β, λ) 211.548 217.284 0.555 0.099 0.566 102.774
OLLPL(α, β, λ) 211.023 216.759 0.414 0.122 0.656 102.511
KwPL(α, β, γ, λ) 213.460 221.108 0.630 0.092 0.536 102.730
OBuPL(α, β, λ) 210.778 216.514 0.523 0.115 0.621 102.389
EGL(α, γ, λ) 212.404 218.140 0.443 0.128 0.704 103.202
EMOGL(α, γ, λ) 205.893 213.541 0.978 0.022 0.167 98.9467

Table 9. The LR test results for the second data set.

Hypotheses LR p-value
EMOGL versus Lindley H0 : α = β = γ = 1 15.98658 0.00112
EMOGL versus GL H0 : α = γ, β = 1 8.680934 0.01303
EMOGL versus MOL H0 : α = γ = 1 9.271497 0.00969
EMOGL versus MOGL H0 : α = γ 6.54374 0.01052
EMOGL versus EGL H0 : β = 1 3.064931 0.07999

8. Bayesian estimation

Bayesian inference procedure has been taken into consideration by many statistical researchers, especially researchers in the
field of survival analysis and reliability engineering. In this section, a complete sample data is analyzed through Bayesian
point of view. We assume that the parameters α, β, γ and λ of EMOGL distribution have independent prior distributions as

α ∼ Gamma(a, b), γ ∼ Gamma(c, d), λ ∼ Gamma(e, f), β ∼ Gamma(g, h)

where a,b,c,d,e, f , g and h are positive. Hence, the joint prior density function is formulated as follow:

π(α, β, γ, λ) =
badcfehg

Γ(a)Γ(c)Γ(e)Γ(g)
αa−1βh−1γc−1λe−1e−(bα+hβ+dγ+fλ). (24)
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Figure 7. Probability plots for the second data set.

In the Bayesian estimation, according to that we do not know the actual value of the parameter, we may be adversely affected
by loss when we choose an estimator. This loss can be measured by a function of the parameter and corresponding estimator.

Five well-known loss functions and associated Bayesian estimators and corresponding posterior risk are presented in Table
10. For more details see [15], [19] and [18]. In the next, we provide the posterior probability distributions for a complete

Table 10. Bayes estimator and posterior risk under different loss functions

loss function Bayes estimator Posterior risk

L1 = SELF = (θ − d)2 E(θ|x) V ar(θ|x)
L2 =WSELF = (θ−d)2

θ (E(θ−1|x))−1 E(θ|x)− (E(θ−1|x))−1

L3 =MSELF =
(
1− d

θ

)2 E(θ−1|x)
E(θ−2|x) 1− E(θ−1|x)2

E(θ−2|x)

L4 = PLF = (θ−d)2
d

√
E(θ2|x) 2

(√
E(θ2|x)− E(θ|x)

)
L5 = KLF =

(√
d
θ −

√
θ
d

) √
E(θ|x)
E(θ−1|x) 2

(√
E(θ|x)E(θ−1|x)− 1

)
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data set. Let we define the function ϕ as

ϕ(α, β, γ, λ) = αa−1βh−1γc−1λe−1e−(bα+hβ+dγ+fλ), α > 0, β > 0, γ > 0, λ > 0.

The joint posterior distribution in terms of a given likelihood function L(data) and joint prior distribution π(α, β, γ, λ)
defined as

π∗(α, β, γ, λ|data) ∝ π(α, β, γ, λ)L(data). (25)

Hence, we get joint posterior density of parameters α, β, γ and λ for complete sample data by combining the likelihood
function and joint prior density (24). Therefore, the joint posterior density function is given by

π∗(α, β, γ, λ|x) = Kϕ(α, β, γ, λ)L(x, ξ) (26)

where

L(x; ξ) =

n∏
i=1

β λ2(1 + xi)e
−λ xi

[
1− (1 + λxi

1+λ )e−λ xi

]α−1 {
α+ (γ − α)

[
1− (1 + λxi

1+λ )e−λ xi

]γ}
{[

1− (1 + λxi
1+λ )e−λ xi

]α
+ β

[
1− (1− (1 + λxi

1+λ )e−λ xi)γ
]}2

. (27)

and K is given as

K−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, γ, λ)L(x, ξ)dαdβdγdλ.

It is clear from the equation (26) that there is no closed form for the Bayesian estimators under the Five loss functions
described in Table 10, so we suggest using anMCMC procedure based on 10000 replicates to compute Bayesian estimators.
The corresponding Bayesian point and interval estimation and posterior risk are provided in Tables 11 and 12 for flood peaks
data set. Table 12 provides 95% credible and HPD intervals for each parameter of the EMOGL distribution. The posterior
samples extracted by using Gibbs sampling technique. Moreover, we provide the posterior summary plots in Figures 8 and
9. These plots confirm that the sampling process is of prime quality and convergence is occurred.

