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Abstract One of the challenges facing statisticians is to provide tools to enable researchers to interpret and present their
data and conclusions in ways easily understood by the scientific community. One of the tools available for this purpose is a
multivariate graphical representation called reduced rank regression biplot. This biplot describes how to construct a graphical
representation in nonsymmetric contexts such as approximations by least squares in multivariate linear regression models of
reduced rank. However multicollinearity invalidates the interpretation of a regression coefficient as the conditional effect of a
regressor, given the values of the other regressors, and hence makes biplots of regression coefficients useless. So it was, in the
search to overcome this problem, Alvarez and Griffin [1], presented a procedure for coefficient estimation in a multivariate
regression model of reduced rank in the presence of multicollinearity based on PLS (Partial Least Squares) and generalized
singular value decomposition. Based on these same procedures, a biplot construction is now presented for a multivariate
regression model of reduced rank in the presence of multicollinearity. This procedure, called PLSSVD GH biplot, provides a
useful data analysis tool which allows the visual appraisal of the structure of the dependent and independent variables. This
paper defines the procedure and shows several of its properties. It also provides an implementation of the routines in R and
presents a real life application involving data from the FAO food database to illustrate the procedure and its properties.
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1. Introduction

One of the challenges facing statisticians is to provide tools to enable researchers to interpret and present their data
and conclusions in ways easily understood by the scientific community. Among the many tools now available for
this purpose are multivariate graphical representations arising from factorial families such as principal component
analysis, correspondence analysis and biplot analysis. These tools are highly appreciated and often used by
researchers. The biplot, for example, was introduced originally by Gabriel in 1971 as a graphical representation of
the rows and columns of a data matrix based on the singular value decomposition (SVD) [7], and is widely used
having been incorporated in the majority of statistical packages. The biplot analysis approximates a data matrix Y
by another matrix Yr = GrH

′
r where Gr and Hr are matrices of complete column rank obtained from the first r

terms of its singular value decomposition. The row vectors of Gr are called row markers, the row vectors of Hr

are called column markers and the elements of the original data matrix are approximated by the internal product
of these markers. Gabriel called this factorization a biplot factorization. Three classical biplots are the GH biplot
(column metric preserving biplot), the JK biplot(row metric preserving biplot) and the SQRT biplot (symmetric
biplot). Examples of biplot applications can be found in many different areas inclding medicine ([16], [10]) and
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718 PLSSVD BIPLOT

meteorology, [20]. A review of biplot applications can be found in [5].

For Gabriel, the variables involved in the data matrix to be represented graphically were in a symmetric context,
that is, the variables were not classified as dependant or independent (see [13]), however the non-symmetric
context is very necessary when wanting to explain relations betweem variables such as in regression models. Work
continues in this context. Ter Braak and Looman [18] describe how to construct the graphical biplot representation
in nonsymmetric contexts such as approximations by least squares in multivariate linear regression models of
reduced rank and justify their work in the following way ”...In our view, reduced-rank regression is particularly
useful, because it offers the possibility to produce a plot that easily summarizes the major aspects of the regressions.
This possibility has so far not been exploited...The proposed biplot represents geometrically the fitted values of the
regressions, the estimated regression coefficients and their associated t-ratios. The two-dimensional biplot is exact
for the rank 2 mode...”

These authors demonstrated the usefulness of the reduced rank regression (RRR) biplot with an example using
public health data. However they themselves made clear that “The reduced-rank regression was proposed by
Davies & Tso [6] in a context with many predictor variables compared to the number of statistical units, so that
regression coefficients are underdetermined due to multicollinearity . . . However, reduced-rank regression is no
solution to the multicollinearity problem. Multicollinearity invalidates the interpretation of a regression coefficient
as the conditional effect of a regressor, given the values of the other regressors, and hence makes biplots of
regression coefficients useless”. So it was, in the search to overcome this problem, Alvarez and Griffin ([1]),
presented a procedure for coefficient estimation in a multivariate regression model of reduced rank in the presence
of multicollinearity based on PLS (Partial Least Squares) and generalized singular value decomposition.

The objective of this paper is to continue the work proposed by Ter Braak and Looman in 1994 [18] in which
the authors emphasized the importance of reduced rank regression and showed the possibility of using a biplot (see
[8],[9]) to visualize the reduced rank model. They called it a Biplot in Reduced Rank Regression. However many
questions immediately arise when considering the presence of multicollinearity among the independent variables.
For example,

1. Is it possible to use the theory of partial least squares (PLS) to construct biplots in Reduced Rank Regression,
If so,

2. What properties characterize this graphical representation,
3. Is it necessary to take the multicolliarity into account when constructing the biplot or is it possible to construct

and interpret the biplot in the classical way.

We will now look at some preliminary facts which will help to provide the answers to these questions.

1.1. Preliminary ideas

As done by many authors, for example [3], [12], [6], [2] and [1], the study of multivariate regression in reduced
Rank (RRR) can be considered a special case of the classic multivariate regression model:

Y = XΘ+ E (1)

in which Y is a (n× q) matrix where each row of Y contains the values of the q dependent variables measured
on n subjects and X is a (n× p) matrix where each row of X contains the values of the p independent variables
measured on n subjects. We assume that X is fixed from sample to sample. Θ is a (p× q) matrix of parameters or
regression coefficients and E is the (n× q) matrix of errors or random perturbations.

