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Abstract In this work, the estimation of the multivariate normal mean by different classes of shrinkage estimators is
investigated. The risk associated with the balanced loss function is used to compare two estimators. We start by considering
estimators that generalize the James-Stein estimator and show that these estimators dominate the maximum likelihood
estimator (MLE), therefore are minimax, when the shrinkage function satisfies some conditions. Then, we treat estimators
of polynomial form and prove the increase of the degree of the polynomial allows us to build a better estimator from the one
previously constructed.
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1. Introduction

The multivariate normal distribution has served as a central distribution in much of multivariate analysis. The
statistical goal is to estimate the mean parameter which is of interest to many users in almost all fields. The
performance of MLE method is not satisfactory, when the dimension of the parameter space is large. The drawbacks
of using this method have been shown by Stein [14] and James and Stein [8]. Alternative techniques have been
developed to improve the MLE; in this paper we focus our attention on shrinkage estimation method. This latter
has become a very important technique for modelling data and provides useful techniques for combining data from
various sources. Recent studies, in the context of shrinkage estimation, include Amin et al.[1], Yuzba et al. [15]
and Hamdaoui et al. [6]. Benkhaled and Hamdaoui [3], have considered two forms of shrinkage estimators of the
mean θ of a multivariate normal distribution X ∼ Np

(
θ, σ2Ip

)
where σ2 is unknown and estimated by the statistic

S2 ∼ σ2χ2
n. Estimators that shrink the components of the usual estimator X to zero and estimators of Lindley-

type, that shrink the components of the usual estimator to the random variable X. The aim is to ameliorate the
results of minimaxity obtained in the published papers of estimators cited above. Hamdaoui et al. [5], have treated
the minimaxity and limits of risks ratios of shrinkage estimators of a multivariate normal mean in the Bayesian
case. The authors have considered the model X ∼ Np

(
θ, σ2Ip

)
where σ2 is unknown and have taken the prior

law θ ∼ Np

(
υ, τ2Ip

)
. They constructed a modified Bayes estimator δ∗B and an empirical modified Bayes estimator
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δ∗EB . When n and p are finite, they showed that the estimators δ∗B and δ∗EB are minimax. The authors have also
interested in studying the limits of risks ratios of these estimators, to the MLE X , when n and p tend to infinity.
The majority of these authors have been considered the quadratic loss function for computing the risk.
A goodness of fit criterion leads to an estimate which gives good fit and unbiased estimator, thus there is a need
to provide a framework which combines the goodness of fit and precision of estimation formally. Zellner [16]
suggested balanced losses that reply this problem. The reader is referred to Guikai et al. [4], Karamikabir et al.
[10]. Sanjari Farsipour and Asgharzadeh [11] have considered the model: X1, ..., Xn to be a random sample from
Np

(
θ, σ2

)
with σ2 known and the aim is to estimate the parameter θ. They studied the admissibility of the estimator

of the form aX + b under the balanced loss function. Selahattin and Issam [12] introduced and derived the optimal
extended balanced loss function (EBLF) estimators and predictors and discussed their performances.
In this work, we deal with the model X ∼ Np

(
θ, σ2Ip

)
, where the parameter σ2 is known. Our aim is to estimate

the unknown parameter θ by shrinkage estimators deduced from the MLE. The adopted criterion to compare two
estimators is the risk associated to the balanced loss function. The paper is organized as follows. In Section 2,
we recall some preliminaries that are useful for our main results. In the first part of Section 3, we establish the
minimaxity of the estimators defined by δ

(1)
a =

(
1− a/∥X∥2

)
X , where ∥X∥ = (

∑p
i=1 Xi

2)1/2 is the euclidean
norm of the vector X = (X1, ..., Xp) in Rp and the real constant a may depend on p. In the second part of Section
3, we consider the estimators of polynomial form with the indeterminate 1/∥X∥2 and show that if we increase the
degree of the polynomial we can build a better estimator from the one previously constructed. In Section 4, we
conduct a simulation study that shows the performance of the considered estimators. We end the manuscript by
giving an Appendix which contains the proofs of some our main results.

2. Preliminaries

In this section, we recall the following results that are useful in the proofs of our main results.
If X is a multivariate Gaussian random Np

(
θ, σ2Ip

)
in Rp, then ∥X∥2

σ2 ∼ χ2
p (λ) where χ2

p (λ) denotes the non-

central chi-square distribution with p degrees of freedom and non-centrality parameter λ = ∥θ∥2

2σ2 .
The following definition given in formula (1.2) by Arnold [2] will be used to calculate the expectation of functions
of a non-central chi-square law’s variable.

Definition 1
Let U ∼ χ2

p (λ) be non-central chi-square with p degrees of freedom and non-centrality parameter λ. The density
function of U is given by

f(x) =

+∞∑
k=0

e−
λ
2 (λ2 )

k

k!

x(p/2)+k−1e−x/2

Γ(p2 + k)2(p/2)+k
, 0 < x < +∞.

