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1. Introduction

Some optimization problems in practice handle with the infinite number of constraints and they are called the
semi-infinite programming problems. These classes could be served in formulating many problems in moment
robust optimizations and their applications in [15], FIR filter design in [20], robot trajectory planning [29], air
pollution control in [30]. Hence, semi-infinite programming problems have been investigated recently by many
researchers, see e.g. the papers [4, 5, 10, 12, 13, 16, 21, 24, 25, 26, 27, 28] and references therein. Sometimes semi-
infinite programming with infinite-dimensional decision spaces are labeled as problems of infinite programming,
see e.g. [17]. In some optimization problems in the real world, the coefficients of objective functions and constraint
functions are not known precisely. These imprecision are used to be treated by quantitatively by employing the
concepts of randomness and fuzziness. The randomness is formulated by probability theory and employed to
describe the chance events. The fuzziness amounts to a type of imprecision which is associated with fuzzy sets, in
which there is no clear transition from membership to nonmembership [33]. To manipulate fuzzy concepts arising
in many decision processes, fuzzy optimization problems have been studied numerously in the recent time. The
papers [31, 32] investigated Karush-Kuhn-Tucker (KKT) sufficent optimality conditions for smooth optimization
problems with one and multiple fuzzy-valued objective functions. In [18, 19], optimality conditions for fuzzy
optimization problems were established by utilizing generalized Hukuhara derivatives. The interval and fuzzy
directional gH-derivatives and differentiability were proposed in [23] and applied in considering KKT optimality
conditions for both interval-valued and fuzzy-valued constrained optimization problems. The KKT optimality
conditions in an optimization problem with interval-valued objective function on Hadamard manifolds were studied
in [3]. However, to the best of our knowledge, there is no paper dealing with semi-infinite programming with
fuzzy-valued objective function. Furthermore, in the case that the number of constraints a finite set, the necessary
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optimality conditions for the constrained optimization problems with fuzzy-valued objective function were not
investigated in [31, 32].

The above observations motivate us to establish KKT optimality conditions for some types of efficient solutions
of semi-infinite programming with multiple fuzzy-valued objective functions in this paper. The structure of the
paper is as follows. We first retraces basic concepts, some preliminaries and presents some binary relations in
section 2. Then, both KKT necessary and sufficient optimality conditions for some types of efficient solutions of
semi-infinite programming with multiple fuzzy objective functions are established. Some examples are provided
to illustrate the results of the paper.

2. Preliminaries

In the sequel, let Rn be a finite-dimensional Euclidean space. The notation 〈·, ·〉 is used to denote the inner product.
For a given subset X ⊆ Rn, intX , clX , affX , and coX stand for its interior, closure, affine hull, convex hull of X ,
respectively (resp). The cone and the convex cone (containing the origin) generated by X are expressed resp by
coneX , posX . We write 〈X∗, x〉 ≤ 0 when 〈x∗, x〉 ≤ 0 for all x∗ ∈ X∗, where X∗ is a subset of the dual space of
Rn. The negative polar cone and strictly negative polar cone of X are defined resp by

X− := {x∗ ∈ Rn|〈x∗, x〉 ≤ 0 ∀x ∈ X},

Xs := {x∗ ∈ Rn|〈x∗, x〉 < 0 ∀x ∈ X}.

It should be noted that if 0 ∈ X , then Xs = ∅. Moreover, we can check that if Xs 6= ∅ then clXs = X−. Indeed,
let x∗ ∈ clXs. Then, there exists a sequence x∗` → x∗ satisfying 〈x∗` , x〉 < 0 for all x ∈ X . Letting ` to infinity, one
has 〈x∗, x〉 ≤ 0 for all x ∈ X , leading that x∗ ∈ X−. Conversely, let x∗ ∈ X−. Then, 〈x∗, x〉 ≤ 0 for all x ∈ X .
We deduce from Xs 6= ∅ that there is x̄∗ ∈ Xs such that 〈x̄∗, x〉 < 0 for all x ∈ X . Setting x∗` = x∗ + 1

` x̄
∗, we get

x∗` → x∗ and x∗` ∈ Xs since

〈x∗` , x〉 = 〈x∗, x〉+
1

`
〈x̄∗, x〉 < 0 ∀x ∈ X,

i.e., x∗ ∈ clXs.
The contingent cone [1] of X at the point x̄ ∈ clX is

T (X, x̄) := {x ∈ Rn | ∃τ` ↓ 0,∃x` → x, x̄+ τ`x` ∈ X∀`}.

Let a,b ∈ Rm, where a = (a1, ..., am) and b = (b1, ..., bm). Recall the following notations.