In total agreement with the ideas of Ter Braak and Looman [18], Alvarez and Griffin [1] proceeded to factor the
coefficient matrix as Θ = AB′ so that the multivariate reduced rank regression model became: Y = XAB′ + E.
The estimation of this model consists in minimizing ∥(Y −XAB

′
)Γ∥2 = ∥(Y − Ŷ )Γ∥2 + ∥(Ŷ −XAB

′
)Γ∥2
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using as an initial estimation for Ŷ that obtained by SVD as:

Ŷ Γ = QDV ′ (2)

where Q and V are orthogonal matrices of order (n× t) and (q × t) respectively with t = min(n, q), that contain
the eigenvectors of (Ŷ Γ )(Ŷ Γ )′ and (Ŷ Γ )′(Ŷ Γ ) respectively; D is a diagonal matrix of order q containing the
eigenvalues of these matrices in non-increasing order (λ1 ≥ λ2 ≥ ... ≥ λt ≥ 0); and Γ is a positive definite matrix.
Up to this point, the steps of the estimation procedures proposed by [18] and [1] coincide. However when wanting to
estimate A = (X ′X)

−1
X ′Q, the inconvenience of multicollinearity in the variables X arises. Now that Q = XA, it

is possible to make a comparison with the regression model with Q representing the matrix of dependent variables,
X the matrix of independent variables and A the matrix of regression coefficients. This motivated Álvarez and
Griffin [1] to apply Partial Least Squares Regression (PLSR) to estimate A. PLSR is a technique that generalizes
and combines the characteristics of principal component analysis and multivariate regression. It is particularly
useful when it is necessary to predict a set of dependent variables in terms of a set of independent variables in the
presence of severe or strong multicollinearity in which case the classical multivariate regression procedures have
serious stability problems. PLSR is a good alternative in such circumstances since it uses basic iterative concepts
to adjust bilinear models in several blocks of variables giving a solution to multivariate statistics in the presence of
many collinear variables in the data and a modest number of observations. The solution of each stage permits the
construction of the following matrices (see [1] for details):

Th = [t1, ..., th]

Wh = [w1, ..., wh]

Ph = [p1, ..., ph]

W̃h = [w̃1, ..., w̃h]

where the subscript h indicates that the matrix comprises the sequence of the first h vectors. W̃ spans the loading

weights of the X-variables for a certain number of latent variables. Given the w̃i =

h−1∏
i=1

(I − wip
′
i)wh (see [17],

p.114), the two sets of weights wi and w̃i, i = 1, 2, · · · , h, span the same space. The matrix Th contains the scores
of the X-variables and Ph is called the X- loadings. The relations between the matrices determine the estimation
PLS of the model (1) as follows:

Th = XW̃h (3)

Ph = X ′Th (T
′
hTh)

−1 (4)

W̃h = Wh (P
′
hWh)

−1 (5)

Phatak and De Jong in 1997 [15], found the following very useful expression for the regression coefficient matrix
obtained by the PLS regression:

Θ̂PLS = W̃hP
′
hΘ̂OLS = Wh (P

′
hWh)

−1
P ′
hΘ̂OLS (6)

This finding is of utmost importance since, as they themselves state, the matrix Wh (P
′
hWh)

−1
P ′
h is idempotent

which implies that it is a projection matrix. Since it is not symmetric, it defines an oblique projection, which
projects Θ̂OLS in the space generated by the columns Wh. If we now apply this theory to the estimation of A using
partial least squares where Q = XA is the model to be estimated, then

ÂPLS = W̃hP
′
hÂOLS = Wh (P

′
hWh)

−1
P ′
hÂOLS (7)

which permits us to see the row markers (ÂPLS) obtained from the PLS estimation as an oblique projection of
the row markers obtained from a biplot in reduced rank regression using the OLS estimation (ÂOLS). In addition,
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720 PLSSVD BIPLOT

using this initial estimate, the matrix of regression coefficients is obtained by combining the PLS estimation of A
with the estimation of B given by SVD so that the reduced rank regression coefficient matrix given by PLSSVD is:

Θ̂PLS−SV D = ÂPLSB̂
′
SV D (8)

Finally the estimations of Y proposed by [1] are given by:

ŶPLS−SV D = XΘ̂PLS−SV D = XÂPLSB̂
′
SV D (9)

These procedures described in [1] provide the basis for this article which describes how to construct a biplot in
reduced-rank regression in the presence of multicolinearity. We focus on describing the properties of 8 and
its application to an example using data from the FAO data base.

The rest of this article is divided in three parts. The first describes the construction of the GH biplot in Reduced-
Rank Regression based on Partial Least Squares that we have named PLSSVD GH biplot. The following core
section describes properties of this biplot and provides their proofs. A previous reading of the articles [18], [15]
and [1] is important for understanding this section. In the last part, we provide a real life example using food
data from the FAO data base and routines in R provided in an appendix to apply the techniques and illustrate the
properties of this biplot.

