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Abstract Convolutional Neural Network (CNN) is a component of Deep Learning(DL) recently exploited in different
fields. In this work, we improve the performance of multi-label classification based on CNN for remote sensing images
of aircraft types. Intensive preprocessing limits the classification rate in previous studies. In order to avoid under-fitting and
over-fitting problems, we optimized the architecture and Network parameters. To validate our method the recent public image
dataset called Multi-Type Aircraft Remote Sensing Images (MTARSI) is used. Extensive experiments prove the effectiveness
of the proposed method in terms of classification rate.
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1. Introduction

Image classification is one of the most important field of computer vision and machine learning. Assigning
automatically predefined labels to images is that the aim of image classification. One of the important issues
in remote sensing image processing is aircraft type classification, and it has been widely used in civil and
military applications. To solve this issue, researchers have designed and implemented several methods for the
image’s classification. Machine learning(ML) has emerged united of the foremost successful artificial intelligence
techniques and has achieved impressive performance within the field of computer vision and image processing,
with applications like image medical classification [1][2], remote sensing image scene classification[3], aircraft
detection [17] , and aircraft classification [5]. All algorithms in ML are based on many handcrafted features
available from images for doing the classification; those methods are named also handcraft descriptors in
classification. Recently in remote sensing image classification based on DL is growing. It has been widely applied
in diverse areas study, including vegetated areas, urban areas, wetlands, and forest areas[6] . As a result, the details
of ground objects, such as contour, structure, and texture information, can be obtained conveniently. Among DL
algorithms used in classification, CNN have gained popularity. Since 2012, CNN has attracted more attention
because of the increasing computing power, availability of lower-cost hardware, open-source algorithms, and the
rise of big data [7] . Getting deeper is an important typical trend of CNN [8] . By increasing depth, CNN can
approximate the target function with increased non-linearity and get better descriptor representations. However,
the complexity of the network is increasing, which makes the network more difficult to optimize and easier to get
under-fitting or over-fitting. The main contributions of this work can be summarized as follows:
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• CNN structure is designed to increase classification rate;
• The underfitting and overfitting are reduced by optimizing the parameters in training and testing of the model.

The rest of this paper is organized as follows. In Section 2, we briefly review the related work. The Dataset MTARSI
and CNN model of deep learning are presented in Section 3, whereas Section 4 results and discussion are largely
explained. The paper is ended with a conclusion in section 5.

2. Related Work

Initially, the modern CNN is presented in [9]. The authors developed a multi-layer artificial neural network called
LeNet-5 that could classify handwritten digits[10]. Subsequently, many CNN models have been proposed to
classify images and have been considered in different topics for images. Previous research projects are studied for
three typical CNN application cases in remote sensing image classification: scene classification, object detection
and object segmentation are presented [11]. Due to the state-of-the-art in image classification using CNN such
as VGG [12], GoogLeNet [8], ResNet[13], DenseNet [14], and EfficientNet[15] were successfully applied to the
ImageNet dataset available on line[16]. Recognition of the aircraft from remote sensing images focuses on deciding
whether an object is an aircraft or not based on reinforcement learning and convolutional neural networks[17]. Wu
and Prasad suggested a recurring neural network in which some convolutional layers are followed by recurring
layers. Middle level and locally invariant descriptors are extracted from raw HSI, and spectral context features
are extracted from the descriptors generated by convolutional layers [18]. Fu et al. propose a fine-grained aircraft
recognition method for remote sensing images. Their multi-class activation mapping uses two sub networks, the
target net and the object net, to fully use the descriptors of discriminative object parts[19]. Zhao et al. propose
the aircraft type recognition issue by detecting the landmark points of an aircraft usng a vanilla network designed
a keypoint detection model based on CNN and a keypoint matching method to recognize aircraft, transforming
the aircraft recognition issue into the landmark detection problem[?] . All of the above works have been trained
and tested using different dataset. The only common point is the scene classification with intensive preprocessing,
which consequently affects the performance of the systems proposed. Zhi-Ze Wu et al. examined the performance
of five state-of-the-art CNN structures namely VGG, GoogLeNet, ResNet, DenseNet, and EfficientNet and found
that the result that EfficientNet is better than others in term of classification rate [21]. Marmanis et al. used a
CNN pretrained from the ImageNet challenge and used it to extract an initial set of representations for Earth
observation classification[22]. These methods for identifying the object type from remote sensing images have
achieved significant results, but there are still many challenges. In the literature, there are numerous variants of
CNN architectures with huge parameters that need to be adapted for each case studied.

