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Abstract In this paper, we propose a new four-parameter lifetime distribution called modified generalized linear
exponential distribution. The proposed distribution is a modification of the generalized linear exponential distribution.
Several important lifetime distributions in reliability engineering and survival analysis are considered as special sub-models
including modified Weibull, Weibull, linear exponential and generalized linear exponential distributions, among others.
We study the mathematical and statistical properties of the proposed distribution including moments, moment generating
function, modes, and quantile. We then examine hazard rate, mean residual life, and variance residual life functions of the
distribution. A significant property of the new distribution is that it can have a bathtub-shaped, which is very flexible for
modeling reliability data. The four unknown parameters of the proposed model are estimated by the maximum likelihood.
Finally, two practical real data sets are applied to show that the proposed distribution provides a superior fit than the other
sub-models and some well-known distributions.
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1. Introduction

The quality of procedures utilized in statistical analysis fundamentally relies upon the proposed lifetime
distribution. Subsequently, the bigger the available lifetime distributions accessible to the statistician, the simpler
it is to select a model. Since the available lifetime distributions are incompatible or fit weakly with data of
many important problems in engineering, medicine, and more other topics. Therefore, the generalization of the
available distributions become an urgent requirement because of their flexible properties. So, many researchers have
proposed various extensions, exponentiated and modified forms of Weibull distribution (WD) and with number of
parameters [[1]-[2]]. Several techniques for generalizing the available lifetime distributions are used by several
authors . One of these important techniques known as modified distribution by adding one or more parameters to a
baseline distribution and was first proposed by [3]. They proposed a new generalization for WD by multiplying its
cumulative hazard rate (HR) by exponential function and known as modified Weibull distribution (MWD).

The linear exponential distribution (LED), which was first proposed by [4], has just an increasing HR and notable
for fitting lifetime data in reliability analysis. So, many authors were interested in generalizing this distribution to
get a flexible model with decreasing, unimodal, and bathtub HR function. The extension of LED, which called as
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Marshall-Olkin linear failure rate distribution (M-OLFRD) was studied by [5]. [6] studied the generalized linear
failure rate distribution (ELFRD) and demonstrated that the HR can be increasing, decreasing and bathtub shaped.
The transmuted linear failure rate distribution (TLFRD) with increasing, decreasing, unimodal and bathtub HR
shaped was introduced by [7]. The Beta linear failure rate distribution (BLFRD), which was introduced by [8],
can have a constant, decreasing, increasing and bathtub-shaped HR functions. Another generalization of LED was
called the generalized linear exponential distribution (GLED) and was proposed first by [9]. Several authors [[10],
[11], [12] and [13]] have considered the generalization for the generalized linear exponential distribution (GLED).

This article attempts to propose a new lifetime distribution with four parameters, called modified generalized
linear exponential distribution (MGLED). The proposed distribution is of significance since it includes many sub-
models such as GLED, MWD, WD, LED, Rayleigh distribution (RD) and exponential distribution (ED). Also, it
provides a new opportunity in modeling the different characteristics of lifetime data sets. Some statistical properties
and the properties in terms of reliability analysis for MGLED are studied. Furthermore, while studying paper [14],
we found a mistake in Section 4. So, we attempt to discuss this mistake in Section 3 and introduce a numerical
study for this purpose. The new distribution gives a reasonable parametric fit for modeling data with bathtub
failure rates, which are very useful in modeling reliability analysis. We hope that the proposed distribution will
attract many applications in different branches of science, engineering, biology, and others. The remainder of the
article is organized into seven sections. Section 2 introduces some statistical functions of MGLED. The correction
of the formula of the moments of MWD, which proposed first in [14], is studied in Section 3. Section 4 derives
some important statistical properties. Properties of the MGLED in terms of reliability analysis are given in Section
5. Section 6 describes parameters estimation by maximum likelihood estimation (MLE). Two applications to real
data are presented in Section 7.

2. Modified Generalized Linear Exponential Distribution

For a non-negative random variable X, the cumulative distribution function (cdf) of GLED is given by

F (x; c, b, ξ) = 1− e−(c x+ b
2x

2)ξ , c, b ≥ 0, ξ > 0, x > 0. (1)

Same to the idea in [3], the cumulative HR of GLED (c y + b
2y

2)ξ is multiplied by the term eφ(c y+ b
2y

2) in order
to obtain the MGLED. The term takes this form to perform the convergent condition for Lambert W function as
shown in Section 4. Then the cdf of the MGLED with parameter vector Φ = (c, b, ξ, φ) is given by

F (x; Φ) = 1− e−(c x+ b
2x

2)ξ eφ(c x+ b
2
x2)

, c, b ≥ 0, ξ, φ > 0, x > 0, (2)

where the parameters c and b affect the scale of the distribution, the parameter ξ affect the shape of distribution, and
the parameter φ is an acceleration parameter. The probability density function (pdf), the survival and HR functions
of MGLED are given by:

f(x; Φ) = (c+ b x) (c x+
b

2
x2)ξ−1

(
ξ + φ (c x+

b

2
x2)
)

× eφ(c x+ b
2x

2) e−(c x+ b
2x

2)ξ eφ(c x+ b
2
x2)

, (3)

S(t; Φ) = e−(c t+ b
2 t

2)ξ eφ(c t+ b
2
t2)

, t > 0, (4)

and

h(t; Φ) = (c+ b t) (c t+
b

2
t2)ξ−1

(
ξ + φ (c t+

b

2
t2)
)
eφ(c t+ b

2 t
2), (5)

respectively.
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Table 1 indicates a list of distributions that can be derived from MGLED. Some possible shapes for the pdf and
the corresponding hazard functions of MGLED are exhibited in Figure 1. Based on different values of parameters,
the pdf of MGLED can be decreasing and unimodal while the HR function is decreasing, increasing and bathtub
shape.

Table 1. The sub-models from the MGLED

Distribution c b ξ φ cdf Reference

GLED - - - 0 1− e−
(
c x+ b

2x
2
)ξ

[9]

LED - - 1 0 1− e−
(
c x+ b

2x
2
)

[4]
MWD - 0 - 1 1− e−(c x)ξ eφ(c x)

[3]
WD - 0 - 0 1− e−c xξ

[15]
RD 0 - 1 0 1− e−

b
2x

2

[4]
ED - 0 1 0 1− e−c x [4]

NMLED - - 1 - 1− e−
(
c x+ b

2x
2
)

e
φ

(
c x+ b

2
x2
)

New

NMRD 0 - 1 - 1− e−
b
2x

2 e
φb
2

x2

New
NMED - 0 1 - 1− e−c x eφc x

New
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Figure 1. (a) pdfs and (b) corresponding hazard rate functions of MGLED with different values of parameters.

3. Correction of the Formula for the Moments of MWD

In this section, the correction of the formula for the r-th moments of MWD provided in [14] are studied and a
numerical study is used to show that our correction formula is precise. For this purpose, three formulae for r-th
moments of MWD are presented. All notations and symbols in this section are taken from [14].
Formula I: Numerical integration for original definition of r-th moment of MWD.

