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Abstract In this paper, we introduce a new four-parameter distribution which is called Extended Exponentiated Chen
(EE-C) distribution. Theoretical properties of this model including the hazard function, moments, conditional moments,
mean residual life, mean past lifetime, coefficients of skewness and kurtosis, order statistics and asymptotic properties are
derived and studied. The maximum likelihood estimation technique is used to estimate the parameters of this model. The
estimation of the model parameters by Least squares, Weighted Least Squares, Crammer-von-Mises, Anderson-Darling
and right-tailed Anderson-Darling methods are also briefly introduced and numerically investigated. Moreover, simulation
schemes are derived. At the end, three applications of the model with three real data sets are presented for the illustration of
the flexibility of the proposed distribution.
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1. Introduction

Modeling and analyzing lifetime data are important aspects of statistical research in many applied sciences such as
engineering, medicine and economics.

In many applied areas such as lifetime analysis, finance and insurance, we need extended forms of distributions.
So, several methods for generating new families of distributions have been studied. Some attempts have been made
to define new families of probability distributions that extend well-known families of distributions and with great
flexibility in modeling data in practice.

In literature, there exist many generalized (G-) classes of distributions where one or more parameter(s) are added
to the baseline distribution. Chen [6] proposed a new two parameter lifetime distribution with bathtub shaped or
increasing hazard rate function.

Three generalizations of Chen distribution are Marshall-Olkin class (Marshall and Olkin, [6]), exponentiated-G
class (Gupta et al., [14]) and transmuted G-class (Aryal and Tsokos, [4]), where one shape parameter is added to
the baseline model. Recently, Khan et al. [18] proposed the transmuted Chen distribution and investigated various
structural properties and their applications. Chaubey and Zhang [5] introduced an extension of the Chen’s family,
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called the Extended Chen (EC) family with the cumulative distribution function (cdf) given by the following:

F (x; a, b, α) =
(

1− ea(1−e
xb )
)α

, (1)

where α, a, b > 0 and x > 0. The probability density function (pdf) of EC distribution is

f(x; a, b, α) = abαxb−1ex
b

ea(1−e
xb )
(

1− ea(1−e
xb )
)α−1

. (2)

Dey et al. [10] studied further various properties and estimation methods for the EC distribution. In this paper,
we propose a new lifetime distribution family, an extension of the EC distribution. We provide different statistical
properties of this new distribution such as moments, mean deviations, Lorenz and Bonferroni curves and order
statistics. The maximum likelihood estimates (MLE) of the model parameters are determined. The estimation of the
model parameters is also approached by Least squares, Weighted Least Squares, Crammer-von-Mises, Anderson-
Darling and right-tailed Anderson-Darling estimation methods. Finally the performance of our distribution is
examined with data sets. Other articles in this field include Mozafari et al. [21], Karamikabir et al. [16] and
Karamikabir et al. [17].

The paper is organized as follows: In Section 2, we construct the new family of distributions. Shape
characteristics of the probability density and hazard functions of the family are investigated. Various properties
of the proposed distribution are explored in Section 3. These properties include moments, conditional moments,
mean residual (past) lifetime, mean deviations, Lorenz and Bonferroni curves and order statistics. Estimation of the
model parameters by maximum likelihood is performed in Section 4. Simulation study and applications to real data
sets illustrate the performance of the new family in Section 5 and Section 6. In Section 7, we offer some concluding
remarks.

1.1. Probability density and cumulative distribution functions

Alizadeh et al. [1] introduced a new family of distributions which is called Extended Exponentiated family of
distribution (EE-G). The cdf and pdf of this family for any baseline cdf G(x;θ) are given by

F (x;α, β,θ) =

∫ G(x;θ)α

1−G(x;θ)β

0

dt

(1 + t)2
=

G(x;θ)α

G(x;θ)α + 1−G(x;θ)β
, (3)

f(x;α, β,θ) =
g(x)G(x;θ)α−1

[
α+ (β − α)G(x;θ)β

]
[G(x;θ)α + 1−G(x;θ)β ]

2 , (4)

where α, β are two shape parameters and θ is the vector of parameters for baseline cdf G and g(x;θ) = dG(x;θ)
dx .

By inserting G(x;θ) = 1− ea(1−ex
b
) as Chen cdf for any x > 0 and a, b > 0 in Eq. (3), we obtain a new extension

of Exponentiated Chen distribution whose cdf is given by

F (x;α, β, a, b) =

[
1− ea(1−ex

b
)
]α

[
1− ea(1−exb )

]α
+ 1−

[
1− ea(1−exb )

]β , (5)

where x > 0 and a, b, α, β > 0. A random variable X with the cdf (5), is called Extended Exponentiated Chen
distribution and denoted by X ∼ EE-C(α, β, a, b).