2. Biplot in reduced-rank regression

The chief cornerstone for the construction of a biplot in reduced-rank regression in the presence of multicollinearity
using PLS is found in the paper of Ter Braak and Looman [18]. They showed how to factor the regression coefficient
matrix using the techniques of [8] with OLS and SVD to obtain the biplot in reduced rank regression (RRR). This
procedure for the RRR biplot can be summarized as follows:

1. Centralize or standardize the matrices X (n× p) and Y (n× q).
2. Express the multivariate regression model of (1) as: Y = XAB

′
+ E, where Θ = AB

′
.

3. Minimize
∣∣∣∣∣∣(X ′X)

1/2
(
Θ̂OLS −AB

′
)
Γ
∣∣∣∣∣∣2 with Γ a given weight matrix. The minimum for a rank r

approximation is obtained by first applying the decomposition in singular values:

(X ′X)
−1/2

ΘOLSΓ = UDV ′ (10)

and the minimum is then obtained by setting

ÂOLS = n1/2 (X ′X)
−1/2

[U ]r and B̂SV D = n−1/2Γ−1[V D]r (11)

It is important to point out that the decomposition in singular values in 2 and 10 differ only in the matrices
Q and U (see [18], p.991).

4. Finally, the estimation of the regression coefficient matrix is: Θ̂OLS−SV D = ÂOLSB̂
′

SV D.

Remember that Γ is a given weight matrix. The results of the estimation procedure is affected by this weight
matrix whose importance is amply explained in [1], [19] and [18]. In this paper Γ = I will be used.

3. Properties of the GH BIPLOT in Reduced-Rank Regression based on PLS (PLSSVD GH Biplot)

As we previously established, a biplot for the reduced rank regression coefficients begins by minimizing∣∣∣∣∣∣(X ′X)
1/2

(
Θ̂OLS −AB′

)
Γ
∣∣∣∣∣∣2, from which we obtain AOLS = (X ′X)

−1/2
Ur and BSV D = Γ−1[V D]r. If we
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assume that M = X ′X , then:

A′
OLSMAOLS =

[
(X ′X)

−1/2
Ur

]′
(X ′X) (X ′X)

−1/2
Ur

= U ′
r (X

′X)
−1/2

(X ′X)
1/2

Ur

This means that
A′

OLSMAOLS = Ir (12)

In the introduction we formulated some questions regarding the biplot in reduced-rank regression based on PLS
in relation to its properties and interpretation. Two additional pertinent questions are

1. How is the geometry of PLS involved in the properties and
2. How simple or complicated is the mathematics needed to prove the properties

One of the reasons for writing this paper is to show the simplicity of the properties and how to apply this very useful
data analysis tool. We now show how to use the property (12) and the geometric properties of PLS to establish the
properties of the PLSSVD GH Biplot.

3.1. Properties of the column markers of the PLSSVD GH Biplot

property 1. In the PLSSVD GH Biplot the metric M = X ′X satisfies :

A′
PLSMAPLS = Ir ▹

In essence:
A′

PLSMAPLS =
(
W̃hP

′
hÂOLS

)′
(X ′X)

(
W̃hP

′
hÂOLS

)
A′

PLSMAPLS = Â′
OLSPhW̃ ′

hX
′XW̃hP

′
hÂOLS

Associating conveniently:

A′
PLSMAPLS = Â′

OLSPh

(
W̃ ′

hX
′) (XW̃h

)
P ′
hÂOLS

A′
PLSMAPLS = Â′

OLSPh

(
XW̃h

)′ (
XW̃h

)
P ′
hÂOLS

Since Th = XW̃h we can substitute this in the previous expression to obtain:

A′
PLSMAPLS = Â′

OLSPhT
′
hThP

′
hÂOLS

Associating and transposing:

A′
PLSMAPLS = Â′

OLS (ThP
′
h)

′
(ThP

′
h) ÂOLS

We also know that X = ThP
′
h, so that:

A′
PLSMAPLS = Â′

OLSX
′XÂOLS = Â′

OLSMÂOLS = I (13)

property 2. The scalar product of the columns of Θ̂PLS−SV D using the metric M approximates the scalar product
of the column markers. ▹

In effect: (
Θ̂PLS−SV D

)′
M

(
Θ̂PLS−SV D

)
= (APLSB

′
SV D)

′
M (APLSB

′
SV D)(

Θ̂PLS−SV D

)′
M

(
Θ̂PLS−SV D

)
= BSV DA′

PLSMAPLSB
′
SV D
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Associating conveniently and applying property 1:(
Θ̂PLS−SV D

)′
M

(
Θ̂PLS−SV D

)
= BSV DIB′

SV D = BSV DB′
SV D

from which we obtain:
θ̂′jMθ̂k = b′jbk for j ̸= k (14)

corollary 1. The scalar product of the columns of ŶPLS−SV D approximates the scalar product of the columns of
Θ̂PLS−SV D under the metric M ▹

In effect:

Ŷ ′
PLS−SV DŶPLS−SV D =

(
XΘ̂PLS−SV D

)′ (
XΘ̂PLS−SV D

)
= Θ̂′

PLS−SV DMΘ̂PLS−SV D = BSV DB′
SV D

from which we deduce that:
ŷ′j ŷk = b′jbk for j ̸= k (15)

property 3. When the variables are centered, the squared length of the column markers approximates the sample
covariance between the dependent variables. ▹

In effect:
Let S be the sample covariance matrix and ŶPLS−SV D centered at its mean so that:

S =
Ŷ ′
PLS−SV DŶPLS−SV D

n− 1
(16)