µ(r) =

∫ ∞

0

α tr tγ−1 eλt (γ + λ t)e−α tγ eλt

dt.
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Formula II: The correction of the formula given in [14], after taking into consideration the condition of convergent,
is given by

µ(r) =

∞∑
i1,...,ir=1

Ai1,...,ir

(
1

α

) sr
γ

[
Γ

(
sr
γ

+ 1

)
− Γ

(
sr
γ

+ 1, α
( γ

λe

)γ)]
,

where Ai1,...,ir and sr are given on page 453 of [14]. The proof for this formula can be shown in Appendix A.
Formula III: The formula of the r-th moments given at the end of Page 454 of [14] which is given by

µ(r) =

∞∑
i1,...,ir=1

Ai1,...,ir

(
1

α

) sr
γ

Γ

(
sr
γ

+ 1

)
.

Table 2 shows that Formula III cannot be given the r-th moments of MWD without any restriction on the
parameters which is a contradiction with Lines 10 and 11 Page 454 in [14]. The values of Formula II are more
close to the value of Formula I than Formula III. The (-) in Table 2 indicates that the output from Formula III is
divergent. From the above, it is clear that Formulae II is more accurate than Formula III which proposed by [14].

Table 2. Comparison for Formulae (I, II and III) of the first two moments of MWD under various values of parameters.

Formula γ = 5 γ = 6

r = 1
λ = 1 α = 1 I 0.7802 0.8074

II 0.7802 0.8074
III - -

α = 1.5 I 0.7274 0.7607
II 0.7274 0.7607
III - -

r = 2
λ = 1 α = 1 I 0.6335 0.6715

II 0.6335 0.6715
III - -

α = 2 I 0.4985 0.5478
II 0.4985 0.5478
III - -

4. Statistical Properties

This section deals with the statistical properties of MGLED such as moment, moment generating function,
quantiles, and mode.

4.1. Moments

In the following theorem, an explicit forms of the k-th moments of MGLED are given.

Theorem 1
Let X be a non-negative continuous random variable. Then the k-th moments µ(k) of MGLED; k = 1, 2, 3, ... are
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given by

µ(k) =



∑k
j=0

∑∞
m=0

∑∞
i=0 Aj,m di(m) γ

(
A1i,m, u

)
+∑k

j=0

∑∞
m=0

∑∞
i=0 Bj,m di

(
k−j−2m

2

)
×

(
γ
(
B1i,j,m, w

)
− γ
(
B1i,j,m, u

) )
w > u;

∑k
j=0

∑∞
m=0

∑∞
i=0 Aj,m di(m) γ

(
A1i,m, w

) )
w < u.

(6)

where
Aj,m = (−1)j

(
k
j

) ( k−j
2
m

)
( cb )

k ( 2 b
c2 )

m, A1i,m = ξ+m+i
ξ , Bj,m = (−1)j

(
k
j

) ( k−j
2
m

)
2

k−j
2 −m cj+2 m b−( k+j+2m

2 )

B1i,j,m = 2 i+2 ξ+k−j−2 m
2 ξ , γ(., .) is the lower incomplete gamma function, u = ( c2

2 b )
ξ eφ ( c2

2 b ),

w = ( ξ
φ e )

ξ, d0(p) = ap0, di(p) =
1

i d0

∑i
l=1

(
l (p)− i+ l

)
al di−l and ai =

(−1)i+2

i! (i+ 1)(i−1) (φξ )
i.

Proof 1
The k-th moments of MGLED can be written in the form

µ(k) =

∫ ∞

0

xk (c+ b x) (c x+
b

2
x2)ξ−1

(
ξ + φ (c x+

b

2
x2)
)

× eφ(c x+ b
2x

2) e−(c x+ b
2x

2)ξ eφ(c x+ b
2
x2)

dx. (7)

Upon using the substitution v = (c x+ b
2x

2)ξ eφ(c x+ b
2x

2), it can be shown that (c x+ b
2x

2) =
∑∞

i=0 ai v
i+1
ξ (see

[14]) and x =
−c+

√
c2+2 b

∑∞
i=0 ai v

i+1
ξ

b . Here, it is easy to show that the condition of convergence of this sum is
v < ( ξ

φ e )
ξ. Then the k-th moments of MGLED are given by

µ(k) =

∫ ( ξ
φ e )

ξ

0

( −c+

√
c2 + 2 b

∑∞
i=0 ai v

i+1
ξ

b

)k
e−v dv.

Expanding
( −c+

√
c2+2 b

∑∞
i=0 ai v

i+1
ξ

b

)
k yields,

µ(k) =

∫ ( ξ
φ e )

ξ

0

k∑
j=0

(
k

j

)
(−c)j

(
c2 + 2 b

∞∑
i=0

ai v
i+1
ξ

) k−j
2

e−v dv.

It is clear that
∣∣∣ 2 b
c2

∑∞
i=0 ai v

i+1
ξ

∣∣∣ < 1 if v < ( c2

2 b )
ξ eφ ( c2

2 b ), and
∣∣∣ c2

2 b
∑∞

i=0 ai v
i+1
ξ

∣∣∣ < 1 if v > ( c2

2 b )
ξ eφ ( c2

2 b ) .

Then, by binomial expansion, µ(k) can be written as

µ(k) =


∑k

j=0

∑∞
m=0 Aj,m

∫ u

0
(
∑∞

i=0 ai v
i+1
ξ )m e−v dv

+
∑k

j=0

∑∞
m=0 Bj,m

∫ w

u
(
∑∞

i=0 ai v
i+1
ξ )

k−j−2 m
2 e−v dv, w > u;

∑k
j=0

∑∞
m=0 Aj,m

∫ w

0
(
∑∞

i=0 ai v
i+1
ξ )m e−v dv, w < u.
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Since
( ∑∞

i=0 ai v
i+1
ξ

) k−j−2 m
2

=
∑∞

i=0 di(
k−j−2m

2 ) v
2 i+k−j−2 m

2 ξ and
( ∑∞

i=0 ai v
i+1
ξ

)m
=∑∞

i=0 di(m) v
i+m

ξ (see [16], page 17), µ(k) can be presented as

µ(k) =


∑k

j=0

∑∞
m=0 Aj,m di(m)

∫ u

0
v

i+m
ξ e−v dv

+
∑k

j=0

∑∞
m=0 Bj,m di(

k−j−2 m
2 )

∫ w

u
v

2 i+k−j−2 m
2 ξ e−v dv, w > u;

∑k
j=0

∑∞
m=0 Aj,m di(m)

∫ w

0
v

i+m
ξ e−v dv, w < u.

Then the proof is completed.

Remark 1
When φ = 0, Equation (6) reduces to the k-moment of GLED (see [17]).