The pdf and hazard function (hrf) of this distribution are given by the following:

f(x;α, β, a, b) =

abxb−1ex
b

ea(1−e
xb )
[
1− ea(1−ex

b
)
]α−1{

α+ (β − α)
[
1− ea(1−ex

b
)
]β}

{[
1− ea(1−exb )

]α
+ 1−

[
1− ea(1−exb )

]β}2 , (6)
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and

h(x;α, β, a, b) =

abxb−1ex
b

ea(1−e
xb )
[
1− ea(1−ex

b
)
]α−1{

α+ (β − α)
[
1− ea(1−ex

b
)
]β}

{[
1− ea(1−exb )

]α
+ 1−

[
1− ea(1−exb )

]β}{
1−

[
1− ea(1−exb )

]β} . (7)

Figure 1. provide the pdf and the hrf of EE-C(α, β, a, b) for different parameter values.
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Figure 1. The sample curves of density and hazard function of EE-C.

Special cases: The EE − C(α, β, a, b) distribution contains as special sub-models the following well-known
distributions:
• For α = β, we obtain Exponentiated Chen distribution.
• For α = β = 1, we obtain Chen distribution.
In Figure 2 some pdfs for above special cases of EE-C have been drown.

2. Main properties

Some mathematical properties of the new model such as moments, moment generating function, mean residual and
mean past lifetime are derived in this section. Moreover, mean deviations, Lorenz and Bonferroni curves and order
statistics are presented. First, we investigate asymptotic properties of this model and give mixture representations
for cdf and pdf.
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Figure 2. The sample curves of hazard function of EE-C.

2.1. Asymptotic

One of the main usage of the idea of an asymptotic distribution is in providing approximations to the cdfs of the
statistical estimators. The asymptotic cdf, pdf and hrf of EE-C distribution as x→ 0 are given by

F (x) ∼ axb as x→ 0,

f(x) ∼ abxb−1 as x→ 0,

h(x) ∼ abxb−1 as x→ 0.

The asymptotic cdf, pdf, and hrf of EE-C distribution as x→∞ are given as follows:

1− F (x) ∼ βe−ae
xb

as x→∞,

f(x) ∼ abβxb−1ex
b

e−ae
xb

as x→∞,

h(x) ∼ abxb−1ex
b

as x→∞.
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2.2. Mixture representations for the cdf and pdf

In the following, we show that the EE-C distribution can be obtained as a mixture of EC distributions. Using the
geometric series and binomial expansion and after changing the indices we can write as follows:

F (x) =
G(x)α

1− [G(x)β −G(x)α]
= G(x)α

∞∑
i=0

[G(x)β −G(x)α]i

= G(x)α
∞∑
i=0

i∑
j=0

(−1)j
(
i

j

)
(G(x)α)

j (
G(x)β

)(i−j)
=

∞∑
i=0

i∑
j=0

(−1)j
(
i

j

)
G(x)α(j+1)+β(i−j)

=

∞∑
i,l=0

i∑
j=0

(−1)j+l
(
i

j

)(
α(j + 1) + β(i− j)

l

)
Ḡ(x)l

=

∞∑
i,l=0

i∑
j=0

l∑
k=0

(−1)j+l+k
(
i

j

)(
α(j + 1) + β(i− j)

l

)(
l

k

)
G(x)k

=

∞∑
i,k=0

i∑
j=0

∞∑
l=k

(−1)j+l+k
(
i

j

)(
α(j + 1) + β(i− j)

l

)(
l

k

)
G(x)k

=

∞∑
k=0

ckG(x)k, (8)

where

ck =

∞∑
i=0

i∑
j=0

∞∑
l=k

(−1)j+l+k
(
i

j

)(
α(i+ 1) + β(i− j)

l

)(
l

k

)
.

With replacing G(x) = 1− ea(1−ex
b
) as Chen distribution, we have

F (x) =

∞∑
k=0

ckFEC(a,b,k)(x), (9)

and

f(x) =

∞∑
k=0

ck+1fEC(a,b,k+1)(x), (10)

where FEC(a,b,k) and fEC(a,b,k) denote the cdf and the pdf of EC distribution with parameters a, b and k.

2.3. Moments

We need the moments in statistical analysis especially in applied work. Some of the most important features and
characteristics of a distribution can be studied through moments (e.g., central tendency, dispersion, skewness and
kurtosis). Here, we give lemma, which will be used later.

Lemma 1
For a1, a2 > 0 and a3 > −1, let

L1(a1, a2, a3, r;β) =

∫ ∞
0

xrxβ−1ea1x
β

ea2(1−e
a1x

β
)
(

1− ea2(1−e
a1x

β
)
)a3

dx.
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Then,

L1(a1, a2, a3, r;β) =

∞∑
p=0

∞∑
q=0

ap

(
r

β

)
aq

(
r

β
+ p

)
(−1)

2r
β +p

a
r
β+1

1 a
r
β+p+1

2 [(q + p+ a3 + 1)β + r]
,

where ap
(
r
β

)
is the coefficient of

[
1
a2

log(1− u)
] r
β+p

in the expansion of
[∑∞

i=1

( 1
a2

log(1−u))i

i

] r
β

and aq
(
r
β + p

)
is the coefficient of up+q+

r
β in the expansion of

(∑∞
j=1

uj

j

) r
β+p

.