By corollary 1:

S =
BSV DB′

SV D

n− 1
(17)

From the equation 10 we know that:

S =
Ŷ ′
PLS−SV D

(n− 1)
1/2

ŶPLS−SV D

(n− 1)
1/2

from which:

sjk =
ŷ′j

(n− 1)
1/2

ŷk

(n− 1)
1/2

(18)

From corollary 1 and the equations (11) and (12), we have:

sjk =
b′jbk

n− 1
(19)

From this we derive that the sample variance of a dependent variable can be expressed as:

sjj =
b′jbj

n− 1
=

∥bj∥2

n− 1
=

∥ŷj∥2

n− 1

and we can see that the standard deviation of any variable can be estimated by the associated column marker. This
can be appreciated in the expression:

[(n− 1) sjj ]
1/2

= ∥bj∥ = ∥ŷj∥ = (n− 1)
1/2

sj (20)

property 4. The cosine of the angle between two column markers approximates the correlation between the
dependant variables centered at their mean. ▹
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In effect:
Let bj and bk be two distinct column markers and α the angle between them. By definition:

cos (α) = ⟨bj · bk⟩/ (∥bj∥∥bk∥)

= b′jbk/ (∥bj∥∥bk∥)

By corollary 1 and property 3
cos (α) = ŷ′j ŷk/

(
∥ŷ′j∥∥ŷk∥

)
The variables are centered at their mean so that by applying property 2 we have:

cos (α) = sjk/ (sjsk) (21)

where sjk is the sample covariance of the variables ŷj and ŷk, sj and sk are the standard deviations of ŷj and ŷk,
respectively.

property 5. The quality of the column representation (QCR) under the metric M = X ′X and the weight matrix
Γ = I can be measured by

QCR =

r∑
i=1

λ2
i

q∑
i=1

λ2
i

∗ 100 ▹

We know that the sample covariance matrix S is given by:

S =
Ŷ ′
PLS−SV DŶPLS−SV D

n− 1

as BSV D = Γ−1V D, so that:

BSV DB′
SV D =

(
Γ−1V D

) (
Γ−1V D

)′
= Γ−1V D2V ′Γ−1

By hypothesis Γ−1 = I , so that;
BSV DB′

SV D = V D2V ′

which means that the total variability can be expressed as:

Trace
(
Ŷ ′
PLS−SV DŶPLS−SV D

)
= Trace

(
V D2V ′) = Trace

(
D2V ′V

)
= Trace

(
D2

)
=

q∑
i=1

λ2
i

thus,

QCR =

r∑
i=1

λ2
i

q∑
i=1

λ2
i

∗ 100 (22)

3.2. Properties of the Row Markers

property 6. The scalar product of the rows of Θ̂PLS−SV D under the metric M = X ′X and weight matrix Γ = Ir
approximates the scalar product of the row markers. ▹
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Before proving this property we should take into account the property 6, where it was established that if Γ−1 =
Ir, then BSV DB′

SV D = V D2V ′. Now since the inverse of BSV DB′
SV D is given by (BSV DB′

SV D)
−1

= V D−2V ′,
we see that:

Θ̂PLS−SV D

(
Θ̂′

PLS−SV DMΘ̂PLS−SV D

)−1

Θ̂′
PLS−SV D = (APLSB

′
SV D) (BSV DB′

SV D)
−1

(APLSB
′
SV D)

′

Θ̂PLS−SV D

(
Θ̂′

PLS−SV DMΘ̂PLS−SV D

)−1

Θ̂′
PLS−SV D = APLSB

′
SV DV D−2V ′BSV DA′

PLS

Since BSV D = V D:

Θ̂PLS−SV D

(
Θ̂′

PLS−SV DMΘ̂PLS−SV D

)−1

Θ̂′
PLS−SV D = APLSDV ′V D−2V ′V DA′

PLS

Taking into account that V is orthonormal, we have that V ′V = Ir, and so:

Θ̂PLS−SV D

(
Θ̂′

PLS−SV DMΘ̂PLS−SV D

)−1

Θ̂′
PLS−SV D = APLSDIrD

−2IrDA′
PLS = APLSDD−2DA′

PLS

Additionally, since DD−2D = Ir:

Θ̂PLS−SV D

(
Θ̂′

PLS−SV DMΘ̂PLS−SV D

)−1

Θ̂′
PLS−SV D = APLSA

′
PLS (23)

This result indicates that the introduction of the metric M = X ′X in the space generated by the columns of the

matrix Θ̂PLS−SV D, induces automatically an inner product with the metric
(
Θ̂′

PLS−SV DMΘ̂PLS−SV D

)−1

in the
row space.

