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Abstract This paper presents the discrete search technique on multi zones to detect a lost target by using k sensors. The
search region is divided into k zones. These zones contain an equal number of states (cells) not necessarily identical. Each
zone has a one sensor to detect the target. The target moves over the cells according to a random process. We consider
the searching effort as a random variable with a known probability distribution. The detection function with the discounted
reward function in a certain state j and time interval i are given. The distribution of the optimal effort that minimizes the
probability of undetection is obtained after solving a discrete stochastic optimization problem. An algorithm is constructed
to obtain the optimal solution as in the numerical application.
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1. Introduction

The searching for the lost targets which are either fixed or moving, is vital in numerous regular citizen and military
applications. For example, the decision of penetrating profundities in the quest for an underground mineral, looking
for the lost submarines and boats on or under the ocean, looking for a school of fish and searching for a plane in
the sky [1–3]. The search theory has been studied in many variations. When the target is fixed or moves randomly
on the real line, we get the so called linear search problem. This problem has an important application in our
life. It might emerge in numerous true circumstances, for example, looking for a broken unit in a huge straight
framework (electrical cables, phone lines and mining framework), searching for some data in a memory of PC
tapes, etc., (see [4–12]. When the target is very important, we use the cooperative search technique. In an earlier
work, this technique is used to maximize the probability of the target detection as in [13–21]. Many authors have
been succeeded to apply the idea of the cooperative techniques on the plane and space, see [22–27, 41, 42]. The
readers can find different techniques and models to detect the lost target in [28–36]. The main purpose of these
different techniques is finding the target in minimum cost and with maximum probability. More recent search
models to detect the lost targets can be found in [44, 45].

Sometimes the search region has various natural factors and we have a difficulty to apply the above techniques.
Thus, the experts in this field divided the search region to a set of states (may be identical or not). In [38–40], the
search region is divided into a finite set of square and identical cells. The lost target is randomly moving over these
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cells. They also studied a special case when the target is hidden in one cell of them. On the other hand, in [41] the
search area is divided into hexagonal cells. They introduced an algorithm for the optimal search path.

In this paper, the search region is divided into k zones. These zones contain an equal number of cells not
necessarily identical. Each zone contains m cells. There are k sensors, where each zone has one sensor Ŝ. The
lost target is assumed to be in one of several km-states (cells). The sensor searches for this target during the time
intervals i = 1, 2, · · · , X . After the searching in any state, the sensor switch without any delay to another state
in its zone. Also, we apply the discounted effort reward function which used in [38]. The main objective is to
minimize the searching effort and maximize the probability of detection.

This paper is organized as follows: Section 2 presents the formulation of our model. Section 3 gives the minimum
search effort after solving a difficult discrete stochastic optimization problem under the effect of the discounted
effort reward function. We construct an algorithm to get this solution numerically as in Section 4. This numerical
solution appears in Section 5 for a real life application. Section 6 discusses the results and the future work.

2. Model Formulation

To accelerate the target finding of the lost target in a region of varied terrain, we should divided it into a group of
zones.

The space of search: The search region is divided into k zones. These zones contain an equal number of states
(cells) not necessarily identical, see Figure 1. Each zone contains m cells.

The means of search: To conduct the search technique within the cells, we need k sensors where each zone has
one sensor Ŝ to explore it.

The target: It is assumed to be in one of several km-states (cells) not necessarily identical states. The sensor
searches for this target during the time interval i. After the search in any state, the sensor switch without any
delay to another state in its zone. Any sensor of them must distribute his effort among its states in such a manner
as to minimize the probability of undetection. The target occupies one state during each of X times intervals.
The probabilities that the target exists in state j in zone s at time interval i is denoted by pijs, j = 1, 2, · · · ,m,

s = 1, 2, ..., k. The Effort is given by 0 ≤ Li(W ) ≤
k∑̂

S=1

V
(Ŝ)
i which will be distributed among the states and its

value bounded by a random variable
k∑̂

S=1

V
(Ŝ)
i . The allocation of all search effort is W (Ŝ)

ijs , where i = 1, 2, · · · , X ,

j = 1, 2, · · · ,m, Ŝ = s = 1, 2, · · · , k, which gives the effort to be put in state j in zone s at time interval i by the
sensor Ŝ.