The right hand side (RHS) of this equality is none other than the formula

+∞∑
k=0

e−
λ
2 (λ2 )

k

k!
χ2
p+2k,

where χ2
p+2k is the density of the central χ2 distribution with p+ 2k degrees of freedom.
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To this definition we deduce that if U ∼ χ2
p (λ) , then for any function f : R+ −→ R, χ2

p (λ) integrable, we have

E [f(U)] = Eχ2
p(λ)

[f(U)]

=

∫
R+

f(x)χ2
p (λ) dx

=

+∞∑
k=0

[∫
R+

f(x)χ2
p+2kdx

]
e−

λ
2

(
λ
2

)k
k!

=

+∞∑
k=0

[∫
R+

f(x)χ2
p+2kdx

]
P

(
λ

2
; dk

)
, (1)

where P
(
λ
2 ; dk

)
being the Poisson distribution of parameter λ

2 and χ2
p+2k is the central chi-square distribution with

p+ 2k degrees of freedom.
The following Stein’s Lemma given in [13] will be often used in the next.

Lemma 1
Let X be a N

(
υ, σ2

)
real random variable and let f : R −→ R be an indefinite integral of the Lebesgue measurable

function, f ′ essentially the derivative of f. Suppose also that E (|f ′ (X)|) < +∞, then

E

[(
X − υ

σ

)
f (X)

]
= E (f ′ (X)) .

3. Main results

In this section, we present the model X ∼ Np

(
θ, σ2Ip

)
where σ2 is known. Our aim is to estimate the unknown

mean parameter θ by the shrinkage estimators under the balanced squared error loss function. For the sake
of simplicity, we treat only the case when σ2 = 1, as long as by a change of variable, any model of type
Y ∼ Np

(
θ1, σ

2Ip
)

can be reduced to the model Z ∼ Np (θ2, Ip). Namely, we consider the model X ∼ Np (θ, Ip)
and we want to estimate the unknown parameter θ.

Definition 2
Suppose that X is a random vector having a multivariate normal distribution Np (θ, Ip) where the parameter θ is
unknown. The balanced squared error loss function is defined as follows:

Lω(δ, θ) = ω∥δ − δ0∥2 + (1− ω)∥δ − θ∥2, 0 ≤ ω < 1, (2)

where δ0 is the target estimator of θ, ω is the weight given to the proximity of δ to δ0, 1− ω is the relative weight
given to the precision of estimation portion and δ is a given estimator.

For more details about this loss see Jafari Jozani et al. [7], Zinodiny et al. [17] and Karamikabir and Afsahri [9].
We associate to this balanced squared error loss function the risk function defined by

Rω(δ, θ) = E(Lω(δ, θ)).

In this model, it is clear that the MLE is X := δ0, its risk function is (1− ω)p.
Indeed: we have

Rω(X, θ) = ωE(∥X −X∥2) + (1− ω)E(∥X − θ∥2)
= (1− ω)E(∥X − θ∥2).

As X ∼ Np (θ, Ip), then X − θ ∼ Np (0, Ip), therefore ∥X − θ∥2 ∼ χ2
p.

Hence, E(∥X − θ∥2) = E(χ2
p) = p, and the desired result follows.

It is well known that δ0 is minimax and inadmissible for p ≥ 3, thus any estimator dominates it is also minimax.
We give the following Lemma, that will be used in our proofs and its proof is postponed to the Appendix.
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Lemma 2
Let U ∼ χ2

p(λ) be non-central chi-square with p degrees of freedom and non-centrality parameter λ then,

i) for any real numbers s and r where −p
2 < s ≤ r < 0, the real function

Hp,r,s(λ) =
E(Ur)

E(Us)
=

∫
R+

xrχ2
p(λ; dx)∫

R+
xsχ2

p(λ; dx)

is nondecreasing on λ.
ii) Furthermore, if X ∼ Np (θ, Ip), we get

sup
∥θ∥

(
E(∥X∥−2r+2)

E(∥X∥−r)

)
= 2

−r+2
2

Γ(p2 − r + 1)

Γ(p−r
2 )

.

3.1. James-Stein estimators and minimaxity

In 1956, Stein [14] proved a result that astonished many researchers and was catalyst an enormous and rich literature
of substantial importance in statistical theory and practice. He showed that when estimating, under squared error
loss, the unknown mean vector θ of a p-dimensional random vector X having a normal distribution with identity
covariance matrix, estimators of the form δa,b =

(
1− a/(b+ ∥X∥2)

)
X dominate the usual estimator X for a

sufficiently small and b sufficiently large when p ≥ 3. In 1961, James and Stein [8] sharpened the result and gave
an explicit class of dominating estimators, δa =

(
1− a/∥X∥2)

)
X for 0 < a < 2(p− 2), and also showed that the

choice on a = p− 2 (the James-Stein estimator) is uniformly best. In this section we show the sufficient condition
for which the estimator δa dominates the usual estimator X under the balanced loss function Lω defined in (2)
and we determined the optimal value for a (corresponding to the James-Stein estimator) that minimizes the risk
function Rω(δa, θ).

Consider the estimator

δ(1)a =

(
1− a

∥X∥2

)
X = X − a

∥X∥2
X, (3)

where the real constant a may depend on p.

Proposition 1
Under the balanced loss function Lω, the risk function of the estimator δ(1)a given in (3) is

Rω(δ
(1)
a , θ) = (1− ω)

[
p− 2a(p− 2)E

(
1

∥X∥2

)]
+ a2E

(
1

∥X∥2

)
.