3. Proposed Approach

This section provides information on the MTARSI data set used in this work, a detailed description of the evaluated
network architecture is provided below

3.1. Dataset

Database available in the literature are divided into three groups based on three of the basis of classification tasks:
scene classification, object detection and object segmentation. Among this Dataset, MTARASI dataset has the
advantage that labeled images include a single type of aircraft in different orientations. The MTARSI dataset was
used for training and testing our proposed method. It is an open-source dataset for Aircraft Type Recognition from
Remote Sensing. The MTARSI dataset contains a total of 9,385 remote sensing images that were taken from Google
Earth satellite images and manually expanded. It contains 20 different types of aircraft and different sizes covering
36 airports. Each image contains exactly one complete labeled aircraft. The spatial resolution of the images varies
in a range of 0.3 to 1, and contains various orientations, aspect ratios, and pixel sizes of the objects. In addition, the
images vary depending on to the altitude, nadir-angles of the satellites, and the illumination. Some image patches
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have some cropped objects, and some examples are black and white images. These variations in the MTARSI allow
the trained aircraft classification architectures to achieve similar performance in different image conditions. The
aircraft may differ on type and model as illustrated in Figure 1, where a sample of image aircraft types extracted
from MTARSI dataset is depicted.

Figure 1. MTARSI dataset samples.

3.2. Convolutional Neural Network Architecture

A mathematical model function for a neural network can be viewed as input x to output values y. In supervised

Figure 2. Network function model.

classification, the function ψ assigns an input data to a given set of a predefined classes in the output. Classification
problem can be described more formally, given a training set of data, the objective is to learn a function ψ called a
hypothesis, so that ψ(x) is an optimal predictor for the corresponding value of y. In dataset MATRASI used in this
work, we have extracted N = 8779 total images. Each image is 200× 200 pixels, then each image is represented as
D = 200× 200× 3 = 120.000 distinct values, and a total of C=20 class labels for aircraft.

y = ψ(x) (1)

where y ∈ {c1, c2, ..., c20} and x ∈ {1, ..., 120000} The loss function is the cross entropy between the predicted
probability and the true label y; it measures the error by comparing the target label vector y and the predicted label
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vectors ŷ. For N training samples, Loss function is defined as

L(y, ŷ) =
1

N

N∑
i=1

yi log ŷi (2)

The cross-entropy loss is numerically stable in training and is faster in term of convergence rate when coupled
with softmax normalization [23]. Loss function is used in the training process to find the parameter values for
model proposed. The loss is returned on training and testing process and its interpretation is how well the model
is doing for these two process. DL architectures have been developed and have been applied in different fields
and have performed several algorithms in visual recognition. The structure of CNNs allows the model to learn
highly abstract feature detectors and to map the input descriptors into representations that can clearly outperform
the performance of the subsequent example. The AlexNet structure contains filters of 11× 11, the recent trends to
wards using smaller filters. The ResNet architecture does not contain filters larger than 3× 3. The advantage of the
CNN is its flexibility to add or reduce the number of layers in its structure for a given task. Furthermore, there are
many optional techniques that can be used to train it. The CNN design is depicted in Figure 3. Generally, a CNN

Figure 3. CNN design.

mainly consists of three parts: convolutional layers, pooling layers, and fully connected layers.

3.2.1. Convolutional layers It has a nonlinear sufficiently intense and will not be able to model the response
variable (as a class label). The convolutional layer computes the output feature map:

ys =

q∑
i=1

W s
i ∗ xi + b (3)

where ∗ is a two-dimensional discrete convolution operator,W s is weight and b is a bias parameter. The parameters
weight W s and bias vector b are adjusting in training process.

3.2.2. Nonlinear layer in this layer, a nonlinear function applied to each component of a mapped component. The
nonlinear layer is added after each convolution operation. It has an activation function that effects the nonlinear
property. The output of ReLu is the maximum value between zero and the input value. The main advantage of using
the ReLU function over other activation functions is that it does not activate all the neurons at the same time and
ReLU train several times faster than their equivalents with other units. Rectified Linear Unit (ReLU) is commonly
chosen and defined as :

ReLu(x) = max(0, x) (4)
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3.2.3. Pooling Layer it follows a convolutional layer and it is used to reduce the dimensionality of feature maps
and improve the robustness of the extracted features. This allows us to reduce the number of parameters, which
both decrease the training time and avoid over-fitting. It is usually placed between two convolutional layers. There
are two types of basic pooling operation which are the most commonly used: average pooling and max pooling.
Detailed theoretical analysis can be found in [7]. Max pooling returns the maximum value from the portion of the
image covered by the Kernel.