We call W = (W
(1)
ij1 ,W

(2)
ij2 , · · · ,W

(k)
ijk ) be a search plan. The conditional probability of detecting the target at

time i with W (Ŝ)
ijs amount of effort given that the target is located in state j in zone s, is given by the detection

function (1− b(i, j, s,W (Ŝ)
ijs )), i = 1, 2, · · · , X , j = 1, 2, · · · ,m, s = 1, 2, · · · , k. We assume that the searches at

distinct time intervals are independent and the motion of the target is independent of the sensors’s actions.

Figure 1. The Search region divided into k zones with km cells.
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Theorem 1
The probability of undetection of the lost target over the whole time is given by:

H(W ) =

X∏
1=1

[ k∑
s=Ŝ=1

m∑
j=1

pijsb(i, j, s,W
(Ŝ)
ijs )

]
. (1)

Proof

H(W ) =[p111b(1, 1, 1,W
(1)
111) + p121b(1, 2, 1,W

(1)
121) + · · ·+ p1m1b(1,m, 1,W

(1)
1m1) + p112b(1, 1, 2,W

(2)
112)

+ p122b(1, 2, 2,W
(2)
122) + · · ·+ p1m2b(1,m, 2,W

(2)
1m2) + · · ·+ p11kb(1, 1, k,W

(k)
11k) + p12kb(1, 2, k,

W
(k)
12k) + · · ·+ p1mkb(1,m, k,W

(k)
1mk)]× [p211b(2, 1, 1,W

(1)
211) + p221b(2, 2, 1,W

(1)
221) + · · ·

+ p2m1b(2,m, 1,W
(1)
2m1) + p212b(2, 1, 2,W

(2)
212) + p222b(2, 2, 2,W

(2)
222) + · · ·+ p2m2b(2,m, 2,W

(2)
2m2)

+ · · ·+ p21kb(2, 1, k,W
(k)
21k) + p22kb(2, 2, k,W

(k)
22k) + · · ·+ p2mkb(2,m, k,W

(k)
2mk)]× · · ·×

[px11b(x, 1, 1,W
(1)
x11) + px21b(x, 2, 1,W

(1)
x21) + · · ·+ pxm1b(x,m, 1,W

(1)
xm1))px12b(x, 1, 2,W

(2)
x12)

+ px22b(x, 2, 2,W
2)
x22) + · · ·+ pxm2b(x,m, 2,W

(2)
xm2) + · · ·+ px1kb(x, 1, k,W

(k)
x1k) + px2kb(x, 2, k,

W
(k)
x2k) + · · ·+ pxmkb(x,m, k,W

(k)
xmk)],

which can be written as H(W ) =
X∏
i=1

[
k∑

s=Ŝ=1

m∑
j=1

pijsb(i, j, s,W
(Ŝ)
ijs )

]
.

In addition, we obtain the total effort from the following theorem.

Theorem 2
The total effort is given by:

L(W ) =

x∑
i=1

k∑
s=Ŝ=1

m∑
j=1

W
(Ŝ)
ijs . (2)

Proof

L(W ) =W
(1)
111 +W

(1)
121 + · · ·+W

(1)
1m1 +W

(2)
112 +W

(2)
122 + · · ·+W

(2)
1m2 + · · ·+W

(k)
11k +W

(k)
12k + · · ·+W

(k)
1mk

+W
(1)
211 +W

(1)
221 + · · ·+W

(1)
2m1 +W

(2)
212 +W

(2)
222 + · · ·+W

(2)
2m2 + · · ·+W

(k)
21k +W

(k)
22k + · · ·+W

(k)
2mk

+ · · ·+W
(1)
x11 +W

(1)
x21 + · · ·+W

(1)
xm1 +W

(2)
x12 +W

(2)
x22 + · · ·+W

(2)
xm2 + · · ·+W

(k)
x1k +W

(k)
x2k

+ · · ·+W
(k)
xmk.

Hence, L(W ) =
x∑
i=1

k∑
s=Ŝ=1

m∑
j=1

W
(Ŝ)
ijs .