Proof
Substituting xr =

(
xβ
) r
β and u = 1− ea2(1−ea1x

β
), we get

L1(a1, a2, a3, r;β) =
1

βa
r
β+1

1 a2

∫ 1

0

{
log

[
1− 1

a2
log(1− u)

]} r
β

ua3du.

The desired result is obtained by expanding the function {log[1− 1
a2

log(1− u)]}. (For more details see Dey et al.
[10]).

Next, the n-th moment of the EE-C distribution is given as follows:

E(Xn) = ab

∞∑
k=0

(k + 1)ck+1L1(1, a, k, n; b). (11)

For integer values of n, Let µ
′

n = E(Xn) and µ = µ
′

1 = E(X), then one can also find the n-th central moment of
the EE-C distribution as the following:

µn = E(X − µ)n =

n∑
i=0

(
n

i

)
µ
′

i(−µ)n−i. (12)

Using (12), the measures of skewness and kurtosis of the EE-C distribution can be obtained as follows:

Skewness(X) =
µ′3 − 3µ′2µ

′
1 + 2(µ′1)3

(µ′2 − (µ′1)2)
3
2

, (13)

Kurtosis(X) =
µ′4 − 4µ′1µ

′
3 + 6(µ′1)2µ′3 − 3(µ′1)4

µ′2 − (µ′1)2
, (14)

respectively. Additionally, the moment generating function of EE-C distribution can be written as

MX(t) =

∞∑
r=0

tr

r!
E(Xr) = ab

∞∑
r=0

∞∑
k=0

tr

r!
(k + 1)ck+1L1(1, a, k, r; b). (15)

Figure 3 shows the behaviour of skewness and kurtosis of EE-C distribution.
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Figure 3. Skewness and Kurtosis for EE-C.

2.4. Conditional moments:

Here, we intend to determine the conditional moments of the new family. Let

L2(a1, a2, a3, r, t;β) =

∫ ∞
t

xrxβ−1ea1x
β

ea2(1−e
a1x

β
)
(

1− ea2(1−e
a1x

β
)
)a3

dx,

for a1, a2 > 0 and a3 > −1. Then, we obtain

L2(a1, a2, a3, r, t;β) =

∞∑
p=0

∞∑
q=0

ap

(
r

β

)
aq

(
r

β
+ p

) (−1)
2r
β +p

{
1−

[
1− (ea2(1−e

a1t
β
))
] (q+p+a3+1)β+r

β

}
a
r
β+1

1 a
r
β+p+1

2 [(q + p+ a3 + 1)β + r]
.

So, the n-th conditional moments of X can be expressed as

E(Xn|X > x) =
ab
∑∞

k=0(k + 1)ck+1L2(1, a, k, n, x; b)

1−
∑∞

k=0 ckV
k(x)

, (16)
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where V (x) = 1− ea(1−ex
b
). In the following for a1, a2 > 0 and a3 > −1, we define and compute

L3(a1, a2, a3, r, t;β) =

∫ t

0

xrxβ−1ea1x
β

ea2(1−e
a1x

β
)
(

1− ea2(1−e
a1x

β
)
)a3

dx.

We can write

L3(a1, a2, a3, r, t;β) =

∞∑
p=0

∞∑
q=0

ap

(
r

β

)
aq

(
r

β
+ p

) (−1)
2r
β +p

{
1− [ea2(1−e

a1t
β
)]
} (q+p+a3+1)β+r

β

a
r
β+1

1 a
r
β+p+1

2 [(q + p+ a3 + 1)β + r]
. (17)

Therefore

E(Xn|X ≤ x) =
ab
∑∞

k=0(k + 1)ck+1L3(1, a, k, n, x; b)∑∞
k=0 ckV

k(x)
. (18)

2.5. Mean residual life

In life testing situations, the expected additional lifetime given that a component has survived until time x is a
function of x, called the mean residual life. More specifically, if the random variable X represents the life of a
component, then the mean residual life is given by MX(x) = E(X − x|X > x) and can be expressed as

MX(x) = ab

∑∞
k=0(k + 1)ck+1L2(1, a, k, 1, x; b)

1−
∑∞

k=0 ckV
k(x)

− x.

2.6. Mean past lifetime

In many realistic situations, the random variables are not necessarily related only to the future, but they can
also refer to the past. In fact, in many reliability problems, it is of interest to consider variables of the kind
(x−X|X ≤ x) for fixed x, called the past lifetime, which denotes the time elapsed after failure till time x given
that the item has already failed by time x defined for a nonnegative random variable X . The mean past lifetime of
nonnegative random variable X is defined as mX(x) = E(x−X|X ≤ x) and is equal to

mX(x) = x− ab
∑∞

k=0(k + 1)ck+1L3(1, a, k, 1, x; b)∑∞
k=0 ckV

k(x)
.