Proof
Using the risk function associated to the balanced loss function Lω defined in in (2) and the formula of the estimator
δ
(1)
a given in (3), we obtain

Rω(δ
(1)
a , θ) = ωE

(∥∥∥∥− a

∥X∥2
X

∥∥∥∥2
)

+ (1− ω)E

(∥∥∥∥X − θ − a

∥X∥2
X

∥∥∥∥2
)

= a2E

(
1

∥X∥2

)
+ (1− ω)p− 2a(1− ω)E

(⟨
X − θ,

1

∥X∥2
X

⟩)
.

As,

E

(⟨
X − θ,

1

∥X∥2
X

⟩)
=

p∑
i=1

E

[
(Xi − θi)

1

∥X∥2
Xi

]
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Using Lemma 1, we get

E

(⟨
X − θ,

1

∥X∥2
X

⟩)
=

p∑
i=1

E

(
∂

∂Xi

1

∥X∥2
Xi

)

=

p∑
i=1

E

(
1

∥X∥2
− 2X2

i

∥X∥4

)
= (p− 2)E

(
1

∥X∥2

)
.

Then

Rω(δ
(1)
a , θ) = a2E

(
1

∥X∥2

)
+ (1− ω)p− 2a(1− ω)E

(⟨
X − θ,

1

∥X∥2
X

⟩)
= a2E

(
1

∥X∥2

)
+ (1− ω)p− 2a(1− ω)(p− 2)E

(
1

∥X∥2

)
= (1− ω)

[
p− 2a(p− 2)E

(
1

∥X∥2

)]
+ a2E

(
1

∥X∥2

)
.

Using the convexity on a of the function Rω(δ
(1)
a , θ), the optimal value for a that minimizes the risk function

Rω(δ
(1)
a , θ), is

â = (1− ω)(p− 2). (4)

For a = â, we obtain the James-Stein estimator

δJS = δâ,2 =

(
1− â

∥X∥2

)
X. (5)

From Proposition 1, the risk function of δJS is

Rω(δJS , θ) = (1− ω)p− (p− 2)2(1− ω)2E

(
1

p− 2 + 2K

)
, (6)

where K ∼ P
(

∥θ∥2

2

)
.

From the formula (6), we note that Rω(δJS , θ) ≤ (1− ω)p = Rω(X, θ), then δJS dominates the MLE X, therefore
it is also minimax.

3.2. Polynomials shrinkage estimators

Since the estimator δa = X − a 1
∥X∥2X dominates the MLE X for certain values of a, we think to add the term

b( 1
∥X∥2 )

2X to the James-Stein estimator δJS to obtain an estimator that outperforms δJS , then we construct the
classes of shrinkage estimators which dominate the James-Stein estimator δJS . Our main idea is to add each time
a term of the form γ(1/∥X∥2)mX where γ is a real constant may depend on p and the parameter m is integer, and
we construct the estimators which dominate the estimators of the class defined previously. Thus in this section we
deal with the shrinkage estimators of polynomial form with the indeterminate 1/∥X∥2.

Let the estimator

δ
(2)
b = δJS + b

(
1

∥X∥2

)2

X

= X − (1− ω)(p− 2)
1

∥X∥2
X + b

(
1

∥X∥2

)2

X, (7)
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where the real constant b may depend on p.

Proposition 2
Under the balanced loss function Lω, the risk function of the estimator δ(2)b given in (7) is

Rω(δ
(2)
b , θ) = Rω(δJS , θ)− 4b(1− ω)E

(
1

∥X∥4

)
+ b2E

(
1

∥X∥6

)
.

Proof
Using the risk function associated to the balanced loss function Lω defined in in (2) and the formula of the estimator
δ
(2)
b given in (7), we get

Rω(δ
(2)
b , θ) = ωE

(∥∥∥∥δJS + b
1

∥X∥2
X −X

∥∥∥∥2
)

+ (1− ω)E

(∥∥∥∥δJS + b
1

∥X∥2
X − θ

∥∥∥∥2
)

= ωE

(
∥δJS −X∥2 + b2

1

(∥X∥2)3
+ 2

⟨
δJS −X, b

1

(∥X∥2)2
X

⟩)
+ (1− ω)E

(
∥δJS − θ∥2 + b2

1

(∥X∥2)3
+ 2

⟨
δJS − θ, b

1

(∥X∥2)2
X

⟩)

= Rω(δJS , θ) + b2E

(
1

(∥X∥2)3

)
− 2bω(1− ω)(p− 2)E

(
1

(∥X∥2)2

)
+ 2(1− ω)E

(⟨
X − θ − (1− ω)(p− 2)

1

∥X∥2
X, b

1

(∥X∥2)2
X

⟩)
= Rω(δJS , θ) + b2E

(
1

∥X∥6

)
− 2bω(1− ω)(p− 2)E

(
1

∥X∥4

)
+ 2b(1− ω)

p∑
i=1

E

(
(Xi − θi)

Xi

∥X∥4

)
− 2b(1− ω)2(p− 2)E

(
1

∥X∥4

)
.