The detection function: We consider the setection function is exponential, that is 1− b(i, j, s,W (Ŝ)
ijs ) = 1

k

(
1−

e
−W (Ŝ)

ijs
Tjs

)
, i = 1, 2, · · · , X , j = 1, 2, · · · ,m, s = Ŝ = 1, 2, · · · , k, where Tjs is a factor due to the search in cell j in

zone s, and the dimensions of it, then the probability of undetection of the target over the whole time is given by,

H(W ) =

X∏
i=1

[ k∑
s=Ŝ=1

m∑
j=1

pijs

(
1− 1

k

(
1− e

−W (Ŝ)
ijs

Tjs

))]
, (3)
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and the unrestricted effort is given by:

L(W ) =

X∑
i=1

k∑
s=Ŝ=1

m∑
j=1

W
(Ŝ)
ijs ≤

X∑
i=1

k∑
s=Ŝ=1

V
(Ŝ)
i = V, Li(W ) ≤

k∑
s=Ŝ=1

V
(Ŝ)
i . (4)

Let
∑

s=Ŝ=1

V
(Ŝ)
i be a random variable with normal distribution and it has a probability density function

f

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
and the distribution function F

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
, i = 1, 2, 3, · · · , X .

Our aim is to find W = (W
(1)
ij1 ,W

(2)
ij2 , · · · ,W

(k)
ijk ) which minimize H(W ) subject to the constraints:

Li(W ) ≤
k∑

s=Ŝ=1

V
(Ŝ)
i , 0 ≤W (k)

ijs ) and
k∑
s=1

m∑
j=1

pijs = 1, where W is a function of
(

k∑
s=Ŝ=1

V
(Ŝ)
i

)
. Since, the

detection function is exponential then the problem will become a convex nonlinear programming problem (NLP)
as follows:

NLP :

min
W

(Ŝ)
ijs

H(W ) =

X∏
i=1

[ k∑
s=Ŝ=1

m∑
j=1

pijs

(
1− 1

k

(
1− e

−W (Ŝ)
ijs

Tjs

))]
subject to (5)

W

( k∑
s=Ŝ=1

V
(Ŝ)
i

)
=

{
W ∈ RXkm/Li(W ) ≤W

( k∑
s=Ŝ=1

V
(Ŝ)
i

)
,

L(W ) =

X∑
i=1

k∑
s=Ŝ=1

m∑
j=1

W
(Ŝ)
ijs ≤

X∑
i=1

k∑
s=Ŝ=1

V
(Ŝ)
i

}
,

0 ≤W
ˆ(S)
ijs ∀ i = 1, 2, · · · , x, j = 1, 2, · · · ,m, s = Ŝ = 1, 2, · · · , k and

k∑
s=Ŝ=1

m∑
j=1

pijs = 1

where RXkm is the feasible set of constrained decisions. The unique solution is guaranteed by the convexisty of

H(W ) and W
(

k∑
s=Ŝ=1

V
(Ŝ)
i

)
.

Definition 1

W̄ ∈W
(

k∑
s=Ŝ=1

V
(Ŝ)
i

)
is said to be an optimal solution for problem (5) if there does not exists W ∈

W

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
such that H(W ) ≤ H(W̄ ) with at least one strict inequality holds, with

(
Li(W ) ≤

k∑
s=Ŝ=1

V
(Ŝ)
i

)
≤ β, β ∈ [0, 1].
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The corresponding nonlinear stochastic programming problem (NLP) is:

NLP :

min
W

(Ŝ)
ijs

H(W ) =

X∏
i=1

[ k∑
s=Ŝ=1

m∑
j=1

pijs

(
1− 1

k

(
1− e

−w(Ŝ)
ijs

Tjs

))]
,

subject to (6)

P (Li(W ) ≤
k∑

s=Ŝ=1

V
(Ŝ)
i

)
≤ β, β ∈ [0, 1],

0 ≤W (Ŝ)
ijs ∀ i = 1, 2, · · · , X, j = 1, 2, · · · ,m, s = Ŝ = 1, 2, · · · , k and

k∑
s=1

m∑
j=1

pijs = 1.

The constraints P̃ (Li(W ) ≤
k∑

s=Ŝ=1

V
(Ŝ)
i ≥ 1− β has to satisfied with unprobability of at least (1− β) and can be

restated as:

P̃

(Li(W )− E
(

k∑
s=Ŝ=1

V
(Ŝ)
i

)
√
var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

) ≤

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
− E

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
√
var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
)
≥ 1− β,

and for the complement probability we have:

P̃

(Li(W )− E
(

k∑
s=Ŝ=1

V
(Ŝ)
i

)
√
var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

) ≥

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
− E

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
√
var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
)
≤ β,

where

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
−E

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
√√√√var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

) is a standard normal random variable.