In addition, the PLSSVD regression coefficients of the matrix Θ̂PLS−SV D = APLSB
′
SV D, following the

contributions of Gabriel [8], are approximated by the internal product of the row and columns markers using
the expression:

θ̂ij = < a⃗PLSi · b⃗SV Dj > (24)

= (⃗aPLSi)
′
b⃗SV Dj (25)

= ∥a⃗PLSi∥∥⃗bSV Dj∥ cosα (26)

= sign ∥⃗bSV Dj∥ ∥ proy b⃗SV Dj
a⃗PLSi∥ (27)

= sign ∥⃗bSV Dj∥ ∥(⃗aPLSi)j ∗∥ (28)

where α is the angle between a⃗PLSi (i-th row marker) and b⃗SV Dj (j-th column marker), sign is equal to 1 o -1
depending if the angle is acute or obtuse, respectively. We also have adopted the notation (⃗aPLSi)j ∗ to represent
the orthogonal projection of the row marker a⃗PLSi on the column marker b⃗SV Dj . If the rank of Θ̂PLS−SV D is
r = 2, the biplot is defined as the graphical representation in a plane of the row markers a⃗PLSi = a⃗i = (ai1, ai2)

′

and the columns markers b⃗SV Dj = b⃗j = (bj1, bj2)
′, both vectors having two elements, such that for each i and each

j:

θ̂ij = (⃗ai)
′
b⃗j (29)

θ̂ij = ai1bj1 + ai2bj2 (30)
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Considering the above, to approximate by means of a biplot θ̂13, a hypothetical PLSSVD regression matrix of
order (4× 3) and rank 2, we should set

θ̂13 = a11b31 + a12b32

where a⃗i = (a11, a12)
′ and b⃗j = (b31, b32)

′.
In Figure 1 it is seen how θ̂ij can be interpreted in the plane for the hypothetical PLSSVD regression coefficient

matrix of order (4× 3) and rank 2. The figure (1.a), shows how each row marker a⃗PLSi = a⃗i should be orthogonally
projected on the column marker b⃗SV Dj = b⃗j ; while in the Figure (1.b) one can visualize in the plane, the
biplot of the PLSSVD regression coefficient matrix, its row and column markers as well as the projections
of the row markers on the column marker b⃗1. On the other hand, the figure (1.c) shows the ordering of the
projections (ai)j ∗ (in the graph bold letters represent vectors, that is, a⃗ = a) on the column marker b1, so that:
sign∥(a1)1∗∥ ≥ sign∥(a3)1∗∥ ≥ sign∥(a2)1∗∥ ≥ sign∥(a4)1∗∥. From this information and taking into account
that ∥⃗b1∥ is the same for the approximation of each element of the first column of the (4× 3) regression coefficient
matrix, it is possible to approximate the ordering of the regression coefficients of the first columns of the matrix as:
θ̂11 > θ̂31 > θ̂21 > θ̂41. For more detail we refer the reader to [4](p. 145).

Figure 1. (a) projection of a row marker a⃗i on the column marker b⃗j denoted as (⃗ai)j ∗, (b) biplot of a hypothetical PLSSVD
regression of order (4× 3), (c) ordering of the projections of the a⃗i on b⃗1.
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4. The Algorithm

In the appendix we have included the pls-svd algorithm which is based on the ideas of [17], [11], [21] and [1]. The
algorithm begins by assigning the two sets under study: the set of dependent variables Y , and the set of independent
variables X . One of the requirements of the algorithm is that the columns of X and Y be standardized with mean
zero and variance 1. To perform this, the function standardize() was implemented in R. The standardizations
of Y and X are called Fo and Eo respectively. In [1], we established that if Γ = I , then BSV D = V D. The
initial estimation of AX = Q uses Q obtained from the decomposition in singular values of Fo using Q = L$u
decomposition. It is important to remember that the method described in this article is useful when the set of
independent variables X has “Severe multicollinearity”. In this study the diagnostic of collinearity is performed
by the eigensystem X ′X proposed by [14] using the function CollinDiag(X) to calculate the condition number
of X ′X . When this number is less than 100, there does not exist a serious problem of multicollinearity and the
routine outputs the message “there isn’t multicollinearity”. If, on the other hand, the condition number is between
100 and 1000, the multicollinearity is moderate to strong so the routine outputs the message “Moderate to strong
multicollinearity”. Lastly, if the condition number is greater than 1000, the multicollinearity is strong and to avoid
confusion, the routine outputs the message “Severe multicollinearity”.

The implementation used here is slightly different from the algorithm presented in [1] regarding the calculation
of the vectors wh and rh. Using the suggestions of [21] we here begin with the autoequations:

Eo′h−1Qh−1Q
′
h−1Eoh−1 wh = λh wh

Q′
h−1Eoh−1Eo′h−1Qh−1 rh = λh rh

After executing the algorithm pls-svd, we calculate the estimation of the PLSSVD regression coefficient matrix
(Θ̂PLS−SV D) as Θ̂PLS−SV D = Apls% ∗%t(B) and with the obtained elements we proceed to declare the labels
of the biplot using the instructions

biplot(Apls,B, var.axes = TRUE, xlab = "Comp1",ylab = "Comp2",
xlabs =label1, ylabs = label2,
main = "BIPLOT PLS-SVD");abline(h=0,v=0)