2.7. Mean deviations

The mean deviations can be used as a measure of spread in a population. The mean deviations about the mean and
about the median are given by the following:

δ1(X) =

∫ ∞
0

|x− µ|f(x)dx,

δ2(X) =

∫ ∞
0

|x−m|f(x)dx,

respectively, where µ = E(X) and m = median(X). These quantities can be calculated as

δ1(X) = 2µF (µ)− 2

∫ µ

0

xf(x)dx

δ2(X) = µ− 2

∫ m

0

xf(x)dx.
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Using Eqs. (17) and (18), it follows that

δ1(X) = 2µF (µ)− 2ab

∞∑
k=0

(k + 1)ck+1L3(1, a, k, 1, µ; b)

δ2(X) = µ− 2ab

∞∑
k=0

(k + 1)ck+1L3(1, a, k, 1,m; b).

2.8. Bonferroni and Lorenz curves

We can construct Bonferroni and Lorenz curves, which are important in several fields such as economics, reliability,
demography, insurance and medicine. They are defined as the following:

B(F (x)) =
1

µF (x)

∫ x

0

tf(t)dt, (19)

L(F (x)) =
1

µ

∫ x

0

tf(t)dt. (20)

By Eqs. (18) and (6), one can obtain

B(F (x)) =
ab

µF (x)

∞∑
k=0

(k + 1)ck+1L3(1, a, k, 1, x; b),

L(F (x)) =
ab

µ

∞∑
k=0

(k + 1)ck+1L3(1, a, k, 1, x; b).

2.9. Order statistics

Order statistics are among the most fundamental tools in nonparametric statistics and inference. Suppose
X1, X2, · · · , Xn is a random sample from Eq. (6). Let X1:n < X2:n < · · · < Xn:n denote the corresponding order
statistics. It is well known that the pdf of the i-th order statistic, is given by the following:

fi:n(x) =
1

B(i, n− i+ 1)
F i−1(x)(1− F (x))n−if(x)

=
1

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F j+i−1(x)f(x),

where B(i, n− i+ 1) is the Beta function. Here and henceforth, we use an equation by Gradshteyn and Ryzhik
[12], page 17, for a power series raised to a positive integer n( ∞∑

i=0

aiu
i

)n
=

∞∑
i=0

dn,iu
i, (21)

where the coefficients dn,i (for i = 1, 2, · · · ) are determined from the recurrence equation (with dn,0 = an0 )

dn,i = (ia0)
−1

i∑
m=1

[m(n+ 1)− i] amdn,i−m.
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From Eq. (21), we can show that the density function of the i-th order statistic of any EE-C distribution can be
expressed as

fi:n(x) =

∞∑
r,k=0

er,kfEC(x; a, b, r + k + 1),

where fEC(x; a, b, r + k + 1) denotes the density function of EC distribution with parameters a, b and r + k + 1
and

er,k =
n!(r + 1)(i− 1)!cr+1

(r + k + 1)

n−i∑
j=0

(−1)jfj+i−1,k
(n− i− j)!j!

.

Here the quantities fj+i−1,k can be determined given that fj+i−1,0 = cj+i−10 and recursively we have

fj+i−1,k = (kc0)
−1

k∑
m=1

[m(j + i)− k] cmfj+i−1,k−m, k ≥ 1,

and cr is given by (9). The m-th moments of Xi:n is equal to

E(Xm
i:n) = ab

∞∑
r,k=0

(r + k + 1)er,kL1(1, a, r + k,m; b).

2.10. Entropy

An entropy is a measure of variation or uncertainty of a random variable X . Two popular entropy measures are due
to Rényi [22] and Shannon [23]. The Rényi entropy of a random variable with pdf f(x) is defined by

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)
,

for γ > 0 and γ 6= 1. In Figure 4 one can see some curves of the Rényi entropy function of the EE-C distribution
for some parameters.
The Shannon entropy of a random variable X is defined by E {− log [f(X)]}. It is the special case of the Rényi

entropy when γ ↑ 1.
We tend to derive an expression for the Shannon entropy of the EE-C distribution. The Shannon entropy of a

random variable with pdf f(x) is defined by H(X) = E{− log f(X)]}. For the pdf in Eq. (4), we have

H(X) = −E{log g(X)]}+ (1− α)E{logG(X)]} − E{log[α+ (β − α)Gβ(X)]}
−2E{log[Gα(X) + 1−Gβ(X)]}.