3.2.4. Fully connected layer In this layer, the output maps of the last convolution layer or pooling layer are
flattened into vectors, serving as the inputs to the first fully connected layer. The output of the final fully connected
layer is the learned feature, forming the result of which is extracted from the input image by the convolutional
network. In the training of the model, the flattened output is fed to a feed-forward neural network whose back
propagation algorithm is applied to each iteration [24]. Over a fixed number of epochs, the model is able to
distinguish between dominating and certain low-level descriptors in images and classify them using the softmax
function used in classification technique. Softmax is usually used in the multi-classification tasks defined below :

f(x) =
e(xi)∑
i e

(xi)
(5)

Softmax function returns value in the range [0,1], it can be viewed as form of a probability distribution. It defines
a flexible learning task with adjustable margin[25].

4. Experiment Results and Discussions

For implementation, we used a PC with an HP i5 8th generation CPU processor 1.80GHz, 4 Go RAM, ×64, with
Python 3.7 for Windows 10 in Keras environment.

4.1. Data Preprocessing

In this study, 8779 images were extracted from the MATRASI dataset libeled in 20 classes of aircraft. Before
training our CNN, because all image are in different sizes all image were resized to the size of 200× 200; and
normalized using ImageDataGenerator function. This method consists on dividing all the pixels of the image by
255 to range min-max values between 0 and 1. Once we have images loaded, we put them into a CNN that does
the classification.

4.2. Model adopted

After data preprocessing process, the model built contains 3 convolution layers paired with a batch normalization,
three max-pooling layers and a fully connected layer with 2 hidden layers. Each three convolution layers is
accompanied by a pooling layer. There are 20 final output nodes at the end of the CNN. Each node represents
an aircraft type. The CNN model proposed in this work is shown in Figure 4. Our CNN architecture has more
than 8 million parameters. After several experiences as aim to increase the classification rate and avoid overfit and
underfit, the CNN structure built has 3 convolution layers paired with a batch normalization and 3 Max pooling
layers followed by 2 fully connected layers. The output is a score matrix for the weights for each class. Each filter
has a kernel size of 3× 3.

4.3. Training and Testing Process

After building the CNN, it was trained on 8,779 images for 20 epochs with batch size of 128, compiled with
categorical crossentropy loss function and RMS optimizer with the learning rate 0.0001. RMSprop is a gradient
based optimization technique; it was developed as a stochastic technique for mini-batch learning [26]. The
classification rate or accuracy is one metric used to measure how often the algorithm classifies an image correctly
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Figure 4. Structure of CNN adopted.

and defined as

Accuracy =
Correct predictions

All predictions
(6)

After training process, our system was tested on 2,122 images selected randomly in file image training dataset. The
following graphs in figure 5 shows the accuracy and loss vs the number of epochs in training and testing model.
As we can see in Figure 5, the accuracy plots at each epoch shows that our model suffer little from over-fitting.

Figure 5. Training and testing accuracy vs epochs in left and in right Loss training and testing vs epochs.

Beyond an epoch 10, the test accuracy is slightly lower than the training accuracy. This implies that our model
proposed obtains better performance with less complexity when we choose. The highest test accuracy is reached
from epoch 10 and does not increase. And we can see, beyond epoch 10, the loss test and train decrease. The highest
test accuracy at all the epochs is reported as the best score 99.90%. Compared to other algorithms developed by
researchers using the same MTARSI dataset is presented in Table 1 in term of average accuracy related to all epoch.

5. Conclusion

An approach based on convolutional neural networks for the multi-classification of aircraft type is presented. The
empirical results indicated that our approach provides superior results on MTARSI data sets. Classification rate
(90,66%) is a good result obtained with only normalization data augmentation and without model regularization.
CNN have been shown to be very powerful for image analysis and classification tasks in other field. In the future,
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Table 1. Comparison Result of proposed method.

Method Accuracy(%)
VGG 87,66
GoogLeNet 86,53
ResNet 89,6
DensNet 89,15
EfficientNet 89,79
Our approach 90,66

other techniques may be considered such as data augmentation to add more training images and develop better
aircraft classification methods.
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