5. Illustration using Food composition database for biodiversity

The FAO is an agency of the United Nations which designs strategies to fight hunger. The principal objective of
this agency is to assure food supply for all peoples so that access to sufficient good quality food is guaranteed on
a regular basis in order to lead an active and healthy life. This organization has more than 194 members in more
than 130 countries. Among its different functions is that of providing data to the nations to help them achieve their
own specific objectives.
In this section we wish to apply the previously described biplot to FAO data. Specifically we use
the Food composition database for biodiversity, BioFoodComp 4.0, which can be accessed by the link
http://www.fao.org/infoods/infoods/tables-and-databases/faoinfoodsdatabases. The FAO states in its own words,
”The Biodiversity Database is a global repository of analytical data on food biodiversity of acceptable data
quality”. For our analysis we have selected fruit from the Biodiversity Database BioFoodComp 4.0 with the
objective to construct a graphical representation biplot to explain the content of Vitamins and Carotenoids
(dependent variables Y ) of two fruit groups, banana and papaya, by means of mineral content and trace elements
(independent variables X). For that purpose we included rows 16 through 36 of that original Excel database. The
resulting dependent variables to be explained are shown in Table 1; while the explaining (independent) variables
are shown in Table 2.
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Table 1. Dependent Variable Y : Vitamins/Carotenoids

Component ID/Tagname Component name Unit
VITA.RAE vitamin A retinol activity equivalent (RAE); mcg

calculated by summation of the vitamin A
activities of retinol and the active carotenoids

VITC vitamin C mg
CARTB beta-carotene mcg
LUTN lutein mcg

Table 2. Independent Variable X: Minerals and trace elements

Component ID/Tagname Component name Unit
WATER water g

B boron mcg
CA calcium mg
CU copper mg
FE iron, total mg
K potassium mg

MN manganese mg
MG magnesium mg
NA sodium mg
ZN zink mg

In Table 3 is the correlation matrix for the data. We can there appreciate the correlations between the dependent
variables (Ryy), those of the independent variables (Rxx), as well as the correlations between the dependent and
independent variables (Rxy). The dependent variables made up of Vitamins and Carotenoids, show high positive
correlations between vitamin A retinol activity equivalent (VITA.RAE) amd the beta-carotene (CARTB). These
have moderate correlation with lutein (LUTN) and low correlation with vitamin C (VITC). The lutein (LUTN)
amd vitamin C (VITC) present low correlation between themselves. On the other hand, in the set of independent
variables ( Minerals and trace elements), the amount of water (WATER) has high correlations with almost all of
the other independent variables except boron (B), Water (WATER) shows high positive correlation with calcium
(CA) and high negative correlations with the rest. Boron (B) has low to moderate correlation with the rest of the
independent variables. We also can see that the other independent variables have a high correlation with at least
one of the remaining variables which is indicative of the existence of multicollinearity in this set of variables.
Regarding the correlations between Minerals and trace elements with Vitamins and Carotenoids, we see that
vitamin A retinol activity equivalent (VITA.RAE) and the beta-carotene (CARTB) are the variables that present
highest correlation; the lutein (LUTN) has almost all moderate correlations and vitamin C (VITC) presents highest
correlation with zink (ZN) and low to moderate relations with the rest.

To explain the relation between the variables we use the model described in (1). We begin with the diagnosis
of multicollinearity using the function ColinDiag(X) described previously and provided in the appendix. The
independent variables X present Severe multicollinearity, which means that the classic RRR biplot ([18]) cannot
be applied to this data.

> ColinDiag(X)
[1] "Severe multicollinearity"

In Figure 2 is shown the biplot for the regression coefficient matrix of Minerals and trace elements vs
Vitamins/Carotenoids. Applying Property 5, we see that the first component comprises 68,70% of the total
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Table 3. Correlations of the data

WATER B CA CU FE K MG MN NA. P ZN VITA.RAE CARTB LUTN VITC
WATER 1.00 -0.15 0.67 -0.61 -0.69 -0.92 -0.87 -0.72 -0.52 -0.98 -0.61 0.69 0.58 0.27 0.20

B -0.15 1.00 0.21 0.48 0.32 0.23 0.40 0.25 0.29 0.23 0.15 0.17 0.20 0.01 0.05
CA 0.67 0.21 1.00 -0.45 -0.37 -0.53 -0.45 -0.45 -0.29 -0.68 -0.43 0.89 0.84 0.27 0.28
CU -0.61 0.48 -0.45 1.00 0.65 0.55 0.53 0.52 0.40 0.69 0.49 -0.47 -0.41 -0.24 -0.12
FE -0.69 0.32 -0.37 0.65 1.00 0.79 0.66 0.57 0.72 0.71 0.56 -0.49 -0.43 -0.46 -0.02
K -0.92 0.23 -0.53 0.55 0.79 1.00 0.86 0.61 0.53 0.89 0.46 -0.61 -0.52 -0.49 -0.29

MG -0.87 0.40 -0.45 0.53 0.66 0.86 1.00 0.73 0.58 0.84 0.56 -0.44 -0.31 -0.18 -0.03
MN -0.72 0.25 -0.45 0.52 0.57 0.61 0.73 1.00 0.40 0.77 0.62 -0.51 -0.44 -0.17 0.12
NA -0.52 0.29 -0.29 0.40 0.72 0.53 0.58 0.40 1.00 0.50 0.68 -0.27 -0.21 -0.17 0.30

P -0.98 0.23 -0.68 0.69 0.71 0.89 0.84 0.77 0.50 1.00 0.59 -0.71 -0.61 -0.33 -0.24
ZN -0.61 0.15 -0.43 0.49 0.56 0.46 0.56 0.62 0.68 0.59 1.00 -0.46 -0.42 -0.01 0.59