Let

L4(a1, a2, a3;α, β) =

∫ 1

0

ua1 [α+ (β − α)uβ ]a2

[uα + 1− uβ ]a3
du,

by using binomial expansion one can obtain

L4(a1, a2, a3;α, β) =

∞∑
i=0

i∑
j=0

∞∑
k=0

(
−a3
i

)(
a2
k

)
(−1)jαa2−k(β − α)k

a1 + β(j + k) + α(i− j) + 1
.

Therefore, we obtain the following proposition.
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Figure 4. Plots of Rényi entropy of EE-C distribution for parameters.

Proposition 1
Suppose X be a random variable with pdf (4). Then

E{logG(X)]} =
∂

∂t
L4(α− 1 + t, 1, 2;α, β)

∣∣∣
t=0

,

E{log[α+ (β − α)Gβ ]} =
∂

∂t
L4(α− 1, t+ 1, 2;α, β)

∣∣∣
t=0

,

E{log[Gα + 1−Gβ ]} =
∂

∂t
L4(α− 1, 1,−t+ 2;α, β)

∣∣∣
t=0

,

E{log g(X)]} = log(ab) + (b− 1)E{logX}+ E(Xb) + aE(1− eX
b

)

where

E{logX} =
1

b

∞∑
i=1

i∑
j=0

∞∑
k=0

∞∑
l=0

ak(j)al(k + j)
(−1)3j+k+1L4(j + k + l + α− 1, 1, 2;α, β)

iai
,

E(Xb) =

∞∑
i=1

∞∑
j=0

aj(i)
(−1)i+1L4(i+ j + α− 1, 1, 2;α, β)

iai
,

E(1− eX
b

) = −1

a

∞∑
i=1

L4(i+ α− 1, 1, 2;α, β)

i
.
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So, we can obtain the Shannon entropy as

H(X) = − log(ab) +
1− b
b

∞∑
i=1

i∑
j=0

∞∑
k=0

∞∑
l=0

ak(j)al(k + j)
(−1)3j+k+1L4(j + k + l + α− 1, 1, 2;α, β)

iai

−
∞∑
i=1

∞∑
j=0

aj(i)
(−1)i+1L4(i+ j + α− 1, 1, 2;α, β)

iai
+

∞∑
i=1

L4(i+ α− 1, 1, 2;α, β)

i

+ (1− α)
∂

∂t
L4(α− 1 + t, 1, 2;α, β)

∣∣∣
t=0
− ∂

∂t
L4(α− 1, t+ 1, 2;α, β)

∣∣∣
t=0

− 2
∂

∂t
L4(α− 1, 1,−t+ 2;α, β)

∣∣∣
t=0

. (22)

3. Maximum-likelihood estimation

In order to estimate the parameters of the proposed EE-C density function as defined in Eq. (6), the loglikelihood
of the sample is maximized with respect to the parameters. Let X1, · · · , Xn be a random sample from EE-C
model with unknown parameters α, β, a and b and observed values x1, · · · , xn. The log-likelihood function for the
parameters of this distribution is given as follows:

l(α, β, a, b;x) = n log(ab) + (b− 1)

n∑
i=1

log xi +

n∑
i=1

xbi + a

[
n−

n∑
i=1

ex
b
i

]
+ (α− 1)

n∑
i=1

log ti +

n∑
i=1

log
[
α+ (β − α)tβi

]
− 2

n∑
i=1

log
[
tαi + 1− tβi

]
,

where ti = G(xi) = 1− ea(1−ex
b
i ). Therefore we can write

∂l

∂α
=

n∑
i=1

log ti +

n∑
i=1

1− tβi
α+ (β − α)tβi

− 2

n∑
i=1

tαi (log ti)

tαi + 1− tβi
= 0,

∂l

∂β
=

n∑
i=1

tβi [1 + (β − α) log ti]

α+ (β − α)tβi
+ 2

n∑
i=1

tβi (log ti)

tαi + 1− tβi
= 0,

∂l

∂a
=

n

a
+

(
n−

n∑
i=1

ex
b
i

)
+ (α− 1)

n∑
i=1

t
(a)
i

ti
+ β(β − α)

n∑
i=1

t
(a)
i tβ−1i

α+ (β − α)tβi
− 2

n∑
i=1

t
(a)
i

[
αtα−1i − βtβ−1i

]
tαi + 1− tβi

= 0,

and

∂l

∂b
=

n

b
+

n∑
i=1

log xi(1 + xbi )− a
n∑
i=1

(log xi)x
b
ie
xbi + (α− 1)

n∑
i=1

t
(b)
i

ti

+ β(β − α)

n∑
i=1

t
(b)
i tβ−1i

α+ (β − α)tβi
− 2

n∑
i=1

t
(b)
i

[
αtα−1i − βtβ−1i

]
tαi + 1− tβi

= 0,
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where,

t
(a)
i =

∂ti
∂a

= −
(

1− ex
b
i

)
ea(1−e

xbi )

and

t
(b)
i =

∂ti
∂b

= a(log xi)x
b
ie
xbi ea(1−e

xbi ).