Using Lemma 1, we get

p∑
i=1

E

(
(Xi − θi)

Xi

∥X∥4

)
=

p∑
i=1

E

(
∂

∂Xi

Xi

∥X∥4

)

=

p∑
i=1

E

(
1

∥X∥4
− 4

X2
i

∥X∥6

)
= (p− 4)E

(
1

∥X∥4

)
.

Then,

Rω(δ
(2)
b , θ) = Rω(δJS , θ) + b2E

(
1

∥X∥6

)
− 2bω(1− ω)(p− 2)E

(
1

∥X∥4

)
+ 2b(1− ω)(p− 4)E

(
1

∥X∥4

)
− 2b(1− ω)2(p− 2)E

(
1

∥X∥4

)
= Rω(δJS , θ)− 4b(1− ω)E

(
1

∥X∥4

)
+ b2E

(
1

∥X∥6

)
.
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Theorem 1
Under the balanced loss function Lω, the estimator δ(2)b with p > 6 and

b = 2(1− ω)(p− 6),

dominates the James-Stein estimator δJS .

Proof
Using the Proposition 2, we have

Rω(δ
(2)
b , θ) = Rω(δJS , θ)− 4b(1− ω)E

(
1

∥X∥4

)
+ b2

E
(

1
∥X∥6

)
E
(

1
∥X∥4

)E( 1

∥X∥4

)
.

From ii) of Lemma 2, we obtain

E
(

1
∥X∥6

)
E
(

1
∥X∥4

) =
E
(
∥X∥−6

)
E (∥X∥−4)

≤ 2
−4+2

2
Γ(p2 − 4 + 1)

Γ(p−4
2 )

=
1

p− 6
.

Then,

Rω(δ
(2)
b , θ) ≤ Rω(δJS , θ)− 4b(1− ω)E

(
1

∥X∥4

)
+ b2

1

(p− 6)
E

(
1

∥X∥4

)
. (8)

The optimal value for b that minimizes the right hand side of the last inequality, is

b̂ = 2(1− ω)(p− 6). (9)

If we replace b by b̂ in the inequality (8), we get

Rω(δ
(2)

b̂
, θ) ≤ Rω(δJS , θ)− 4(1− ω)2(p− 6)E

(
1

∥X∥4

)
≤ Rω(δJS , θ).

Now, we consider the estimator

δ(3)c = δ
(2)

b̂
+ c

(
1

∥X∥2

)3

X

= X − â
1

∥X∥2
X + b̂

(
1

∥X∥2

)2

X + c

(
1

∥X∥2

)3

X, (10)

where the constants â and b̂ are given respectively in (4) and (9) and the real parameter c may depend on p.

Proposition 3
Under the balanced loss function Lω, the risk function of the estimator δ(3)c given in (10) is

Rω(δ
(3)
c , θ) = Rω(δ

(2)

b̂
, θ) + c2E

(
1

∥X∥10

)
+ 4c(1− ω)(p− 6)E

(
1

∥X∥8

)
− 8c(1− ω)E

(
1

∥X∥6

)
.
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Proof
Using the risk function associated to the balanced loss function Lω defined in in (2) and the formula of the estimator
δ
(3)
c given in (10), we obtain

Rω(δ
(3)
c , θ) = ωE

∥∥∥∥∥δ(2)b̂
+ c

(
1

∥X∥2

)3

X −X

∥∥∥∥∥
2


+ (1− ω)E

∥∥∥∥∥δ(2)b̂
+ c

(
1

∥X∥2

)3

X − θ

∥∥∥∥∥
2


= ωE

(∥∥∥δ(2)
b̂

−X
∥∥∥2 + c2

1

(∥X∥2)5
+ 2

⟨
δ
(2)

b̂
−X, c

1

(∥X∥2)3
X

⟩)
+ (1− ω)E

(∥∥∥δ(2)
b̂

− θ
∥∥∥2 + c2

1

(∥X∥2)5
+ 2

⟨
δ
(2)

b̂
− θ, c

1

(∥X∥2)3
X

⟩)
= Rω(δ

(2)

b̂
, θ) + c2E

(
1

(∥X∥2)5

)
+ 2ωE

⟨
−â

1

∥X∥2
X + b̂

(
1

∥X∥2

)2

X, c

(
1

∥X∥2

)3

X

⟩

+ 2(1− ω)E

⟨
X − θ − â

1

∥X∥2
X + b̂

(
1

∥X∥2

)2

X, c

(
1

∥X∥2

)3

X

⟩

= Rω(δ
(2)

b̂
, θ) + c2E

(
1

∥X∥10

)
− 2câE

(
1

∥X∥6

)
+ 2ĉbE

(
1

∥X∥8

)
+ 2c(1− ω)

p∑
i=1

E

(
(Xi − θi)

Xi

∥X∥6

)
.

Using Lemma 1, we get

p∑
i=1

E

(
(Xi − θi)

Xi

∥X∥6

)
=

p∑
i=1

E

(
∂

∂Xi

Xi

∥X∥6

)
= (p− 6)E

(
1

∥X∥6

)
.