(i) a 5 b⇔ ai ≤ bi ∀i ∈ I;
(ii) a ≤ b⇔ ai ≤ bi ∀i ∈ I and ai0 < bi0 for at least one i0 ∈ I;

(iii) a < b⇔ ai < bi ∀i ∈ I .

It is easy to see that a 5 b⇒ a ≤ b⇒ a < b. Moreover, if m = 1 then a 5 b⇔ a1 ≤ b1 and a ≤ b⇔ a < b⇔
a1 < b1.

Let KC designate the class of all closed and bounded intervals in R, i.e.,

KC = {[xL, xR] | xL, xR ∈ R and xL ≤ xR}.

The width of X ∈ KC is defined by µ(X) = xR − xL. The definition brings us

X + Y := {x+ y | x ∈ X, y ∈ Y } = [xL + yL, xR + yR],

λX := λ[xL, xR] =

{
[λxL, λxR], if λ ≥ 0,
[λxR, λxL], if λ < 0.

Hence, −X = (−1)X = [−xR,−xL] and X − Y = X + (−1)Y = [xL − yR, xR − yL].
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A fuzzy set X̃ on R is defined by a function µX̃ : R→ [0, 1], which is called a membership function. The α-
level set of X̃ , indicated by X̃α, is defined as X̃α := {x ∈ R | µX̃(x) ≥ α}, ∀α ∈ (0, 1]. The support of X̃ is the
set supp(X̃) := {x ∈ R | µX̃(x) > 0}. The zero-level set of X̃ is defined as the closure of the support of X̃ , i.e.,
X̃0 = cl{x ∈ R | µX̃(x) > 0}.

Definition 1
A fuzzy number is a fuzzy set X̃ with membership function µX̃ satisfying the following conditions:

(i) µX̃ is normal, that is, there exists x̄ ∈ R such that µX̃(x̄) = 1;
(ii) µX̃ is quasiconcave, i.e.,

µX̃(λx+ (1− λ)x′) ≥ max{µX̃(x), µX̃(x′)}

for all λ ∈ [0, 1], for all x, x′ ∈ X̃;
(iii) µX̃ is upper semicontinuous, i.e., {x ∈ R | µX̃(x) ≥ α} is a closed subset of R for each α ∈ (0, 1];
(iv) X̃0 is a compact subset of R.

The set of all fuzzy numbers on R is signified by F(R).

The condition (ii) leads that X̃α is a convex set for each α ∈ [0, 1]. Combining this with conditions (iii) and (iv)
tells us that X̃α is a compact and convex subset of R for each α ∈ [0, 1]. In other words, X̃α = [x̃Lα, x̃

R
α ] ∈ KC .

Definition 2
A fuzzy number X̃ is said to be a canonical number in the case when the functions η1(α) = x̃Lα and η2(α) = x̃Rα
are continuous on [0, 1], where [x̃Lα, x̃

R
α ] = X̃α. The set of all canonical fuzzy numbers on R is denoted by FC(R).

Remark 1
Recollect the following fuzzy numbers.

(i) A fuzzy number X̃ is a crisp number with value a if its membership function is

µX̃(x) =

{
1, if x = a,
0, otherwise.

Then the crisp number with value a is denoted by Ĩ{a}.
(ii) A fuzzy number X̃ is said to be triangular fuzzy number, indicated by X̃ = (aL, a, aR) with aL ≤ a ≤ aR, if

the membership function is defined as

µX̃(x) =


x−aL
a−aL , if aL < x ≤ a,
aR−x
aR−a , if a ≤ x < aR,

0, otherwise.

The α-level set of X̃ is X̃α = [aL + α(a− aL), aR + α(a− aR)]. Notice that if aL = a = aR, then the
triangular fuzzy number X̃ is a crisp number.

(iii) A fuzzy number X̃ is said to be trapezoidal fuzzy number, denoted by X̃ = (aL, a, a, aR) with aL ≤ a ≤
a ≤ aR, if the membership function is defined as

µX̃(x) =


x−aL
a−aL , if aL < x ≤ a,
1, if a ≤ x ≤ a,
aR−x
aR−a , if a ≤ x < aR,

0, otherwise.

The α-level set of X̃ is X̃α = [aL + α(a− aL), aR + α(a− aR)].Note that if a = a = a, then the trapezoidal
fuzzy number X̃ is a triangular fuzzy number.
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For X̃, Ỹ ∈ FC(R), the notion “ ·̃ ” stands for the binary operation “+̃” or “×̃” between X̃ and Ỹ , where the
membership function [33] for X̃.̃Ỹ is defined by

µX̃ ·̃ Ỹ (z) = sup
z=x̃·y

min{µX̃(x), µỸ (y)}.