VITA.RAE 0.69 0.17 0.89 -0.47 -0.49 -0.61 -0.44 -0.51 -0.27 -0.71 -0.46 1.00 0.99 0.49 0.27
CARTB 0.58 0.20 0.84 -0.41 -0.43 -0.52 -0.31 -0.44 -0.21 -0.61 -0.42 0.99 1.00 0.50 0.24

LUTN 0.27 0.01 0.27 -0.24 -0.46 -0.49 -0.18 -0.17 -0.17 -0.33 -0.01 0.49 0.50 1.00 0.36
VITC 0.20 0.05 0.28 -0.12 -0.02 -0.29 -0.03 0.12 0.30 -0.24 0.59 0.27 0.24 0.36 1.00

variability and the second component 24.81%, which means that the first factorial plane has the capacity to
represent 93.51% of the total. Remember that Property 4 shows that the correlation between two dependent
variables is approximated by the cosine of the angle that exists between the respective column markers of the
variables so we see that the column markers of the variables VITA.RAE and CARTB are almost coincident so that
the relation between the two variables is close to unity. Verifying in Table 3 we see that the correlation between
these two variables is 0.99. Additionally. in Figure 2, we can see that the markers of these two variables are closer
to the variable LUTN than to VITC, which shows that the relations of these two variables with LUTN are greater
than with VITC. We can also observe that the markers for LUTN and VITC manifest moderate relations between
their respective variables.

The most important objective of this biplot is to provide a graphical representation of Θ̂PLS−SV D, the regression
coefficient matrix which can be seen in Table 4. To highlight the usefulness of this graphical representation we have
constructed Figure 3 which has a slight change from Figure 2: the biplot axis corresponding to the variable VITC
has been lengthened and painted in blue.

As a second step, each of the row markers corresponding to the Minerals and trace elements have been projected
orthogonally on this column marker. Note that on this blue axis an order to the projections has been established.
The order is
sign ∥(⃗aPLSZN

)V ITC ∗∥ ≥ sign ∥(⃗aPLSMN
)V ITC ∗∥ ≥ sign ∥(⃗aPLSCA

)V ITC ∗∥ ≥ sign ∥(⃗aPLSMG
)V ITC ∗∥ ≥

sign ∥(⃗aPLSWATER
)V ITC ∗∥ ≥ sign ∥(⃗aPLSB

)V ITC ∗∥ ≥ sign ∥(⃗aPLSCU
)V ITC ∗∥ ≥ sign ∥(⃗aPLSP

)V ITC ∗∥ ≥
sign ∥(⃗aPLSFE

)V ITC ∗∥ ≥ sign ∥(⃗aPLSK
)V ITC ∗∥.

Table 4. PLSSVD REGRESSION COEFFICIENT MATRIX

VITA.RAE CARTB LUTN VITC
WATER 0.10 0.06 -0.05 0.14

B 0.26 0.28 0.01 -0.01
CA 0.49 0.50 0.18 0.25
CU -0.14 -0.14 -0.19 -0.16
FE -0.16 -0.21 -0.46 -0.16
K -0.14 -0.13 -0.30 -0.39

MG 0.20 0.28 0.34 0.09
MN -0.04 -0.02 0.13 0.23
NA 0.09 0.08 0.03 0.33
P -0.17 -0.14 -0.10 -0.24

ZN -0.05 -0.07 0.29 0.83
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This order is very close, as can be noted, to the order found in Table 4, which shows that we can give an
approximation of the multiple regression model of the variable VITC with respect to the predictor variables.
Lastly, if we perform a similar procedure for the other column markers we will note that the biplot provides a
good approximation to the other multiple regression models.

Figure 2. PLSSVD Biplot Minerals and trace elements vs Vitamins/Carotenoids

Stat., Optim. Inf. Comput. Vol. 9, September 2021



730 PLSSVD BIPLOT

Figure 3. PLSSVD Biplot Minerals and trace elements vs Vitamins/Carotenoids modified by extending the biplot axis
corresponding to VITC in order to visualize the orthogonal projections of Minerals and trace elements

6. Conclusions

We have shown how to prepare a biplot of reduced rank regression when the model shows multicollinearity. In the
example it is evident that this occurs and that the use of partial least squares provides a good alternative when we
desire a representation of the coefficient matrix. We have seen that generalized singular value decomposition and
the use of a weight matrix both play a fundamental role in achieving this goal. Thanks to the geometry of PLS, we
were able to show that the row markers in the PLSSVD GH Biplot are an oblique projection of the row markers of
the RRR biplot.

A summary of the properties derived using this methodology and described in this article is as follows.

1. In the PLSSVD GH Biplot under the metric M = X ′X we have shown that A′
PLSMAPLS = Ir
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2. The scalar product of two columns of Θ̂PLS−SV D under the metric M approximates the scalar product of
the corresponding column markers.

3. The scalar product of two columns of ŶPLS−SV D approximates the scalar product of the corresponding
columns of Θ̂PLS−SV D under the metric M .

4. When the variables are centered, the squared length of the column markers approximate the sample
covariance between the dependent variables.

5. The cosine of the angle between two column markers approximates the correlation between the dependent
variables centered on their mean.

6. The quality of the representation of the columns (QRC), under the metric M = X ′X and weight matrix
Γ = I can be measured by

QRC =

r∑
i=1

λ2
i

q∑
i=1

λ2
i

∗ 100

7. The scalar product of two rows of Θ̂PLS−SV D under the metric M = X ′X and weight matrix Γ = Ir
approximates the scalar product of the corresponding row markers.