Table 11. Bayesian estimates θ̂ and their posterior risks r
θ̂

of the parameters under different loss functions based on the flood
peaks data.

Data Flood peaks

Bayesian estimation

Loss function α̂ (rα̂) β̂ (r
β̂
) γ̂ (rγ̂) λ̂ (r

λ̂
)

SELF 0.3019 (0.0067) 3.7853 (0.6092) 0.0415 (0.0003) 0.0886 (0.0003)
WSELF 0.2804 (0.0216) 3.6237 (0.1616) 0.0346 (0.0068) 0.0858 (0.0028)
MSELF 0.2588 (0.0769) 3.4609 ( 0.0449) 0.0277 (0.2012) 0.0829 (0.0342)
PLF 0.3128 (0.0218) 3.8649 (0.1593) 0.0449 (0.0068) 0.0900 (0.0027)
KLF 0.2909 (0.0755) 3.7036 ( 0.0441) 0.0379 (0.1886) 0.0872 (0.0325)

Analogous Bayesian results for Failure times data set are provided in Tables 13 and 14. Moreover, the corresponding
associated Figures are provided by Figures 10 and 11.

9. Conclusion

In present paper, a new distribution which is called extended Marshal-Olkin generalized Lindley (EMOGL) was introduced.
This distribution was included some important distributions as special cases such as extended generalized Lindley, Marshall-
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Figure 8. Plots of Bayesian analysis and performance of Gibbs sampling for the flood peaks data set. Trace plots of each
parameter of EMOGL distribution.
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Figure 9. Plots of Bayesian analysis and performance of Gibbs sampling for the flood peaks data set. Autocorrelation plots
of each parameter of EMOGL distribution.

Olkin Lindley and Marshall- Olkin generalized Lindley. Some mathematical properties and asymptotic behavior of the new
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Table 12. Credible and HPD intervals of the parameters α, β, γ and λ for the flood peaks.

Credible interval HPD interval
α (0.243, 0.350 ) (0.149, 0.451)
β (3.254, 4.282) (2.298, 2.298)
γ (0.030, 0.051) (0.012, 0.074)
λ (0.078, 0.099) (0.058, 0.117)

Table 13. Bayesian estimates θ̂ and their posterior risks r
θ̂

of the parameters under different loss functions based on the
failure times.

Data Failure times

Bayesian estimation

Loss function α̂ (rα̂) β̂ (r
β̂
) γ̂ (rγ̂) λ̂ (r

λ̂
)

SELF 1.3235 (0.00022) 0.30888 (0.00005) 8.5471e-06 (9.07e-11) 0.013459 (7.06e-06)
WSELF 1.3233 (0.00017) 0.30869 (0.00019) 5.6692e-06 (2.87e-06) 0.013024 (0.00043)
MSELF 1.3231 (0.00013) 0.30849 (0.00064) 4.2564e-06 (0.2492) 0.012672 (0.02702)
PLF 1.3236 (0.00017) 0.30898 (0.00019) 1.2801e-05 (8.50e-06) 0.013719 (0.00052)
KLF 1.3234 (0.00013) 0.30879 (0.00063) 6.9609e-06 ( 0.45571) 0.013239 ( 0.03312)
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Figure 10. Plots of Bayesian analysis and performance of Gibbs sampling for the Failure times data set. Trace plots of each
parameter of EMOGL distribution.
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Figure 11. Plots of Bayesian analysis and performance of Gibbs sampling for the Failure times data set. Autocorrelation
plots of each parameter of EMOGL distribution.

Table 14. Credible and HPD intervals of the parameters α, β, γ and λ for the Failure times.

Credible interval HPD interval
α (1.321, 1.329) (1.289, 1.345)
β (0.304, 0.315) (0.2923, 0.3198)
γ (5.8e-06, 9.8e-06) (2.486e-06, 1.713e-05)
λ (0.011, 0.013 ) (0.0108, 0.0189)

distribution were provided. These properties were shown the EMOGL distribution has considerable flexibility. Moreover,
the MLEs of EMOGL parameters and asymptotic distribution based on the MLEs were presented using Fisher information
matrix. Furthermore, a simulation study was carried out to evaluate the efficiency of obtained MLEs and it was illustrated
the good performance of these estimations. In addition, the EMOGL distribution was compared with some other extended
distributions of Lindley such as generalized Lindley, Beta Lindley, exponentiated power Lindley and odd log-logistic power
Lindley using two real data sets. Using these real data sets, it was shown numerically that the EMOGL has better performance
and high flexibility in comparing to other extended distributions of Lindley which were considered. Finally, the Bayesian
estimation and Gibbs sampling procedure for the considered data sets were discussed.
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