4.2. Moment Generating Function

In this subsection, the explicit form of the moment generating function of MGLED is given. Let X be a non-negative
continuous random variable. Then the moment generating function of MGLED MX(t); t > 0 is given by

MX(t) =



∑∞
j=0

∑∞
m=0

∑∞
n=0

∑∞
i=0 A∗

j,m,n di(n) γ
(
A1∗i,n, u

)
+∑∞

j=0

∑∞
m=0

∑∞
n=0

∑∞
i=0 B∗

j,m,n

di(
j−m−2n

2 )

(
γ
(
B1∗i,j,m,n, w

)
− γ
(
B1∗i,j,m,n, u

) )
w > u;

∑∞
j=0

∑∞
m=0

∑∞
n=0

∑∞
i=0 A∗

j,m,n di(n) γ
(
A1∗i,n, w

)
, w < u.

where
A∗

j,m,n =
(
j
m

) ( j−m
2
n

)
(−c

b )j tj

j! (
2 b
c2 )

n, A1∗i,n = ξ+n+i
ξ , B∗

j,m,n = (−c)m
(
j
m

) ( j−m
2
n

)
( 1b )

j tj

j! (2 b)
j−m

2 ( c2

2 b )
n,

and B1∗i,j,m,n = 2 i+2 ξ+j−m−2 n
2 ξ .

4.3. Mode and Quantile

The mode and the quantile are presented in this section. The first derivative with respet to (w.r.t) x of the pdf for
MGLED is given by

d

dx
f(x; Φ) = f(x; Φ) p1(x; Φ),

where

p1(x; Φ) = φ (c+ b x)
(
1 +

1

ξ + φ (c x+ b
2x

2)

)
+

b

c+ b x
+

(ξ − 1)(c+ b x)

(c x+ b
2x

2)

−eφ(c x+ b
2x

2) (c x+
b

2
x2)ξ−1 (c+ b x)

(
ξ + φ (c x+

b

2
x2)
)
.

It is clear that the mode of MGLED is the solution of the non-linear equation p1(x; Φ) = 0 since f(x; Φ) > 0. The
non-linear equation p1(x; Φ) = 0 can be solved numerically. Moreover, the quantile of MGLED can be given by

xq =
−c+

√
c2 + 2 b

∑∞
i=0 ai (− ln(1− q))

i+1
ξ

b
, 0 < q < 1. (8)

Then the median of the MGLED is obtained by setting q = 0.5 in Equation (8) as
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x0.5 =
−c+

√
c2 + 2 b

∑∞
i=0 ai (ln 2)

i+1
ξ

b
. (9)

Remark 2
For φ = 0, Equation (8) reduces to

xq =
−c+

√
c2 + 2 b (− ln(1− q))

1
ξ

b
, 0 < q < 1, (10)

which is the quantile of GLED.

Table 3 shows the first four ordinary moments, mode, median, skewness and kurtosis of the MGLED for different
values of c, b, ξ and φ.

Table 3. The first four ordinary moments, mode, median, skewness and kurtosis of the MGLED for different parameters.

parameters Mean µ
′

2 µ
′

3 µ
′

4 mode median skewness kurtosis
c = 1.5 b =0.1 0.489 0.272 0.1657 0.1081 0.4918 0.4731 0.0707 2.6136
ξ =2.5 φ = 0.5
c = 1.5 b =0.5 0.4586 0.2367 0.1328 0.0793 0.4712 0.4472 -0.0139 2.5975
ξ =2.5 φ = 0.5
c = 1.5 b =1.5 0.4065 0.1831 0.0887 0.0454 0.4275 0.4004 -0.1317 2.6281
ξ =2.5 φ = 0.5
c = 1.5 b =3 0.3578 1402 0.0586 0.0257 0.3807 0.3547 -0.2189 2.6915

ξ =2.5 φ = 0.5
c = 0.1 b =1.5 0.9137 0.8742 0.8672 0.886 0.9726 0.9159 -0.4576 3.075
ξ =2.5 φ = 0.5
c = 0.5 b =1.5 0.7023 0.5278 0.4169 0.3424 0.7529 0.7021 -0.3705 2.8931
ξ =2.5 φ = 0.5
c = 3 b =1.5 0.2336 0.0616 0.0177 0.0054 0.2388 0.2273 0.0087 2.5987

ξ =2.5 φ = 0.5
c = 1.5 b =1.5 0.3644 0.1643 0.084 0.0469 0.352 0.3743 0.213 2.472
ξ =1.5 φ = 0.5
c = 1.5 b =1.5 0.4313 0.1977 0.0948 0.0472 0.4576 0.4133 -0.3339 2.8846
ξ =3.5 φ = 0.5
c = 1.5 b =1.5 0.4527 0.2311 0.1283 0.076 0.4613 0.4404 0.017 2.62
ξ =2.5 φ = 0.1
c = 1.5 b =1.5 0.3657 0.1463 0.0624 0.0279 0.3912 0.3631 0.2439 2.695
ξ =2.5 φ = 1

5. Properties of the MGLED in Terms of Reliability Analysis

In this section, some properties of the MGLED, which is important in reliability analysis, are studied. In particular,
the behavior for HR, mean residual life (MRL), and variance residual life (VRL) are discussed.

5.1. Behavior of Hazard Rate Function

The behavior of the HR h(t; Φ) for MGLED is introduced in the following theorem.

Theorem 2
For c > 0 and b > 0,
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1. MGLED has a bathtub HR if 0 < ξ < 1,
{

0 < φ < 2 b ξ
c2 and t <> t2 (see F igure 2(a))or

φ ≥ 2 b ξ
c2 and t <> t4 (see F igure 2(b)).

2. MGLED has increasing HR if ξ ≥ 1, φ > 0 and t > 0 (see Figure 2 (c)),

where t2 and t4 given in the proof.
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Figure 2. The various shapes of the hazard function of the MGLED.

Proof 2
The first derivative of h(t; Φ) can be obtained as

d

dt
h(t; Φ) =

(c t+ b
2 t

2)ξ

t2(2 c+ b t)2
eφ (c t+ b

2 t
2) p(t; Φ),

where

p(t; Φ) = −2 ξ
(
b2 t2 + 2 b c t+ 2 c2

)
+ φ2 t2 (b t+ c)2 (b t+ 2 c)2

+ 4 ξ2 (b t+ c)2 + φ t (b t+ 2 c)
(
4 ξ (b t+ c)2 + b t(b t+ 2 c)

)
.

Upon using the package Reduce in Mathematica11 for solving p(t; Φ) =<> 0, where t2 and t4 are the second
and the fourth roots of the equation of the sixth degree (p(t; Φ) = 0), then the result is satisfied.