The maximum likelihood estimates α̂, β̂, â and b̂ of α, β, a and b are obtained by solving these nonlinear system
of equations.

4. Simulation study

In this section we have presented various methods of parameter estimation such as maximum likelihood, least
square, weighted least square, Cramér–von–Mises, Anderson-Darling and right-tailed Anderson-Darling using
simulation study.

4.1. The maximum likelihood estimator

It is impossible to find the closed form for the maximum likelihood estimators. In this subsection, the maximum
likelihood estimators for parameters of proposed density function has been assessed by simulating at the point
(α, β, a, b) = (3, 1, 0.2, 1). The density function has been indicated in Figure 5.

To verify the validity of the maximum likelihood estimators, the bias and the mean square error of MLE have
been used. For example, as described in Section 3, for (α, β, a, b) = (3, 1, 0.2, 1), r = 1000 times for samples of
size n = 20, 21, ..., 80 of EE-C(3, 1, 0.2, 1). To estimate the numerical value of the maximum likelihood, the optim
function (in the stat package) and Nelder-Mead method in R software have been used. If ξ = (α, β, a, b), for any
simulation by n size and i = 1, 2, ..., r, the maximum likelihood estimates are obtained as ξ̂i = (α̂i, β̂i, âi, b̂i).

0 1 2 3 4

0
.0

0
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0
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0
.8

EE − C(3, 1, 0.2, 1)

x

f(
x
)

Figure 5. The density function for simulation study.

To examine the performance of the MLE’s for the EE-C distribution, we perform a simulation study:

1. Generate r samples of size n from Eq. (6).
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2. Compute the MLE’s for the r samples, say (α̂, β̂, â, b̂) for i = 1, 2, . . . , r.
3. Compute the standard errors of the MLE’s for r samples, say (sα̂, sβ̂ , sâ, sb̂) for i = 1, 2, . . . , r.
4. Compute the biases and mean squared errors given by

Bias
ξ̂
(n) =

1

r

r∑
i=1

(ξ̂i − ξi)

and

MSE
ξ̂
(n) =

1

r

r∑
i=1

(ξ̂i − ξi)
2
,

for ξ = (α, β, a, b).

We repeat these steps for r = 1000 and n = 20, 21, . . . , n∗ (n∗ is different in each repetition) with different values
of (α, β, a, b), so computing Bias

ξ̂
(n), MSE

ξ̂
(n). By finding a vector of Bias and MSE values, we can understand

the changes of these values with increasing n. Figures 6, 7 respectively reveal how the four biases, mean squared
errors vary with respect to n. As expected, the Biases and MSEs of the estimated parameters converge to zero as n
increases.
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Figure 6. Bias of α̂, β̂, â, b̂ versus n when (α, β, a, b) = (3, 1, 0.2, 1).

4.2. The other estimation methods

There are several approaches to estimate the parameters of distributions where each of them has its characteristic
features and benefits. In this subsection, five of these methods are briefly introduced and will be numerically
investigated in the simulation study (Figure 5). A useful summary of these methods can be seen in Dey et al. [10].
Here {ti:n; i = 1, 2, ..., n} is the associated order statistics and F is the distribution function of EE-C.
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Figure 7. MSE of α̂, β̂, â, b̂ versus n when (α, β, a, b) = (3, 1, 0.2, 1).

4.2.1. Least square and weighted least square estimators The Least square (LSE) and Weighted Least Square
estimators (WLSE) are introduced by Swain et al. [24]. The LSE’s and WLSE’s are obtained by minimizing

SLSE(α, β, a, b) =

n∑
i=1

(
F (ti:n;α, β, a, b)− i

n+ 1

)2

and

SWLSE(α, β, a, b) =

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

(
F (ti:n;α, β, a, b)− i

n+ 1

)2

with respect to α, β, a and b.

4.2.2. Cramér–von–Mises estimator Cramér–von–Mises Estimator (CME) is introduced by Choi and Bulgren [7].
The CME is obtained by minimizing the following function

SCME(α, β, a, b) =
1

12n
+

n∑
i=1

(
F (ti:n;α, β, a, b)− 2i− 1

2n

)2

.

4.2.3. Anderson-Darling and right-tailed Anderson-Darling estimators The Anderson Darling (ADE) and Right-
tailed Anderson Darling estimators (RTADE) are introduced by Anderson and Darling [3]. The ADE’s and
RTADE’s are obtained by minimizing with respect to α, β, a and b, the functions

SADE(α, β, a, b) = −n− 1

n

n∑
i=1

(2i− 1){logF (ti:n;α, β, a, b) + logF (ti:n+1−i;α, β, a, b)}

and

SRTADE(α, β, a, b) =
n

2
− 2

n∑
i=1

F (ti:n;α, β, a, b)− 1

n

n∑
i=1

(2i− 1) logF (ti:n+1−i;α, β, a, b),
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Figure 8. MSE of α̂, β̂, â, b̂ versus n when (α, β, a, b) = (3, 1, 0.2, 1).

where F (·) = 1− F (·).
Now, we consider the one model that has been used in this section and investigate MSE of estimators for different
samples. For (α, β, a, b) = (3, 1, 0.2, 1), we consider the sample of sizes n = 50, 55, 60, · · · 500 with r = 1000
replications.