Proposition 1
Let X̃, Ỹ be in FC(R). Then,

(i) X̃+̃Ỹ ∈ FC(R) and (X̃+̃Ỹ )α = [x̃Lα + ỹLα , x̃
R
α + ỹRα ].

(ii) X̃×̃Ỹ ∈ FC(R) and
(X̃×̃Ỹ )α = [min{x̃Lα ỹLα , x̃Lα ỹRα , x̃Rα ỹLα , x̃Rα ỹRα },max{x̃Lα ỹLα , x̃Lα ỹRα , x̃Rα ỹLα , x̃Rα ỹRα }].

The Hausdorff metric DH(X ,Y) of two sets X ,Y in Rn is defined by

DH(X ,Y) = max{sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖}.

If X̃, Ỹ are in F(R), then, DH(X̃α, Ỹα) = max{|x̃Lα − ỹLα |, |x̃Rα − ỹRα |}. The metric DF on F(R) is defined by

DF(X̃, Ỹ ) = sup
α∈[0,1]

DH(X̃α, Ỹα),∀X̃, Ỹ ∈ F(R).

Let ψ̃ : Rn → FC(R) be a fuzzy-valued function defined on Rn. Then, for each x ∈ Rn, (ψ̃(x))α =

[(ψ̃(x))Lα, (ψ̃(x))Rα ] for each α ∈ [0, 1] and we can determine two real-valued functions ψ̃Lα(x) = (ψ̃(x))Lα , ψ̃Rα (x) =

(ψ̃(x))Rα . Let x̄ ∈ Rn and X̃ ∈ FC(R). We write lim
x→x̄

ψ̃(x) = X̃ if for every ε > 0, there exists δ > 0 such that,

for 0 < ‖x− x̄‖ < δ ⇒ DF(ψ̃(x), X̃) < ε. The right-hand limit lim
x→x̄+

ψ̃(x) of the fuzzy-valued function ψ̃ : R→

FC(R) can be defined similarly. The fuzzy-valued function ψ̃ is said to be continuous at x̄ if lim
x→x̄

ψ̃(x) = ψ̃(x̄).

Proposition 2
[31] Let ψ̃ : Rn → FC(R) be a function with fuzzy values. If ψ̃ is continuous at x̄, then ψ̃Lα , ψ̃Rα are continuous at
x̄ for all α ∈ [0, 1].

Definition 3
[31] Let X be an open subset of Rn. A fuzzy-valued function ψ̃ : X → FC(R) is called level-wise continuously
differentiable at x̄ ∈ X if the real-valued functions ψ̃Lα and ψ̃Rα are continuously differentiable at x̄ for all α ∈ [0, 1].

Definition 4
[22]. Let X ⊂ Rn be a convex set, ψ : Rn → R and x̄ ∈ X .

(i) ψ is convex at x̄ if ψ(λx̄+ (1− λ)x) ≤ λψ(x̄) + (1− λ)ψ(x) ∀x ∈ X,∀λ ∈ [0, 1].
(ii) ψ is strictly convex at x̄ if ψ(λx̄+ (1− λ)x) < λψ(x̄) + (1− λ)ψ(x) ∀x ∈ X \ {x̄},∀λ ∈ (0, 1).
(ii) ψ is convex/strictly convex on X if ψ is convex/strictly convex on each point of X .

Remark 2
[22]. Let X ⊂ Rn be an open convex set, ψ : Rn → R be differentiable at x̄ ∈ X .

(i) If ψ is convex at x̄ then ψ(x)− ψ(x̄) ≥ 〈∇ψ(x̄), x− x̄〉 ∀x ∈ X .
(ii) If ψ is strictly convex at x̄ then ψ(x)− ψ(x̄) > 〈∇ψ(x̄), x− x̄〉 ∀x ∈ X \ {x̄}.

Definition 5
Let X = [xL, xR], Y = [yL, yR] be two sets in KC .

(i) X ≤LR Y if xL ≤ yL and xR ≤ yR.
(ii) X <LR Y if X ≤LR Y and X 6= Y .
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(iii) X <sLR Y if xL < yL and xR < yR.

Definition 6
Let X̃, Ỹ ∈ FC(R) and X̃α = [X̃L

α , X̃
R
α ] and Ỹα = [Ỹ Lα , Ỹ

R
α ] for all α ∈ [0, 1].

(i) [31] X̃ 5 Ỹ if X̃α ≤LR Ỹα ∀α ∈ [0, 1].
(ii) [31] X̃ ≤ Ỹ if X̃α ≤LR Ỹα ∀α ∈ [0, 1] and ∃ᾱ ∈ [0, 1] such that X̃ᾱ <LR Ỹᾱ.