If Kp represent the value of the standard normal random variable at which ϕ(Kp) = β, then this constraint can
be expressed as:

ϕ

(Li(W )− E
(

k∑
s=Ŝ=1

V
(Ŝ)
i

)
√
var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
)
≤ ϕ(Kp),

this inequality will be satisfied only if:

Li(W )− E
( k∑
s=Ŝ=1

V
(Ŝ)
i

)
≤ Kp

√√√√var

( k∑
s=Ŝ=1

V
(Ŝ)
i

)
.
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Suppose that the probability of undetection (3) is combined with the discounted effort function 0 < δijs < 1
which used in El-Hadidy [38, 39] to develop the final discounted effort reward function:

H(W ) =

X∏
i=1

[ k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs
(

1− 1

k

(
1− e

−W (Ŝ)
ijs

Tjs

))]
, (7)

thus, the NLSP problem (6) is equivalent to the following deterministic nonlinear stochastic programming problem
(DNLSP),

DNLSP :

min
W

(Ŝ)
ijs

H(W ) =

X∏
i=1

[ k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs
(

1− 1

k

(
1− e

−W (Ŝ)
ijs

Tjs

))]
,

subject to (8)

Li(W )− E
( k∑
s=Ŝ=1

V
(Ŝ)
i

)
≤ Kp

√√√√var

( k∑
s=Ŝ=1

V
(Ŝ)
i

)

0 ≤W (Ŝ)
ijs , 0 < δijs < 1 ∀ i = 1, 2, · · · , X, j = 1, 2, · · · ,m, s = 1, 2, · · · , k and

k∑
s=1

m∑
j=1

pijs = 1.

which equivalent to:

min
W

(Ŝ)
ijs ,δ

i
js

H(W ) =

X∏
i=1

[ k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs
(

1− 1

k

(
1− e

−W (Ŝ)
ijs

Tjs

))]
,

subject to (9)

W

( k∑
s=Ŝ=1

V
(Ŝ)
i

)
=

{
W ∈ RXkm/g(w) =

k∑
s=Ŝ=1

m∑
j=1

W
(Ŝ)
ijs − E

( k∑
s=Ŝ=1

V
(Ŝ)
i

)

−Kp

√√√√var

( k∑
s=Ŝ=1

V
(Ŝ)
i

)
≤ 0

}
,

−W (Ŝ)
ijs ≤ 0, −δijs < 0, pijs − 1 ≤ 0 ∀i = 1, 2, · · · , X, j = 1, 2, · · · ,m, s = 1, 2, · · · , k.

3. The Minimum Search Effort

The main purpose here is to minimize the searching effort under the above constraints. Since, the detection function
is convex then one can apply the necessary Kuhn-Tucker conditions to solve the problem (9). Consequently, we
get:

−
(1− δσjs)pσjs

kTjs
e−(W

(Ŝ)
σjs/Tjs)

X∏
i=1
i6=σ

k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

))
+ U1σ − U2σ = 0, (10)

−σδσ−1js

X∏
i=1
i 6=σ

k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

))
− U3σ = 0, (11)
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U1σ

{
k∑

s=Ŝ=1

m∑
j=1

W
(Ŝ)
σjs − E

( k∑
s=Ŝ=1

v(Ŝ)σ

)
−Kp

√√√√V ar

( k∑
s=Ŝ=1

v
(Ŝ)
σ

)}
= 0, (12)

U2σ{−W (Ŝ)
σjs} = 0, (13)

U3σ{−δσjs} = 0, (14)

where Uξσ,ξ = 1, 2, 3 is the Lagrange multiplies. Since W (Ŝ)
σjs > 0 and δσjs > 0 then from (13) and (14) we have

U2σ = U3σ = 0. Also,
m∑
j=1

k∑
s=Ŝ=1

W
(Ŝ)
σjs − E

(
k∑

s=Ŝ=1

v
(Ŝ)
σ

)
−Kp

√
V ar

(
k∑

s=Ŝ=1

v
(Ŝ)
σ

)
< 0, then from (12), one

can get U1σ 6= 0. Thus, the case U1σ > 0, U2σ = U3σ = 0 is the only case which consider to get the minimum
searching effort (W

(Ŝ)
σjs)∗ and the optimal value (δσjs)

∗. Thus, from (12) we have:

U1σ =
(1− δσjs)pσjs

kTjs
e
−
W

(Ŝ)
σjs
Tjs

X∏
i=1
i 6=σ

k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

))
. (15)