Then

Rω(δ
(3)
c , θ) = Rω(δ

(2)

b̂
, θ) + c2E

(
1

∥X∥10

)
− 2c(1− ω)(p− 2)E

(
1

∥X∥6

)
+ 4c(1− ω)(p− 6)E

(
1

∥X∥8

)
+ 2c(1− ω)(p− 6)E

(
1

∥X∥6

)
= Rω(δ

(2)

b̂
, θ) + c2E

(
1

∥X∥10

)
+ 4c(1− ω)(p− 6)E

(
1

∥X∥8

)
− 8c(1− ω)E

(
1

∥X∥6

)
.
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Theorem 2
Under the balanced loss function Lω, the estimator δ(3)c with p > 10 and

c = 2(1− ω)(p− 10)2,

dominates the estimator δ(2)
b̂

.

Proof
Using the last Proposition, we have

Rω(δ
(3)
c , θ) = Rω(δ

(2)

b̂
, θ) + c2

E
(

1
∥X∥10

)
E
(

1
∥X∥6

) E

(
1

∥X∥6

)

+ 4c(1− ω)(p− 6)
E
(

1
∥X∥8

)
E
(

1
∥X∥6

)E( 1

∥X∥6

)

− 8c(1− ω)E

(
1

∥X∥6

)
.

From ii) of Lemma 2, we obtain

E
(

1
∥X∥10

)
E
(

1
∥X∥6

) =
E
(
∥X∥−10

)
E (∥X∥−6)

≤ 2
−6+2

2
Γ(p2 − 6 + 1)

Γ(p−6
2 )

=
1

(p− 8)(p− 10)
,

and from i) of Lemma 2, we get

E
(

1
∥X∥8

)
E
(

1
∥X∥6

) =
E
(
(χ2

p(λ))
−4
)

E
(
(χ2

p(λ))
−3
)

≤
E
(
(χ2

p)
−4
)

E
(
(χ2

p)
−3
) =

2−4 Γ( p
2−4)

Γ( p
2 )

2−3 Γ( p
2−3)

Γ( p
2 )

=
1

p− 8
.

where λ = ∥θ∥2

2 and χ2
p is the central chi-square distribution with p degrees of freedom. Then,

Rω(δ
(3)
c , θ) ≤ Rω(δ

(2)

b̂
, θ) + c2

1

(p− 8)(p− 10)
E

(
1

∥X∥6

)
+ 4c(1− ω)(p− 6)

1

p− 8
E

(
1

∥X∥6

)
− 8c(1− ω)E

(
1

∥X∥6

)
= Rω(δ

(2)

b̂
, θ) + c2

1

(p− 8)(p− 10)
E

(
1

∥X∥6

)
− 4c(1− ω)

p− 10

p− 8
E

(
1

∥X∥6

)
. (11)

The optimal value for c that minimizes the right hand side of the inequality (11), is

ĉ = 2(1− ω)(p− 10)2. (12)
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If we replace c by ĉ in the inequality (11), we get

Rω(δ
(3)
c , θ) ≤ Rω(δ

(2)

b̂
, θ)− 4

(1− ω)2(p− 10)3

p− 8
E

(
1

∥X∥6

)
≤ Rω(δ

(2)

b̂
, θ).

Now, we consider the estimator

δ
(4)
d = δ

(2)
ĉ + d

(
1

∥X∥2

)4

X

= X − â
1

∥X∥2
X + b̂

(
1

∥X∥2

)2

X + ĉ

(
1

∥X∥2

)3

X + d

(
1

∥X∥2

)4

X, (13)

where the constants â and b̂ and ĉ are given respectively in (4), (9) and (12) and the real parameter d may depend on
p. Using the same technique used in the proofs of Proposition (3) and theorem (2), we obtain the following results.

Proposition 4
Under the balanced loss function Lω, the risk function of the estimator δ(4)d given in (13) is

Rω(δ
(4)
d , θ) = Rω(δ

(3)
ĉ , θ) + d2E

(
1

∥X∥14

)
+ 4d(1− ω)(p− 10)2E

(
1

∥X∥12

)
+ 4d(1− ω)(p− 6)E

(
1

∥X∥10

)
− 12d(1− ω)E

(
1

∥X∥8

)
,

Theorem 3
Under the balanced loss function Lω, the estimator δ(4)d with p > 14 and

d = 2(1− ω)(p2 − 28p+ 188)(p− 14)

dominates the estimator δ(3)ĉ .

4. Simulation results

We recall the form of the James-Stein estimator δJS given in (5). Its risk function associated to the balanced squared
error loss function Lω is given by the formula (6).
We also recall the estimators δ(2)b , δ

(3)
c , and δ

(4)
d , given respectively in (7), (10) and (13) with b = (1− ω)(p− 6),

c = (1− ω)(p− 10)2 and d = 2(1− ω)(p2 − 28p+ 188)(p− 14). Their risk functions associated to the balanced
squared error loss function Lω are obtained by replacing the constants b, c and d in the Propositions (2), (3) and (4)
respectively.