All these properties are subject to the given weight matrix Γ = I and even for these weights we are sure that
there remain many more properties to state and prove. It is important to say that research remains open for other
weight matrices such as, for example, Γ = R

−1/2
yy . This study has been based only on the GH biplot (Column

Metric Preserving biplot) so that research remains to be done for the other classical biplots including the JK biplot
and the SQRT Biplot. Another important aspect to be emphasized is that this research was done in response to the
question in [18] and repeated in [1]... Why can one expect PLS regression methods to perform better than multiple
linear regression, ridge regression and other well known regression techniques? In spite of this, we believe that
there exist further opportunities for research in this area. For example, investigate the use of the ridge regression
technique instead of PLS, comparing the biplots obtained through the different techniques. Many authors coincide
that in order to improve the approximations of the biplots, scaling should be done. Scaling was not performed in
this article so we invite other researchers to dive deeper in this and other biplot themes.

7. APPENDIX

#-------------------------------------------------
#ALGORITHM PLS-SVD
#-------------------------------------------------
rm(list=ls())
#-------------------------------------------------
#PRESENTATION OF DATA
#-------------------------------------------------
Y # DEFINE THE DEPENDENT VARIABLES
X # DEFINE THE DEPENDENT VARIABLES
#-------------------------------------------------

#-------------------------------------------------
# INICIAL EXPLORATION
#-------------------------------------------------
#1) FUNTION COLLINEARITY DIAGNOSIS
#-------------------------------------------------
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CollinDiag=function(x)
{R=cor(x)
r1=length(svd(R, 0, 0)$d)# matrix rank
p1=ncol(R)
UDV=svd(R)
d1=diag(UDV$d)[1:r1,1:r1]
lamda=diag(d1)
lamda1=lamda[1:1]
lamdap=lamda[p1:p1]
coefi=lamda1/lamdap
if (coefi <= 100) {
print("there isn’t multicollinearity")
} else if (coefi > 100 & coefi <=1000) {
print("Moderate to strong multicollinearity")
} else
print("Severe multicollinearity")
return()
}

#-------------------------------------------------
#COLLINEARITY DIAGNOSIS
#-------------------------------------------------
CollinDiag(X)
#-------------------------------------------------

One of the requirements of this algorithm is that the columns of X and Y be standardized with mean cero and
variance 1. The following function ensures this.

#-------------------------------------------------
standardize=function(x)
{x=data.matrix(x)
x=x-t(matrix(rep(apply(x,2,mean),times=nrow(x)),nrow=ncol(x)))
x=x%*%solve(diag(sqrt(apply(x,2,var))))
return(x)}
#-------------------------------------------------

The algorithm pls is now presented.

#-------------------------------------------------
#ALGORITHM PLS-SVD
#-------------------------------------------------
#PROGRAM INITIALILIZATION
#------------------------------------------
Eo=standardize(X)
Fo=standardize(Y)
Eoi=Eo
Foi=Fo
L<-svd(Fo)
Q<-L$u# Q=AX
B=L$v%*%diag(L$d)
#-----------------------------------------
#Output declarations
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#-----------------------------------------
R<-matrix(NA, ncol(Q), ncol(Q)); W<-matrix(NA, ncol(Eo), ncol(Q));
P<-matrix(NA, ncol(Eo), ncol(Q));T<-matrix(NA, nrow(Q), ncol(Q));
U<-matrix(NA, nrow(Q), ncol(Q));C<-matrix(NA, ncol(Q), ncol(Q))
for (i in 1:ncol(Q)){
Da=t(Eo)%*%Q%*%t(Q)%*%Eo
Db=t(Q)%*%Eo%*%t(Eo)%*%Q
w=eigen(Da)$vectors[,1]
r=eigen(Db)$vectors[,1]
t=(Eo%*%w)
u=(Q%*%r)
p=t(Eo)%*%t*as.numeric(1/(t(t)%*%t))
c=t(Q)%*%t*as.numeric(1/(t(t)%*%t))
Eo<-Eo-t%*%t(p)
Q<-Q-t%*%t(c)
W[, i] <- w
C[, i] <- c
P[, i] <- p
T[, i] <- t
U[, i] <- u
R[, i] <- r
}
#-------------------------------------------------

Calculation of the estimation of the coefficient matrix

#----------------------------------------------
#CALCULATION OF THE REGRESSION COEFFICIENT MATRIX
#----------------------------------------------
We=W%*%solve(t(P)%*%W)
Apls=We%*%t(C)
THETAplssvd=Apls%*%t(B)
#-------------------------------------------------

biplot in Reduced-Rank Regression based on PLS

#----------------------------------------------
##BIPLOT PLS-SVD
#----------------------------------------------
label1=c()# DECLARE THE LABELS OF THE DEPENDENT VARIABLES
label2=c()# DECLARE THE LABELS OF THE INDEPENDENT VARIABLES
biplot(Apls,B, var.axes = TRUE, xlab = "Comp1",ylab = "Comp2",
xlabs =label1, ylabs = label2,
main = "BIPLOT PLS-SVD");abline(h=0,v=0)
#-------------------------------------------------
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