5.2. Behavior of Mean Residual Life

Let Ωt = (X − t)|(X ≥ t) be the residual lifetime which plays an important role in reliability theory. Then the
MRL of a non-negative continuous random variable T is defined as

m(t,Φ) = E[Ωt; Φ] =
1

S(t; Φ)

∫ ∞

t

(x− t) f(x; Φ) dx, (11)

where E[Ωt; Φ] is the expectation of the residual lifetime.
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Theorem 3
Using the Equations (3), (4) and (11), the explicit forms for MRL of MGLED are given by:

m(t,Φ) =

1
S(t)

[
− t S(t) + c

b (e−w − S(t)) + c
b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)(
γ(Di,j , u)− γ(Di,j ,− logS(t))

)
+

√
2 b
b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( c2

2 b )
j di(

1
2 − j)(

γ(Gi,j , w)− γ(Gi,j , u)
) ]

, − logS(t) < u < w;

1
S(t)

[
− t S(t) + c

b (e−w − S(t)) + c
b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)(
γ(Di,j , w)− γ(Di,j ,− logS(t))

) ]
, w < u;

1
S(t)

[
− t S(t) + c

b (e−w − S(t)) +
√
2 b
b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( c2

2 b )
j di(

1
2 − j)

(
γ(Gi,j , w)− γ(Gi,j ,− logS(t))

) ]
u < − logS(t),

where Di,j =
i+j+ξ

ξ and Gi,j =
2i−2j+2ξ+1

2ξ .

Proof 3
To derive the previous explicit form of the MRL for MGLED, the integral

∫∞
t

x f(x; Φ) dx must be calculated (see
Appendix B).

On the other hand, as in [18], Equation (11) can be rewritten as

m(t; Φ) =

∫ ∞

t

e−
∫ t+x
t

h(t;Φ) dt dx (12)

From Equation (12), it is clear that m(t; Φ) of MGLED is unimodal for the first case in Theorem 2 and decreasing
for the second case in the same theorem.

5.3. Behavior of the Variance of Residual Life

In this subsection, the variance of random variable (r.v.) Ωt and their monotonic and non-monotonic properties are
studied. The VRL can be defined as

V ar(Ωt; Φ) = E((X − t)2|X ≥ t)− [E(X − t|X ≥ t)]2

= E(X2|X ≥ t)− [E(X|X ≥ t)]2

=

∫ ∞

t

x2 f(x; Φ)

S(t; Φ)
dx−

( ∫ ∞

t

x
f(x; Φ)

S(t; Φ)
dx

)2

. (13)

where V ar(Ωt; Φ) is the variance of the residual lifetime.

Theorem 4
Let T be a non-negative continuous r.v., then the explicit forms for VRL of MGLED are given by:
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V ar(Ωt; Φ) =

1
S(t)

[
2 c2

b2 (S(t)− e−w) + 2
b

∑∞
i=0 ai

(
γ(Di, w)− γ(Di,− logS(t))

)
− 2 c2

b2

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)
(
γ(Di,j , u)− γ(Di,j ,− logS(t))

)
− 2 c

√
2 b

b2

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( c2

2 b )
j di(

1
2 − j)

(
γ(Gi,j , w)− γ(Gi,j , u)

) ]

−( 1
S(t) )

2

[
c
b (e−w − S(t)) + c

b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)
(
γ(Di,j , u)

−γ(Di,j ,− logS(t))
)

+
√
2 b
b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( c2

2 b )
j di(

1
2 − j)(

γ(Gi,j , w)− γ(Gi,j , u)
) ]2

− logS(t) < u < w;

1
S(t)

[
2 c2

b2 (S(t)− e−w) + 2
b

∑∞
i=0 ai

(
γ(Di, w)− γ(Di,− logS(t))

)
− 2 c2

b2

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)
(
γ(Di,j , w)− γ(Di,j ,− logS(t))

) ]

−( 1
S(t) )

2

[
c
b (e−w − S(t)) + c

b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)

(
γ(Di,j , w)− γ(Di,j ,− logS(t))

) ]2
w < u;

1
S(t)

[
2 c2

b2 (S(t)− e−w) + 2
b

∑∞
i=0 ai

(
γ(Di, w)− γ(Di,− logS(t))

)
− 2 c

√
2 b

b2

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( c2

2 b )
j di(

1
2 − j)

(
γ(Gi,j , w)− γ(Gi,j ,− logS(t))

) ]

−( 1
S(t) )

2

[
c
b (e−w − S(t)) +

√
2 b
b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( c2

2 b )
j di(

1
2 − j)

(
γ(Gi,j , w)− γ(Gi,j ,− logS(t))

) ]2
u < − logS(t),

where Di,j and Gi,j are given in the previous theorem and Di =
i+ξ+1

ξ .

Proof 4
To derive the previous explicit form of the VRL for MGLED, the integrals

∫∞
t

x f(x; Φ) dx and
∫∞
t

x2 f(x; Φ) dx
must be calculated (see Appendix B).

To study the behavior of VRL for MGLED, it is important to study the following relations (see [19], [20]):

V ar(Ωt; Φ)−m(t,Φ)2 =
2

S(t; Φ)

∫ ∞

t

S(x; Φ)
[
m(x,Φ)−m(t,Φ)

]
dx, (14)

and
∂

∂t
V ar(Ωt; Φ) = h(t; Φ) m(t; Φ)2

[V ar(Ωt; Φ)

m(t; Φ)2
− 1
]
. (15)
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Remark 3
Since x ≥ t, the following properties for VRL are satisfied:

• Upon using the Equation (15), one can show that V ar(Ωt; Φ) is increasing if V ar(Ωt; Φ) > m(t; Φ)2,
furthermore, it is obvious from Equation (14) that V ar(Ωt; Φ) > m(t; Φ)2 if and only if m(t; Φ) is increasing.

• Upon using the Equation (15), one can show that V ar(Ωt; Φ) is decreasing if V ar(Ωt; Φ) < m(t; Φ)2,
furthermore, it is obvious from Equation (14) that V ar(Ωt; Φ) < m(t; Φ)2 if and only if m(t; Φ) is
decreasing.

From Remark 3, it is obvious that the VRL is a unimodal for MGLED given that the MRL for MGLED is a
unimodal and is a decreasing for MGLED given that the MRL for MGLED is a decreasing.