In this section, taking the values of the constants b, c and d given above. In the first part of this section, we
present the graphs of the risks ratios of the estimators δJS , δ

(2)
b and δ

(3)
c , to the MLE X denoted respectively:

Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δ
(2)
b ,θ)

Rω(X,θ) and Rω(δ(3)c ,θ)
Rω(X,θ) as function of λ = ∥θ∥2 , for various values of p and ω. In the second part

of this section, we present two groups of tables. The first group containing the values of risks ratios Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δ
(2)
b ,θ)

Rω(X,θ) and Rω(δ(3)c ,θ)
Rω(X,θ) as a function of variable λ = ∥θ∥2 , for various values of p and ω. In the second group we

give the values of risks ratios Rω(δ(3)c ,θ)
Rω(X,θ) and Rω(δ

(4)
d ,θ)

Rω(X,θ) as a function of variable λ = ∥θ∥2 , for various values of p
and ω.
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Figure 1. Graph of risks ratios Rω(δJS ,θ)
Rω(X,θ)

and Rω(δ
(2)
b ,θ)

Rω(X,θ)

as function of λ for p = 8 and ω = 0.1

Figure 2. Graph of risks ratios Rω(δJS ,θ)
Rω(X,θ)

and Rω(δ
(2)
b ,θ)

Rω(X,θ)

as function of λ for p = 8 and ω = 0.4

Figure 3. Graph of risks ratios Rω(δJS ,θ)
Rω(X,θ)

and Rω(δ
(2)
b ,θ)

Rω(X,θ)

as function of λ for p = 12 and ω = 0.1

Figure 4. Graph of risks ratios Rω(δJS ,θ)
Rω(X,θ)

and Rω(δ
(2)
b ,θ)

Rω(X,θ)

as function of λ for p = 12 and ω = 0.4

Figure 5. Graph of risks ratios Rω(δ
(2)
b ,θ)

Rω(X,θ)
and Rω(δ(3)c ,θ)

Rω(X,θ)

as function of λ for p = 14 and ω = 0.1

Figure 6. Graph of risks ratios Rω(δ
(2)
b ,θ)

Rω(X,θ)
and Rω(δ(3)c ,θ)

Rω(X,θ)

as function of λ for p = 14 and ω = 0.4
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Figure 7. Graph of risks ratios Rω(δ
(2)
b ,θ)

Rω(X,θ)
and Rω(δ(3)c ,θ)

Rω(X,θ)

as function of λ for p = 18 and ω = 0.1

Figure 8. Graph of risks ratios Rω(δ
(2)
b ,θ)

Rω(X,θ)
and Rω(δ(3)c ,θ)

Rω(X,θ)

as function of λ for p = 18 and ω = 0.4

The previous figures show that the risks ratios Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δ
(2)
b ,θ)

Rω(X,θ) and Rω(δ(3)c ,θ)
Rω(X,θ) are less than 1, then the

estimators δJS , δ
(2)
b , and δ

(3)
c dominate the MLE X for divers values of p and ω, therefore are minimax. We note

that the estimator δ(2)b dominates the James-Stein estimator δJS and δ
(3)
c dominates δ(2)b for the selected value of p

and ω. We also observe that the gain increases if ω is near to 0 and decreases if ω is near to 1. The following tables

illustrate this note. In these tables, first we give the values of the risks ratios Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δ
(2)
b ,θ)

Rω(X,θ) and Rω(δ(3)c ,θ)
Rω(X,θ) for

the different values of λ, p and ω. The first entry is Rω(δJS ,θ)
Rω(X,θ) , the middle entry is Rω(δ

(2)
b ,θ)

Rω(X,θ) , and the third entry is
Rω(δ(3)c ,θ)
Rω(X,θ) .

Table 1. p = 14

λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.7 ω = 0.9

1.2418

0.2134
0.2010
0.1973

0.2920
0.2809
0.2776

0.3707
0.3608
0.3579

0.6067
0.6005
0.5987

0.7640
0.7603
0.7592

0.9213
0.9201
0.9197

5.0019

0.3745
0.3663

0.36309

0.4371
0.4297
0.4268

0.4996
0.4930
0.4905

0.6873
0.6831
0.6815

0.8124
0.8099
0.8089

0.9374
0.9366
0.9363

10.4311

0.5218
0.5168
0.5150

0.5697
0.5652
0.5635

0.6175
0.6135
0.6120

0.7609
0.7584
0.7575

0.8565
0.8550
0.8545

0.9522
0.9517
0.9515

15.4110

0.6086
0.6052
0.6041

0.6477
0.6447
0.6437

0.6869
0.6842
0.6833

0.8043
0.8026
0.8020

0.8826
0.8816
0.8812

0.9608
0.9605
0.9604

20.0000

0.6653
0.6628
0.6621

0.6988
0.6965
0.6959

0.7322
0.7302
0.7297

0.8326
0.8314
0.8310

0.8996
0.8988
0.8986

0.9665
0.9663
0.9662
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Table 2. p = 18

λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.7 ω = 0.9

1.2418

0.1688
0.1608
0.1563

0.2519
0.2448
0.2406

0.3351
0.3287
0.3250

0.5844
0.5804
0.5781

0.7506
0.7482
0.7469

0.9169
0.9161
0.9156

5.0019

0.3079
0.3021
0.2980

0.3771
0.3719
0.3682

0.4463
0.4417
0.4384

0.6540
0.6511
0.6490

0.7924
0.7906
0.7894

0.9308
0.9302
0.9298

10.4311

0.4535
0.4418
0.4390

0.5011
0.4976
0.4951

0.5565
0.5534
0.5512

0.7228
0.7209
0.7195

0.8337
0.8325
0.8317

0.9446
0.9442
0.9439

15.4110

0.5327
0.5299
0.5280

0.5794
0.5769
0.5752

0.6261
0.6239
0.6224

0.7663
0.7649
0.7640

0.8598
0.8590
0.8584

0.9533
0.9530
0.9528

20.0000

0.5923
0.5901
0.5888

0.6331
0.6311
0.6299

0.6738
0.6721
0.6710

0.7961
0.7951
0.7944

0.8777
0.8770
0.8766

0.9592
0.9590
0.9589

In tables 1 and 2, we note that: if ω and λ = ∥θ∥2 are small, the gain of the risks ratios Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δ
(2)
b ,θ)

Rω(X,θ) and
Rω(δ(3)c ,θ)
Rω(X,θ) is very important. Also, if the values of ω and λ increase, the gain decreases and approaches to zero, a

little improvement is then obtained. We also observe that, if the values of p increase, the gain increases and this for
each fixed value of ω. We also see that, if the values of p are large, the gain is large and consequently we obtain
more improvement. We conclude that, the gain is important when the parameters p and λ are large and ω is near to
0. As seen above, the gain of the risks ratios is influenced by various values of p, ω and λ.

Now, we give the tables that present the values of risks ratios
Rω(δ(3)c ,θ)
Rω(X,θ) and

Rω

(
δ
(4)
d ,θ

)
Rω(X,θ) for various values of λ,

p and ω. The first entry is Rω(δ(3)c ,θ)
Rω(X,θ) , and the second entry is Rω(δ

(4)
d ,θ)

Rω(X,θ) .

Table 3. p = 20

λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.7 ω = 0.9

1.2418
0.1419
0.1414

0.2277
0.2274

0.3135
0.3134

0.5709
0.5713

0.7426
0.7432

0.9142
0.9152

5.0019
0.2738
0.2732

0.3464
0.3459

0.4190
0.4187

0.6369
0.6368

0.7821
0.7822

0.9274
0.9277

10.4311
0.4091
0.4087

0.4682
0.4679

0.5273
0.5270

0.7045
0.7044

0.8227
0.8227

0.9409
0.9410

15.4110
0.4969
0.4967

0.5472
0.5470

0.5975
0.5973

0.7484
0.7483

0.8491
0.8490

0.9497
0.9497

20.0000
0.5581
0.5579

0.6022
0.6021

0.6464
0.6463

0.7790
0.7790

0.8674
0.8674

0.9558
0.9558

In tables 3 and 4, we note that: the gain are less than the gain in the tables 1 and 2, namely there is a little
improvement in the domination of the estimator δ(4)d to the estimator δ(3)c if comparing with the improvement of
the estimator δ(2)b to the James-Stein estimator or the improvement of the estimator δ(3)c to the estimator δ(2)b . We
can also remark that the parameters p, ω and λ have the same influence to the risks ratios, as in the tables 1 and 2.
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Table 4. p = 24

λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.7 ω = 0.9

1.2418
0.1201
0.1191

0.2081
0.2074

0.2961
0.2957

0.5600
0.5606

0.7360
0.7372

0.9120
0.9138

5.0019
0.2359
0.2348

0.3123
0.3114

0.3887
0.3880

0.6180
0.6178

0.7708
0.7710

0.9236
0.9242

10.4311
0.3604
0.3596

0.4244
0.4237

0.4883
0.4877

0.6802
0.6799

0.8081
0.8081

0.9360
0.9362

15.4110
0.4448
0.4442

0.5003
0.4998

0.5558
0.5554

0.7224
0.7222

0.8334
0.8333

0.9445
0.9445

20.0000
0.5055
0.5051

0.5549
0.5546

0.6044
0.6041

0.7527
0.7526

0.8516
0.8516

0.9505
0.9505

5. Conclusion

In this work, we studied the estimating of the the mean θ of a multivariate normal distribution X ∼ Np

(
θ, σ2Ip

)
where σ2 is known. The criterion adopted for comparing two estimators is the risk associated to the balanced loss
function. First, we established the minimaxity of the estimators defined by δ

(1)
a =

(
1− a/∥X∥2)

)
X , where the

real parameter a may depend on p and we constructed the James-Stein estimator that has the minimal risk in this
class. Secondly, we considered the estimators of polynomial form with the indeterminate 1/∥X∥2 and showed that
if we increase the degree of the polynomial, we can construct a better estimator. We concluded that we constructed
a series of estimators of polynomial form such that if we increase the degree, the estimator becomes much better.
An extension of this work is to obtain the similar results in the case where the model has a symmetrical spherical
distribution.
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Appendix

Proof of Lemma 2: First, we show that, for any real υ

∂

∂λ
E(Uυ) =

∂

∂λ

∫
R+

xυχ2
p(λ; dx) = υ2υ−1

+∞∑
k=0

Γ(p2 + υ + k)

Γ(p2 + 1 + k)
P

(
λ

2
; dk

)
,

where P (λ2 ) being the Poisson distribution of parameter λ
2 .