From (15) in (12), we get:(
(1− δσjs)pσjs

kTjs
e
−
W

(Ŝ)
σjs
Tjs

X∏
i=1
i6=σ

k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

)))
×

{
k∑

s=Ŝ=1

m∑
j=1

W
(Ŝ)
σjs

− E
( k∑
s=Ŝ=1

v(Ŝ)σ

)
−Kp

√√√√V ar

( k∑
s=Ŝ=1

v
(Ŝ)
σ

)}
= 0. (16)

Thus,

(1− δσjs)pσjs
kTjs

e
−
W

(Ŝ)
σjs
Tjs = 0 (17)

or

X∏
i=1
i6=σ

k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

))
= 0 (18)

or {
k∑

s=Ŝ=1

m∑
j=1

W
(Ŝ)
σjs − E

( k∑
s=Ŝ=1

v(Ŝ)σ

)
−Kp

√√√√V ar

( k∑
s=Ŝ=1

v
(Ŝ)
σ

)}
= 0. (19)

Put ri = E

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
+Kp

√
V ar

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
, then from Equation (12) we obtain

k∑
s=Ŝ=1

m∑
j=1

W
(Ŝ)
σjs − ri = 0
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at least one of these boundaries satisfies that,

W
(Ŝ)
ijs − ri = 0. (20)

Also, from (12), we conclude that at least one of these boundaries satisfies such that

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

))
= 0. (21)

Hence,(
(1− δσjs)pσjs

kTjs
e
−
W

(Ŝ)
σjs
Tjs

X∏
i=1
i6=σ

k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

)))
·

{
k∑

s=Ŝ=1

m∑
j=1

W
(Ŝ)
σjs

− E
( k∑
s=Ŝ=1

v(Ŝ)σ

)
−Kp

√√√√V ar

( k∑
s=Ŝ=1

v
(Ŝ)
σ

)}

= −σδσ−1js

X∏
i=1
i 6=σ

k∑
s=Ŝ=1

m∑
j=1

(1− δijs)pijs

(
1− 1

k

(
1− e−

W
(Ŝ)
ijs
Tjs

))
= 0

This leads to,

(
(1− δσjs)pσjs

kTjs
e
−
W

(Ŝ)
σjs
Tjs ·

{
k∑

s=Ŝ=1

m∑
j=1

W
(Ŝ)
σjs − E

( k∑
s=Ŝ=1

v(Ŝ)σ

)
−Kp

√√√√V ar

( k∑
s=Ŝ=1

v
(Ŝ)
σ

)}
+ σδσ−1js = 0. (22)

By solving (22) numerically, one can get the minimum value (W
(Ŝ)
σjs)∗ and the optimal value (δσjs)

∗.

4. Algorithm

We construct the following algorithm to calculate the minimum search effort. The steps of the algoritm can be
summarized as follows:

Step 1. Input the values of the following:
k is the number of zones,
m is the number of cells in each zone,
X is the total time intervals,
p the probability that the target exists in state j in zone s at time interval i,
Tjs is a factor due to the search in cell j in zone s and the dimensions of it, where j = 1, 2, · · · ,m,

s = Ŝ = 1, 2, · · · , k,
Kp is the value of the standard normal random variable,

E

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
is the expected value of

k∑
s=Ŝ=1

V
(Ŝ)
i ,

var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
is the variance of

k∑
s=Ŝ=1

V
(Ŝ)
i .

Step 2. Compute the values of δijs from Equation (17),
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Step 3. Compute the values of ri from the relation ri = E

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
+Kp

√
var

(
k∑

s=Ŝ=1

V
(Ŝ)
i

)
,

∀ i = 1, 2, · · · , X , s = Ŝ = 1, 2, · · · , k, otherwise, go to step 8,

Step 4. Compute the values of W (Ŝ)
js from Equation (20) otherwise, go to step 8,

Step 5. Substitute with the value of δijs, W
(Ŝ)
ijs , pijs and ri in Equation (7) to compute the value of H(W ),

Step 6. Replace j by j + 1, if j ≤ m, then return to step 2, and replace i by i+ 1 and test the condition i ≤ X , if yes
then go step 2, otherwise, go to step 7,

Step 7. Give the total value of H(W ) and then stop.

Step 8. End.