The result of the simulations of this subsection is shown in Figure 8. As it is clear from the MSE plot for two
parameters with the increase in the size of the sample all methods will approach to zero.

5. Applications

In this section, we present three applications by fitting the EE-C model and some famous models. The Akaike
information criterion (AIC), Bayesian information criterion (BIC), Cramér–von Mises (W∗), Anderson-Darling
(A∗), Kolmogorov Smirnov (K.S) and the P-Value of K.S test, have been chosen for comparison of models for
examples.

The Gamma-Chen distribution (GaC) (Alzaatreh et al., [2]), the Beta-Chen distribution (BC) (Eugene emphet
al., [11]), Marshall-Olkin Normal distribution (MOC) (Jose, [15]), the Kumaraswamy Chen distribution (KwC)
(Cordeiro and de Castro, [8]), the Transmuted Chen (TC) (Khan et al., [18]), the Transmuted Exponentiated Chen
(TEC) (Khan et al., [19]), the Extended Chen (EC) and Chen distribution have been selected for comparison in
three examples. The parameters of models have been estimated by the MLE method.

5.1. The relief times of twenty patients data

In this section we have examined the data set Gross and Clark [13] on the relief times of twenty patients receiving
an analgesic. This data is as follows:
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.
In Tables 1 and 2, a summary of the fitted information criteria and estimated MLE’s for this data with different
models have been given, respectively. Models have been sorted from the lowest to the highest value of A∗. As you
see, the EE-C is selected as the best model with more criteria. The histogram of the relief times of twenty patients
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data and the plots of fitted pdf are displayed in Figure 9.

Table 1. The relief times of twenty patients data.

Model AIC BIC W∗ A∗ K.S P-Value
EE-C 39.41 43.39 0.03 0.18 0.09 0.994
GaC 46.35 50.33 0.03 0.20 0.99 0
TEC 39.56 43.55 0.04 0.23 0.12 0.949
EC 38.14 41.13 0.05 0.30 0.13 0.864
KwC 40.02 44.00 0.05 0.30 0.14 0.820
BC 40.51 44.49 0.06 0.34 0.15 0.769
MOC 44.88 47.87 0.14 0.84 0.15 0.774
TC 53.63 56.62 0.27 1.57 0.23 0.243
Cehn 53.14 55.13 0.29 1.66 0.24 0.206

The relief times of twenty patients data.
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Figure 9. Histogram for the relief times of twenty patients data.

5.2. Example of Chen (2000)

In this subsection we study the Example of Chen [6]. The data set is:

29, 1.44, 8.38, 8.66, 10.2, 11.04, 13.44, 14.37, 17.05, 17.13, 18.35.

As is clear, in Tables 3 and 4, the EE-C is selected as the best model with more criteria. The histogram of the
Example of Chen [6] data and the plots of fitted pdf are displayed in Figure 10.

5.3. Minimum Flow

This subsection is related to study of Minimum Flow data which was presented by Cordeiro et al. [9] that include
38 observations. The data set is the following: 43.86, 44.97, 46.27, 51.29, 61.19, 61.20, 67.80, 69.00, 71.84,
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Table 2. Estimated MLE’s and Standard errors for the relief times of twenty patients data.

Model MLE Standard errors
EE-C(α, β, a, b) (43.94, 4.44, 1.30, 0.39) (79.16, 16.34, 1.03, 0.18)

GaC(α, β, a, b) (7.59, 1.99, 5.00, 0.53) (2.09, 0.46, 1.07, 0.003)

TEC(α, β, a, b) (300.01, 0.50, 2.43, 0.34) (587.04, 0.56, 1.08, 0.11)

EC(α, β, c, a, b) (250.01, 2.40, 0.37) (407.52, 0.89, 0.10)

KwC(α, β, a, b) (160.07, 0.49, 2.21, 0.52) (222.41, 0.51, 0.75, 0.21)

BC(α, β, a, b) (85.87, 0.48, 2.01, 0.55) (103.13, 0.51, 0.69, 0.20)

MOC(α, a, b) (400.01, 2.32, 0.43) (488.06, 0.64, 0.08)

TC(α, a, b) (0.75, 0.07, 1.02) (0.28, 0.03, 0.09)

Chen(a, b) (0.14, 0.95) (0.05, 0.09)

Table 3. Example of Chen (2000) data.