6. Maximum Likelihood Estimation

MLE is probably the most widely used method of estimation in statistics. Suppose that x1, ..., xr be an independent
random sample of size r from MGLED. From Equation (3), the log-likelihood function can be obtained as

ℓ(Φ) = −
r∑

i=1

(
b

2
x2
i + c xi)

ξ eφ ( b
2 x2

i+c xi) +

r∑
i=1

φ (
b

2
x2
i + c xi)

+(ξ − 1)

r∑
i=1

log
( b

2
x2
i + c xi

)
+

r∑
i=1

log (b xi + c)

+

r∑
i=1

log
(
ξ + φ (

b

2
x2
i + c xi)

)
. (16)

By taking the first derivative (ℓΦ(Φ) = ∂ℓ
∂Φ ) of Equation (16) w.r.t. c, b, ξ and φ we get

ℓc(Φ) =

r∑
i=1

φ xi

φ
(
1
2b x

2
i + c xi

)
+ ξ

−
r∑

i=1

(
ξ xi

(
1

2
b x2

i + c xi

)ξ−1

eφ ( 1
2 b x2

i+c xi) + φ xi

(
1

2
b x2

i + c xi

)ξ

eφ ( 1
2 b x2

i+c xi)

)

+

r∑
i=1

(ξ − 1)xi
1
2 b x2

i + c xi

+

r∑
i=1

1

b xi + c
+

r∑
i=1

φ xi, (17)

ℓb(Φ) =

r∑
i=1

φ x2
i

2
(
φ
(
1
2 b x2

i + c xi

)
+ ξ
) − r∑

i=1

(
1

2
ξ x2

i

(
1

2
b x2

i + c xi

)ξ−1

eφ ( 1
2 b x2

i+c xi) +
1

2
φ x2

i

(
1

2
b x2

i + c xi

)ξ

eφ ( 1
2 b x2

i+c xi)

)

+

r∑
i=1

(ξ − 1) x2
i

2
(
1
2 bx2

i + c xi

) + r∑
i=1

xi

b xi + c
+

r∑
i=1

1

2
φ x2

i , (18)

ℓξ(Φ) = −
r∑

i=1

(
1

2
b x2

i + c xi

)ξ

eφ ( 1
2 b x2

i+c xi) log

(
1

2
b x2

i + c xi

)
+

r∑
i=1

log

(
1

2
b x2

i + c xi

)
+

r∑
i=1

1

φ
(
1
2 b x2

i + c xi

)
+ ξ

, (19)
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and

ℓφ(Φ) = −
r∑

i=1

(
1

2
b x2

i + c xi

)ξ+1

eφ ( 1
2 b x2

i+c xi) +

r∑
i=1

1
2 b x2

i + c xi

φ
(
1
2 b x2

i + c xi

)
+ ξ

+

r∑
i=1

(
1

2
b x2

i + c xi

)
. (20)

6.1. The Parameters c, b, and φ are Known

The normal equation ℓξ(Φ) = 0 can be written as

1

ξ
=

∑r
i=1

(
b
2 x2

i + c xi

)ξ
eφ(

b
2 x2

i+c xi) log
(
b
2 x2

i + c xi

)
−
∑r

i=1 log
(
b
2 x2

i + c xi

)∑r
i=1

1
φ( b

2
x2
i
+c xi)

ξ +1

. (21)

It is clear that the first derivative of the right-side hand (Ψ1(ξ)) of Equation (21) w.r.t. ξ is always positive. This
means that the Ψ1(ξ) is an increasing function. Then by graphical method [21], the MLE of ξ exists and unique.

6.2. The Parameters c, b, and ξ are Known

The normal equation ℓφ(Φ) = 0 can be written as

1

φ
=

∑r
i=1

(
b
2 x2

i + c xi

)ξ+1
eφ(

b
2 x2

i+c xi) −
∑r

i=1

(
b
2 x2

i + c xi

)∑r
i=1

b
2 x2

i+c xi

( b
2 x2

i+c xi)+ ξ
φ

. (22)

It is clear that the first derivative of the right-side hand (Ψ2(φ)) of Equation (22) w.r.t. φ is always positive. This
means that the Ψ2(φ) is an increasing function. Then by graphical method [21], the MLE of φ exists and unique.

6.3. The Parameters c, b, ξ, and φ are Unknown

The MLE Φ̂ of Φ is given by solving the four normal equations ℓc(Φ) = 0, ℓb(Φ) = 0, ℓξ(Φ) = 0, and ℓφ(Φ) = 0.
These nonlinear equations cannot be solved analytically. So, these four nonlinear equations can be solved
numerically by employing FindRoot in software WolframMathematica11.

6.4. Fisher Information Matrix

Since the computation of Fisher information matrix (given by taking the expectation of the second derivative of
Equation (16)) is very difficult, so, it seems appropriate to approximate these expected values by their MLEs. Then,
the asymptotic variance-covariance matrix is given as [see, [22]].
The normal equation ℓφ(Φ) = 0 can be written as

I−1 =


V ar(ĉ) Cov(ĉ, b̂) Cov(ĉ, ξ̂) Cov(ĉ, φ̂)

Cov(b̂, ĉ) V ar(b̂) Cov(b̂, ξ̂) Cov(b̂, φ̂)

Cov(ξ̂, ĉ) Cov(ξ̂, b̂) V ar(ξ̂) Cov(φ̂, ξ̂)

Cov(φ̂, ĉ) Cov(φ̂, b̂) Cov(φ̂, ξ̂) V ar(φ̂)

 =


−ℓcc(Φ) −ℓcb(Φ) −ℓcξ(Φ) −ℓcφ(Φ)
−ℓbc(Φ) −ℓbb(Φ) −ℓbξ(Φ) −ℓbφ(Φ)
−ℓξc(Φ) −ℓξb(Φ) −ℓξξ(Φ) −ℓξφ(Φ)
−ℓφc(Φ) −ℓφb(Φ) −ℓφξ(Φ) −ℓφφ(Φ)


−1

(ĉ,b̂,ξ̂,φ̂)

, (23)

where ℓΦiΦj
(Φ) = ∂2ℓ

∂ΦiΦj
, i, j = 1, 2, 3, 4, see Appendix C. Accordingly, the asymptotic confidence intervals (CIs)

based on the asymptotic variance-covariance matrix for the parameters c, b, ξ, and φ are respectively given as:
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ĉ± zα
2

√
V ar(ĉ), b̂± zα

2

√
V ar(b̂), ξ̂ ± zα

2

√
V ar(ξ̂), and φ̂± zα

2

√
V ar(φ̂),

where zα
2

is the percentile of the standard normal distribution with right tail probability α
2 . Since the parameters c,

b, ξ, and φ are positive, the log transformation, which was proposed by [23] is used to obtain the asymptotic CIs.
Then, these formulae can be given for the parameters c, b, ξ, and φ as:

ĉ e±
zα

2

√
V ar(ĉ)

ĉ , b̂ e±
zα

2

√
V ar(b̂)

b̂ , ξ̂ e
±

zα
2

√
V ar(ξ̂)

ξ̂ , and φ̂ e±
zα

2

√
V ar(φ̂)

φ̂ ,

respectively.

7. Applications

In this section, two real data sets are presented for interpretative study. For every data set, we compare MGLED with
its sub-models (NMLED, GLED, MWD, WD, and LFRD) and also with the following well-known distributions
with bathtub hazard rates:

• The pdf of BLFRD is given by [8]

f(x) = (c+b x)
B[ξ,φ]

(
1− e−(c x+ b

2x
2)
)ξ−1

e−(c φ x+ b φ
2 x2).

• The pdf of Marshal-Olkin generalized linear exponential distribution (M-OGLED) is [12]

f(x) =
ξ φ e−(c x+ b

2
x2)ξ (c x+ b

2x
2)ξ−1 (c+b x)(

1−(1−φ) e−(c x+ b
2
x2)ξ

)2 .