Using the formula (1) we have, for any real υ

E(Uυ) = E[(χ2
p(λ))

υ] = E[(χ2
p+2K)υ] = 2υE

[
Γ(p2 +K + υ)

Γ(p2 +K)

]
, (14)
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where K ∼ P (λ2 ). Then

∂

∂λ
E(Uυ) =

∂

∂λ

∫
R+

xυχ2
p(λ; dx)

= 2υ
+∞∑
k=0

[
Γ(p2 + k + υ)

Γ(p2 + k)

]
1

k!

∂

∂λ

[(
λ

2

)k

exp

(
−λ

2

)]

= 2υ−1
+∞∑
k=0

[
Γ(p2 + k + υ)

Γ(p2 + k)

]
1

k!
exp

(
−λ

2

)[
−
(
λ

2

)k

+ k

(
λ

2

)k−1
]

= 2υ−1exp

(
−λ

2

){
−

+∞∑
k=0

[
Γ(p2 + k + υ)

Γ(p2 + k)

]
1

k!

(
λ

2

)k
}

+ 2υ−1exp

(
−λ

2

){+∞∑
k=0

[
Γ(p2 + k + υ + 1)

Γ(p2 + k + 1)

]
1

k!

(
λ

2

)k
}

= 2υ−1exp

(
−λ

2

){+∞∑
k=0

1

k!

(
λ

2

)k [Γ(p2 + k + υ)

Γ(p2 + k + 1)

] [
−
(p
2
+ k
)
+
(p
2
+ υ + k

)]}

= υ2υ−1
+∞∑
k=0

Γ(p2 + υ + k)

Γ(p2 + 1 + k)
P

(
λ

2
; dk

)
.

Let the function

Kp,r,s(λ) =

(
∂

∂λ

∫
R+

xrχ2
p(λ; dx)

)(∫
R+

xsχ2
p(λ; dx)

)

−

(
∂

∂λ

∫
R+

xsχ2
p(λ; dx)

)(∫
R+

xrχ2
p(λ; dx)

)
.

For the function Hp,r,s to be strictly increasing, it suffices that the function Kp,r,s takes positive values. From the
equality (14), we obtain

Kp,r,s(λ) = 2r+s−1r

+∞∑
i=0

+∞∑
j=0

Γ(p2 + r + i)

Γ(p2 + i+ 1)

Γ(p2 + s+ j)

Γ(p2 + j)
P

(
λ

2
; di

)
P

(
λ

2
; dj

)

− 2r+s−1s

+∞∑
i=0

+∞∑
j=0

Γ(p2 + r + j)

Γ(p2 + j)

Γ(p2 + s+ i)

Γ(p2 + i+ 1)
P

(
λ

2
; dj

)
P

(
λ

2
; di

)
.

As, r > s then

Kp,r,s(λ) ≥ r2r+s−1
+∞∑
i=0

+∞∑
j=0

lp,r,s(i, j)P

(
λ

2
; di

)
P

(
λ

2
; dj

)
,

where

lp,r,s(i, j) =
Γ(p2 + r + i)Γ(p2 + s+ j)− Γ(p2 + r + j)Γ(p2 + s+ i)

Γ(p2 + i+ 1)Γ(p2 + j)
.
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We note that, for any i, lp,r,s(i, j) = 0; then we have

Kp,r,s(i, j) ≥ r2r+s−1
+∞∑
i=0

+∞∑
j>i

(lp,r,s(i, j) + lp,r,s(j, i))P

(
λ

2
; di

)
P

(
λ

2
; dj

)
.

But if i < j, we get

lp,r,s(i, j) + lp,r,s(j, i) =
(
Γ
(p
2
+ r + i

)
Γ
(p
2
+ s+ j

)
− Γ

(p
2
+ r + j

)
Γ
(p
2
+ s+ i

))
×

[
1

Γ(p2 + i+ 1)Γ(p2 + j)
− 1

Γ(p2 + j + 1)Γ(p2 + i)

]
=

Γ(p2 + r + i)Γ(p2 + s+ i)

Γ(p2 + i)Γ(p2 + j)

[
1

p
2 + i

− 1
p
2 + j

]
×

[
j−i−1∏
t=0

(p
2
+ s+ i+ t

)
−

j+i−1∏
t=0

(p
2
+ r + i+ t

)]
≤ 0,

because for any t, p
2 + s+ i+ t < p

2 + r + i+ t. As in hypothesis r < 0, we have Kp,r,s(λ) > 0. Thus, we obtain
the desired result.
ii) Using i) it is clear that the function H1

p,r(λ) =
E(∥X∥−r)

E(∥X∥−2r+2) is non-decreasing on λ, then the function 1
H1

p,r(λ)
is

non-increasing on λ, thus

sup
∥θ∥

(
E(∥X∥−2r+2)

E(∥X∥−r)

)
= sup

∥θ∥

(
1

H1
p,r(λ)

)
=

1

H1
p,r(0)

= 2
−r+2

2
Γ(p2 − r + 1)

Γ(p−r
2 )

.
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