Model AIC BIC W∗ A∗ K.S P-Value
MOC 78.20 79.40 0.03 0.25 0.13 0.976
EE-C 80.27 81.87 0.04 0.29 0.13 0.973
TEC 80.55 82.14 0.04 0.33 0.15 0.930
TC 78.71 79.90 0.05 0.34 0.15 0.920
KwC 80.74 82.33 0.05 0.35 0.16 0.905
BC 80.73 82.32 0.05 0.35 0.16 0.910
EC 78.74 79.93 0.05 0.36 0.16 0.907
Chen 77.17 77.96 0.06 0.40 0.17 0.846
GaC 81.86 83.45 0.27 1.61 0.99 0

Example of Chen (2000) data.
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Figure 10. Histogram for Example of Chen (2000) data.

77.31,85.39, 86.59, 86.66, 88.16, 96.03, 102.00, 108.29, 113.00, 115.14, 116.71, 126.86, 127.00, 127.14, 127.29,
128.00, 134.14, 136.14, 140.43, 146.43, 146.43,148.00, 148.43, 150.86, 151.29, 151.43, 156.14, 163.00, 186.43.
It is obvious that, in Tables 5 and 6, the EE-C is selected as the best model with all criteria. The histogram of the
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Table 4. Estimated MLE’s and Standard errors for the Example of Chen (2000) data.

Model MLE Standard errors
MOC(α, a, b) (100.01, 0.61, 0.30) (340.34, 0.91, 0.12)

EE-C(α, β, a, b) (1.21, 0.22, 0.01, 0.52) (0.68, 0.45, 0.01, 0.08)

TEC(α, β, a, b) (1.60, 0.62, 0.03, 0.47) (1.36, 0.72, 0.05, 0.11)

TC(α, a, b) (−0.88, 0.05, 0.45) (0.63, 0.05, 0.08)

KwC(α, β, a, b) (1.96, 3.21, 0.03, 0.41) (3.38, 44.54, 0.13, 0.47)

BC(α, β, a, b) (1.76, 0.64, 0.07, 0.46) (1.62, 2.36, 0.17, 0.12)

EC(α, β, c, a, b) (1.81, 0.05, 0.45) (1.67, 0.08, 0.10)

Chen(a, b) (0.02, 0.51) (0.01, 0.05)

GaC(α, β, a, b) (6.74, 2.82, 2.83, 0.28) (2.62, 1.18, 0.01, 0.01)

Minimum Flow data and the plots of fitted pdf are displayed in Figure 11.

Table 5. The Minimum Flow data.

Model AIC BIC W∗ A∗ K.S P-Value
EE-C 383.81 390.36 0.02 0.21 0.08 0.963
MOC 390.56 395.47 0.09 0.61 0.12 0.689
Cehn 398.62 401.90 0.10 0.64 0.16 0.262
KwC 391.24 397.79 0.11 0.66 0.14 0.409
TC 389.53 394.44 0.11 0.66 0.15 0.383
TEC 391.74 398.29 0.11 0.70 0.15 0.377
EC 389.91 394.82 0.13 0.72 0.15 0.348
BC 392.21 398.76 0.12 0.75 0.15 0.343
GaC 391.48 398.03 0.28 1.71 0.57 0
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Figure 11. Histogram for Minimum Flow data.
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Table 6. Estimated MLE’s and Standard Errors for the Minimum Flow data.

Model MLE Standard errors
EE-C(α, β, a, b) (5.17, 65.001, 0.02, 0.35) (2.91, 64.92, 0.01, 0.02)

MOC(α, a, b) (13.00, 0.02, 0.34) (18.66, 0.02, 0.04)

Chen(a, b) (0.003, 0.36) (0.001, 0.01)

KwC(α, β, a, b) (4.51, 21.11, 0.02, 0.27) (2.02, 42.85, 0.02, 0.05)

TC(α, a, b) (−1.00, 0.004, 0.37) (0.70, 0.002, 0.01)

TEC(α, β, a, b) (2.74,−0.25, 0.01, 0.35) (1.21, 0.47, 0.01, 0.02)

EC(α, β, c, a, b) (2.86, 0.01, 0.36) (0.98, 0.004, 0.02)

BC(α, β, a, b) (3.01, 0.77, 0.01, 0.35) (1.90, 1.24, 0.01, 0.05)

GaC(α, β, a, b) (3.13, 4.36, 0.09, 0.34) (1.14, 4.43, 0.02, 0.02)

6. Conclusions

We introduce a new class of distributions called the Extended Exponentiated Chen (EE-C) family. Some
characteristics of the new family, such as moments, mean past lifetime, coefficients of skewness and kurtosis,
order statistics and asymptotic properties are obtained. We estimate the parameters using maximum likelihood and
other different methods. The Bias and MSE plots of parameters for all methods, will approach to zero with the
increase in the size of the sample which verifies the validity of the these estimation methods. The flexibility of this
distribution is assessed by applying it to real data sets and comparing proposed distribution with others. The results
of tables and figures illustrate that the new model provides consistently better fits than other competitive models
for these data sets.
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