• The pdf of M-OLFRD is given by [5]

f(x) = φ e−(c x+ b
2
x2) (c+b x)(

1−(1−φ) e−(c x+ b
2
x2)

)2 .

• The pdf of Marshal-Olkin Weibull distribution (M-OWD) is given by [24]

f(x) = c ξ φ e−(c x)ξ (c x)ξ−1(
1−(1−φ) e−(c x)ξ

)2 .

• The pdf of ELFRD is given by [6]

f(x) = ξ (c+ b x)
(
1− e−(c x+ b

2x
2)
)ξ−1

e−(c x+ b
2x

2) .

• The pdf of TLFRD is given by [7]

f(x) = (c+ b x)
(
1− φ+ 2 φ e−(c x+ b

2x
2)ξ
)
e−(c x+ b

2x
2)ξ .

For identifying the shapes of hazard rate for given data sets, the scaled TTT transform plot is given as

ϕr(
n
r ) =

∑r
i=1 xi:r+(r−n) xn:r∑r

i=1 xi
,

where n = 1, ..., r and xi:r is the order statistics of the data (see [25]). Anderson Darling (A∗), Cramér Von-
Mises (W ∗), and and Kolmogrov-Simnorov (K − S) tests are used for non-parametric test statistic. These tests are
defined as:

A∗ = A2
(

9
4 n2 + 3

4 n + 1
)
,
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W ∗ = W 2
(

1
2 n + 1

)
,

and

K − S = max

( ∣∣∣ ir − F (xi)
∣∣∣, ∣∣∣F (xi)− i−1

r

∣∣∣)
respectively, where A2 and W 2 are given by

A2 = −r −
r∑

i=1

(2 i− 1)

r

(
log
(
F (xi)

)
+ log

(
1− F (xr−i+1)

) )
,

and

W 2 =
1

12 r
+

r∑
i=1

(
F (xi)−

2 i− 1

2 r

)2
.

Furthermore, the Akaike information criterion (AIC), which is defined as AIC = −2 ℓ+ 2 k (ℓ is the log-
likelihood function and k is the number of parameters), the Bayesian information criterion (BIC), which is
defined as BIC = −2 ℓ+ k log [r], the corrected Akaike information criterion (AICc), which is defined as
AICc = AIC + 2 k (k+1)

r−k−1 and the Hannan-Quinn information criterion (HQIC), which is defined as HQIC =
−2 ℓ+ 2 k log [log (r)], are used to compare the candidate distributions for parametric test. All computations were
introduced by Wolfram Mathematica11.

7.1. Failure Data of Electronic Equipment

Consider the failure times of 107 units for a piece of electronic equipment reported by [26]. The data are:1.0, 1.2,
1.3, 2.0, 2.4, 2.9, 3.0, 3.1, 3.3, 3.8, 4.3, 4.6, 4.7, 4.8, 5.2, 5.4, 5.9, 6.4, 6.8, 6.9, 7.2, 7.9, 8.3, 8.7, 9.2, 9.8, 10.2, 10.4,
11.9, 13.8, 14.4, 15.6, 16.2, 17.0, 17.5, 19.2, 28.1, 28.2, 29.0, 29.9, 30.6, 32.4, 33.0, 35, 35.3, 36.1, 40.1, 42.8, 43.7,
44.5, 50.4, 51.2, 52.0, 53.3, 54.2, 55.6, 56.4, 58.3, 60.2, 63.7, 64.6, 65.3, 66.2, 70.1, 71.0, 75.1, 75.6, 78.4, 79.2,
84.1, 86.0, 87.9, 88.4, 89.9, 90.8, 91.1, 91.5, 92.1, 97.9, 100.8, 102.6, 103.2, 104.0, 104.3, 105.0, 105.8, 106.5,
110.7, 112.6, 113.5, 114.8, 115.1, 117.4, 118.3, 119.7, 120.6, 121.0, 122.9, 123.3, 124.5, 125.8, 126.6, 127.7,
128.4, 129.2, 129.5, 129.9. This data will be used after dividing each failure times by 1000. The TTT plot shows
that the hazard rate of this data has first a convex shape and then a concave shape, indicating a bathtub-shaped
hazard rate function as shown in Figure 3 (a).

The numerical values of the non-parametric and parametric tests based on MLEs of all comparison distributions
are summarized in Table 4 for this data. Based on P-Value associated to K-S test, one can show that the all
distributions are in specific form at a level of significance α = 0.05 except NMLED, LFRD, M-OLFRD, and
TLFRD for the failure data of electronic equipment. It is obvious from Table 4 that the MGLED fits this data
better than other distributions because it has the lowest value based on A∗, W ∗ AIC, AICc, BIC, and HQIC.
The graphical method of ξ and Ψ1(ξ) based on Equation (21) can be shown in Figure 4 (a) for this data. Also, the
graphical method of φ and Ψ2(φ) based on Equation (22) can be shown in Figures 4 (b) for this data. Figure (5)
represents the profiles of log-likelihood function for all parameters based on first data.
The asymptotic variance-covariance matrix based on the ML estimates for this data is given by

I−1 =


3.31761 4.9163 0.1394 −0.9091
4.9163 2363.79 −0.0137 −37.7665
0.1394 −0.0137 0.0092 −0.0351
−0.9091 −37.7665 −0.0351 0.8274


Thus, the approximate 95% CIs for c, b, ξ and φ are respectively given by [1.12913, 9.73166], [12.784, 290.953],
[0.377707, 0.762618], and [0.269678, 5.30927].
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Figure 3. Scaled TTT transform of (a) Failure data of electronic equipment. (b) Aarset data.
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Figure 5. The profile of log-likelihood function of all parameters for the Failure data of electronic equipment .

7.2. Aarset Data

Consider the following data set from [25] consisting of 50 observations of failure times for 50 items which are
tested to failure. This data has been analysed by many other authors [[1], [10], [27], [28], and [2]]. This data will
be used after dividing each failure times by 100. Furthermore, the TTT plot shows that the hazard rate of this data
is bathtub as shown in Figure 3 (b).

The numerical values of the non-parametric and parametric tests based on ML estimates of all comparison
distributions are summarized in Table 5 for this data. Based on P-Value associated to K-S test, one can show that
the all distributions are in specific form at a level of significance α = 0.05 except WD for the Aarset data. It is
obvious from Table 5 that the MGLED fits this data better than other distributions because it has the lowest value
based on A∗, W ∗ AIC, AICc, BIC, and HQIC. The graphical method of ξ and Ψ1(ξ) based on Equation (21) can
be shown in Figure 6 (a) for this data. Also, the graphical method of φ and Ψ2(φ) based on Equation (22) can be
shown in Figures 6 (b) for this data. Figure (7) represents the profiles of log-likelihood function for all parameters
based on this data. The estimated hazard rate function of the failure data of electronic equipment and Aarset data
are displayed in Figure (8).
The asymptotic variance-covariance matrix based on the ML estimates for this data is given by

I−1 =


0.0052 0.0080 0.0080 −0.6794
0.0080 0.1698 0.0153 −7.1688
0.0080 0.0153 0.0147 −1.1291
−0.6794 −7.1688 −1.1291 328.503



Thus, the approximate 95% CIs for c, b, ξ and φ are respectively given by [-0.116022, 0.167255], [-0.513824,
1.10134], [0.07301, 0.548497], and [-23.9343, 47.1143]. The approximate 95% CIs based on the log transformation
method for c, b, ξ and φ are respectively given by [0.000101676, 6.4539], [0.0187952, 4.59122], [0.144596,
0.667845], and [0.540669, 248.447].