5. Application

In this section, we apply the above algorithm to formulate a probabilistic search model to detect the randomly
moving target in one of several different zones. Assume that, we have 5 zones that are divided into a total number
of N = 30, 40, 50 and 60 cells. For example, in the case of 30 cells (total number of cells), each zone will have
6 cells. In addition, each zone contains one sensor and there is no interference between them. The target moves
randomly between these zones. At a random time interval, we consider the probability pσjs that the target exists
in state j in zone s at time interval σ is randomly generated by using Maple 13. Also the parameters Tjs and ri
are randomly generated, see Table 1. After applying the above algorithm, the minimum value of the search effort
(W

(Ŝ)
σjs)∗ and the optimal value (δσjs)

∗ are appearing in Table (1) in each case.
If we substitute with these random generated values in (22), then we have an infinite number of solutions which

give the optimal values (δσjs)
∗ and (W

(Ŝ)
σjs)∗. This appears in Figure (2). It presents the plotting 3D of the relationship

between δσjs and W (Ŝ)
σjs . The solution of (22) is an interested curve produced from the two intersecting planes and

it is satisfied (22) (i.e., an infinite number of solution). We use Maple 13 to deduce the equation of the intersected
curve as in Figure (3). This figure gives the value of (δσjs)

∗ which satisfies (22) and hence we deduce the minimum

value W (Ŝ)
σjs for each N .

Table 1. The randomly generated values of σ, rσ, Tjs and pσjs which give the optimal values of (δσjs)
∗ and (W

(Ŝ)
σjs)

∗ in
k = 5, 10 zones.

N σ rσ Tjs pσjs
5 zones 10 zones

(δσjs)
∗ ∼= W

(Ŝ)
σjs
∼= (δσjs)

∗ ∼= W
(Ŝ)
σjs
∼=

30 19 5.279190642 747.1503308 0.0334672756 0.484 0.04071571836 4.66 0.0381033075
40 27 8.668184741 497.2015204 0.9669052975 0.705 0.03057684590 0.688 0.0130959880
50 4 4.301371693 866.8184741 0.8675579182 0.0573 0.1353252176 0.0458 0.1153107240
60 50 7.596612973 867.5579182 0.4301371693 0.796 0.01119397377 0.781 0.0411131617

From Table (1), one can conclude that the region which divided into 5 zones has the maximum discounted effort
reward parameters rather than 10 zones for the same number of cells. In general, we notice that, when the region is
divide to 10 zones then the searching effort equals approximately the searching effort in the 5 zones case. In the 5
zones case, we used a small number of sensors. All of these results lead us to the result; that is the case of 5 zones
will give the minimum value of H(W ) with maximum value (δσjs)

∗.
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(a) N = 30 (b) N = 40

(c) N = 50
(d) N = 60

Figure 2. Plotting 3D which presents the solution of (22) in 5 zones and different values of N .
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(a) N = 30 (b) N = 40

(c) N = 50 (d) N = 60

Figure 3. The optimal values of (δσjs)
∗ and (W

(Ŝ)
σjs)

∗ in 5 zones and different values of N .

If we divide the region into 10 zones, but with the same total number N = 30, 40, 50 and 60 cells, then the
optimal values (δσjs)

∗ and (W
(Ŝ)
σjs)∗ are given in Table (1). These values obtained by the same method which used

in the 5 zones case. Figure (4) presents the plotting 3D of (22) and Figure (5) shows the optimal value of (δσjs)
∗ for

10 zones case.
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(a) N = 30 (b) N = 40

(c) N = 50 (d) N = 60

Figure 4. Plotting 3D which presents the solution of (22) in 10 zones and different values of N .
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(a) N = 30 (b) N = 40

(c) N = 50 (d) N = 60

Figure 5. The optimal values of (δσjs)
∗ and (W

(Ŝ)
σjs)

∗ in 10 zones and different values of N .

6. Concluding Remarks and the Future Work

A novel probabilistic search model has been presented here to find the target with maximum probability and
minimum search effort. The target move randomly on a known region, which divided into a finite number of zones.
Each zone is divided also into a finite number of cells (not necessary identical). Also, each zone contains one
sensor. The sensor aims to find the target with minimum effort and maximum probability. The effort is bounded by
a known probability distribution.

We solve a difficult discrete stochastic optimization problem by using the discounted effort reward function. The
solution of this problem can be obtained from the constructed algorithm which provided here. The effectiveness of
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this algorithm appeared in the numerical application. Moreover, this algorithm is more flexible where it is provided
the optimal division of the region and then determined the optimal number of used sensors.

In the future work, we can extend our model to use multiple sensors in each zone. Also, we can solve this difficult
discrete stochastic optimization problem under the fuzzy concept for the discounted effort reward.
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