Stat., Optim. Inf. Comput. Vol. 12, January 2024



248 MODIFIED GENERALIZED LINEAR EXPONENTIAL DISTRIBUTION

Ta
bl

e
5.

T
he

M
L

es
tim

at
es

of
un

kn
ow

n
pa

ra
m

et
er

s,
th

e
co

rr
es

po
nd

in
g

SE
gi

ve
n

in
pa

re
nt

he
se

s,
(A

∗ )
,(
W

∗ )
,A

I
C

,B
I
C

,A
I
C
c,

an
d
H
Q
I
C

fo
rt

he
A

ar
se

td
at

a

M
od

el
M

L
es

tim
at

es
K

−
S

P
−

V
a
lu
e

(A
∗ )

(W
∗ )

A
I
C

B
I
C

A
I
C
c

H
Q
I
C

M
G

L
E

D
c

=
0.

02
56

(0
.0

1)
b

=0
.2

93
8

(0
.0

6)
0.

13
41

0.
32

97
1.

49
37

0.
20

69
-5

.4
33

1
2.

21
5

-4
.5

44
2

-2
.5

20
7

ξ
=0

.3
10

8
(0

.0
2)

φ
=

11
.5

9
(2

.5
6)

N
M

L
E

D
c

=
0.

94
65

(0
.0

4)
b

=0
.7

94
1

(0
.1

04
)

0.
17

34
0.

09
89

4.
88

0.
47

05
15

.8
59

9
21

.5
96

18
.0

44
2

16
.3

81
6

φ
=

0.
65

19
(0

.0
7)

G
L

E
D

c
=

0.
96

21
(0

.0
6)

b
=

4.
51

99
(0

.2
6)

0.
17

99
0.

07
86

2.
90

22
0.

43
49

17
.3

34
1

23
.0

70
2

17
.8

55
9

19
.5

18
5

ξ
=

0.
73

02
(0

.0
16

)
M

W
D

c
=0

.0
40

2
(0

.0
11

)
ξ

=0
.3

54
8

(0
.0

16
)

0.
13

37
0.

33
32

1.
83

36
0.

26
64

-0
.2

06
5

5.
52

95
0.

31
52

1.
97

78
φ

=
57

.9
94

4
(1

7.
22

)
W

D
c

=
2.

22
66

(0
.0

5)
ξ

=
0.

94
90

(0
.0

2)
0.

19
28

0.
04

86
3.

54
45

0.
53

49
25

.4
86

6
29

.3
10

7
25

.7
91

9
26

.9
42

8
L

FR
D

c
=

1.
36

32
(0

.0
5)

b
=

2.
39

97
(0

.1
4)

0.
17

69
0.

08
74

8
4.

09
88

0.
46

73
19

.6
10

2
23

.4
34

3
19

.8
65

5
21

.0
66

4
B

L
FR

D
c

=
1.

71
6

b
=

34
.7

84
8

0.
15

54
0.

17
86

1.
77

77
0.

27
86

8.
24

00
15

.8
88

1
9.

12
89

11
.1

52
5

ξ
=

0.
33

47
φ

=
0.

12
43

M
-O

-G
L

E
D

c
=

3.
59

2
(0

.4
5)

b
=

13
.8

88
9

(1
.8

1)
0.

14
79

0.
22

41
2.

54
96

0.
33

43
15

.2
38

22
.8

86
1

16
.1

26
9

18
.1

50
4

ξ
=

0.
57

39
(0

.0
2)

φ
=4

.7
35

7
(0

.5
4)

M
-O

-L
FR

D
c

=1
.8

10
6

(0
.1

1)
b

=
2.

47
35

(0
.1

7)
0.

16
30

0.
14

03
4.

32
17

0.
44

83
21

.0
62

1
26

.7
98

2
21

.5
83

8
23

.2
46

4
φ

=
1.

57
51

(0
.1

3)
M

-O
-W

D
c

=7
.1

74
9

(0
.6

5)
ξ

=
0.

69
92

(0
.0

2)
0.

16
26

0.
14

21
3.

00
31

0.
37

58
20

.9
29

7
26

.6
65

8
21

.4
51

5
23

.1
14

1
φ

=6
.6

97
3

(0
.7

5)
E

L
FR

D
c

=
0.

38
21

(0
.0

4)
b

=
3.

07
43

(0
.1

1)
0.

18
32

0.
06

97
3

2.
53

43
0.

41
94

11
.7

72
5

17
.5

08
5

12
.2

94
9

13
.9

56
8

ξ
=0

.5
32

7
(0

.0
16

)
T

L
FR

D
c

=1
.4

49
2

(0
.0

7)
b

=
2.

41
85

(0
.1

5)
0.

17
40

0.
09

69
4.

13
88

0.
46

19
21

.4
94

5
27

.2
30

6
22

.0
16

3
23

.6
78

8
ξ

=-
0.

09
44

(0
.0

4)

Stat., Optim. Inf. Comput. Vol. 12, January 2024



M. A. W. MAHMOUD, M. G. M. GHAZAL AND H. M. M. RADWAN 249

(a)

1

ξ

Ψ1

0.0 0.2 0.4 0.6 0.8
0

2

4

6

8

ξ (b)

1

φ

Ψ2

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

φ

Figure 6. (a) Plot of the 1
ξ and Ψ1(ξ) functions for the failure test data and (b) Plot of the 1

φ and Ψ2(φ) functions for Aarset
data.
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Figure 7. The profile of log-likelihood function of all parameters for the Aarset data .
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Figure 8. The hazard rate plots of the failure data of electronic equipment and Aarset data.

8. Conclusions

This paper introduced a new lifetime distribution known as MGLED. The new distribution has sub-models like
GLED, MWD, LED and WD which are widely used in the lifetime literature. The MGLED has a bathtub and
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increasing HR function. It was useful to model lifetime with a bathtub-shaped HR function. Some mathematical
properties were provided in explicit forms such as moments, moment generating function, and quantiles for
MGLED. Furthermore, the explicit forms of MRL and VRL were given and the behavior of their shapes were
also studied. The disadvantage of these explicit expressions was that cannot be given for any parameter values and
they need modern computer resources to calculate the numeric values of them. The applications of MGLED to two
real data sets were given to show that it may engage wider in reliability engineering. Upon using the parametric
and non-parametric test, the MGLED has a competitive advantage in modeling lifetime data.
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Appendices

A. Correction of the Formula for the Moments of MWD

All notations and symbols in this section are taken from [14]. To get Formula II, it is easy to show that the r-th
moments of the MWD can be written as

µ(r) =

∫ ∞

0

α tr tγ−1 eλt (γ + λ t) e−α tγ eλt

dt.

Upon using the substitution x = tγ eλt, it is clear that t =
∑∞

i=1 ai x
i
γ and ai is given by Equation (7) on page 453

of [14]. It is clear that the r-th moments of the MWD under the convergence condition become

µ(r) =

∫ ( γ
λ e )

γ

0

α (

∞∑
i=1

ai x
i
γ )r e−αx dx,

But

(

∞∑
i=1

ai x
i
γ )r =

∞∑
i1,...,ir=1

Ai1,...,ir x
sr
γ .

as in [14]. So, µ(r) can be written as

µ(r) =

∞∑
i1,...,ir=1

Ai1,...,ir

∫ ( γ
λ e )

γ

0

α x
sr
γ e−αx dx.

Then, the result is satisfied.
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B. Proofs

B.1. Constructing the formula for the moment generating function of MGLED

The moment generating function of MGLED can be written as

MX(t) =

∫ ∞

0

et x f(x; Φ) dx.

Making use of v = (c x+ b
2 x2)ξ eφ (c x+ b

2 x2) and et x =
∑∞

j=0 x
j tj

j! , yield

MY (t) =

∫ ( ξ
φ e )

ξ

0

∞∑
j=0

tj

j!

(−c+

√
c2 + 2 b

∑∞
i=0 ai v

i+1
ξ

b

)j
e−v dv.

It is clear that

(−c+

√
c2 + 2 b

∑∞
i=0 ai v

i+1
ξ

b

)j
=

b−j
(
c2 + 2 b

∞∑
i=0

ai v
i+1
ξ

) j
2
(
1− c√

c2 + 2 b
∑∞

i=0 ai v
i+1
ξ

)j
=

b−j
∞∑

m=0

(−1)m (c)m
(
j

m

) (
c2 + 2 b

∞∑
i=0

ai v
i+1
ξ

) j−m
2

Also, it is easy to show that | 2 b
c2

∑∞
i=0 ai v

i+1
ξ | < 1 if v < ( c2

2 b )
ξ eφ ( c2

2 b ) and | c2

2 b
∑∞

i=0 ai v
i+1
ξ

| < 1 if v >

( c2

2 b )
ξ eφ ( c2

2 b ). Then, by binomial expansion, MX(t) can be written as

MX(t) =



∑∞
j=0

∑∞
m=0

∑∞
n=0

∑∞
i=0 A∗

j,m,n di(n)
∫ u

0
v

i+n
ξ e−v dv

+
∑∞

j=0

∑∞
m=0

∑∞
n=0

∑∞
i=0 B∗

j,m,n di(
j−m−2n

2 )∫ w

u
v

2 i+j−m−2 n
2 ξ e−v dv, w > u;∑∞

j=0

∑∞
m=0

∑∞
n=0

∑∞
i=0 A∗

j,m,n di(n)
∫ w

0
v

i+n
ξ e−v dv, w < u.

Thus the result is satisfied.

B.2. Constructing the formulas for MRL and VRL of MGLED

• To calculate the integral I∗1 =
∫∞
t

x f(x; Φ) dx, the following steps is required. Making use of v =

(c x+ b
2 x2)ξ eφ (c x+ b

2 x2), yields

I∗1 =

∫ w

− logS(t)

(−c+

√
c2 + 2 b

∑∞
i=0 ai v

i+1
ξ

b

)
e−v dv

=

∫ w

− logS(t)

(−c

b

)
e−v dv +

1

b

∫ w

− logS(t)

(
c2 + 2 b
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i=0

ai v
i+1
ξ

) 1
2

e−v dv
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Also, it is easy to show that | 2 b
c2

∑∞
i=0 ai v

i+1
ξ | < 1 if v < ( c2

2 b )
ξ eφ ( c2

2 b ) and | c2

2 b
∑∞

i=0 ai v
i+1
ξ

| < 1 if

v > ( c2

2 b )
ξ eφ ( c2

2 b ). Then, by binomial expansion, I∗1 can be written as

I∗1 =

c
b (e−w − S(t)) + c

b

∑∞
i=0

∑∞
j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)(
γ(Di,j , u)− γ(Di,j ,− logS(t))

)
+

√
2 b
b

∑∞
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∑∞
j=0( 1

2
j

)
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2 b )
j di(

1
2 − j)

(
γ(Gi,j , w)− γ(Gi,j , u)

)
, − logS(t) < u < w;

c
b (e−w − S(t)) + c

b

∑∞
i=0
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j=0

( 1
2
j

)
( 2 b
c2 )

j di(j)(
γ(Di,j , w)− γ(Di,j ,− logS(t))

)
, w < u;

c
b (e−w − S(t)) +

√
2 b
b

∑∞
i=0

∑∞
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( 1
2
j

)
( c2

2 b )
j

di(
1
2 − j)

(
γ(Gi,j , w)− γ(Gi,j ,− logS(t))

)
, u < − logS(t).

• To calculate the integral I∗2 =
∫∞
t

x2 f(x; Φ) dx, the following steps is required. Making use of v =

(c x+ b
2 x2)ξ eφ (c x+ b

2 x2), yields

I∗1 =

∫ w

− logS(t)

(−c+

√
c2 + 2 b

∑∞
i=0 ai v

i+1
ξ

b

)2
e−v dv

=

∫ w

− logS(t)
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)
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b
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(
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∞∑
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ξ

) 1
2

e−v dv

Also, it is easy to show that | 2 b
c2

∑∞
i=0 ai v

i+1
ξ | < 1 if v < ( c2

2 b )
ξ eφ ( c2

2 b ) and | c2

2 b
∑∞

i=0 ai v
i+1
ξ

| < 1 if

v > ( c2

2 b )
ξ eφ ( c2

2 b ). Then, by binomial expansion, I∗1 can be written as
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2 c2
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b
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j
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2
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2 b )
j di(

1
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C. The expressions of the observed information matrix

The second derivatives of (16) can be written as:

ℓcc(Φ) =

r∑
i=1

− φ2 x2
i(

φ
(
1
2 b x2

i + c xi

)
+ ξ
)2 +
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1
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(b xi + c)2
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φ2 x2
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2
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+ 2 ξ φ x2
i
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2
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2
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4
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i

4
(
1
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i
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1

4
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i

(
1

2
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2
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2
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2
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(
1

2
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i
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1

2
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(
1

2
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1

2
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eφ ( 1
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i+c xi)

ℓcb(Φ) =
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− φ2 x3
i

2
(
φ
(
1
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)
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1
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2
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1
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1
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2
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(
1

2
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1

2
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log
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1
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log

(
1

2
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φ
(
1
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ℓcφ(Φ) =
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