(iii) [18] X̃ 5s Ỹ if X̃α ≤LR Ỹα ∀α ∈ [0, 1] and ∃ᾱ ∈ [0, 1] such that X̃ᾱ <
s
LR Ỹᾱ.

(iv) [32] X̃ < Ỹ if X̃α <LR Ỹα ∀α ∈ [0, 1].
(v) X̃ ≤s Ỹ if X̃α <LR Ỹα ∀α ∈ [0, 1] and ∃ᾱ ∈ [0, 1] such that X̃ᾱ <

s
LR Ỹᾱ.

(vi) X̃ <s Ỹ if X̃α <
s
LR Ỹα ∀α ∈ [0, 1].

Remark 3
Let X̃, Ỹ ∈ FC(R). It is easy to check that

(i) X̃ <s Ỹ ⇒ X̃ ≤s Ỹ ⇒ X̃ 5s Ỹ ⇒ X̃ ≤ Ỹ ⇒ X̃ 5 Ỹ .

(ii) X̃ <s Ỹ ⇒ X̃ ≤s Ỹ ⇒ X̃ < Ỹ ⇒ X̃ ≤ Ỹ ⇒ X̃ 5 Ỹ .

Definition 7
Let X ⊂ Rn be a convex set, ψ̃ : X → FC(R) and x̄ ∈ X .

(i) [31] We say that ψ̃ is convex at x̄ if

ψ̃(λx̄+ (1− λ)x) 5 (̃I{λ}×̃ψ̃(x̄))+̃(̃I{1−λ}×̃ψ̃(x)),

for each λ ∈ [0, 1] and each x ∈ X . We also say that ψ̃ is convex on X if ψ̃ is convex at each point of X .
(ii) ψ̃ is said to be strongly convex at x̄ if

ψ̃(λx̄+ (1− λ)x) <s (̃I{λ}×̃ψ̃(x̄))+̃(̃I{1−λ}×̃ψ̃(x)),

for each λ ∈ (0, 1) and each x ∈ X \ {x̄}. We also say that ψ̃ is strongly convex on X if ψ̃ is strongly convex
at each point of X .

In Definition 7, only two binary relations were utilized. Using the others binary relations in Definition 6, the
others definition of convexity of fuzzy functions could be defined similarly.

Remark 4
Let X ⊂ Rn be a convex set, ψ̃ : X → FC(R) and x̄ ∈ X .

(i) [31] ψ̃ is convex at x̄ if and only if (ψ̃)Lα and (ψ̃)Rα are convex at x̄ for all α ∈ [0, 1].
(ii) ψ̃ is strongly convex at x̄ if and only if (ψ̃)Lα and (ψ̃)Rα are strictly convex at x̄ for all α ∈ [0, 1].

Lemma 1

[22] Let {Kt, t ∈ T} be an arbitrary collection of nonempty convex sets in Rn and K = pos

( ⋃
t∈T

Kt

)
. Then, for

any k ∈ K \ {0}, there exist ` ≤ n, {tj}j=1,...,` ⊂ T , λ = (λt1 , ..., λt`) ∈ R`+ and ktj ∈ Ktj (j = 1, ..., `) such that
k =

∑`
j=1 λtjktj .

Lemma 2
[6] Suppose that U, V are arbitrary (not necessary finite) index sets, au = a(u) = (a1(u), ..., an(u)) maps S onto
Rn, and so does av. Assume further that co{au, u ∈ U}+ pos{av, v ∈ V } is a closed set. Then, the following two
statements are equivalent:

I :

{
〈au, x〉 < 0, u ∈ U,U 6= ∅
〈av, x〉 ≤ 0, v ∈ V has no solution x ∈ Rn;

II : 0 ∈ co{au, u ∈ U}+ pos{av, v ∈ V }.
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Lemma 3
[8] If X is a nonempty compact subset of Rn, then,

(i) coX is a compact set;
(ii) If 0 6∈ coX , then posX is a closed cone.

3. KKT optimality conditions

In this section, we consider the semi-infinite programming with multiple fuzzy-valued objective functions as
follows:

(P) m̃in(f̃1(x), ..., f̃m(x))
s.t. gt(x) ≤ 0, t ∈ T ,

where f̃i : Rn → FC(R) (i ∈ I := {1, ...,m}) are level-wise continuously differentiable fuzzy-valued functions
and gt : Rn → R (t ∈ T ) are continuously differentiable functions. The index set T is an arbitrary nonempty set,
possibly infinite. The feasible solution set of (P) is indicated by

S := {x ∈ Rn | gt(x) ≤ 0, t ∈ T}.

Designate R|T |+ the set of all the functions λ : T → R taking values λt’s positive only at finitely many points of T ,
and equal to zero at the other points. For a given x̄ ∈ S, we denote by T (x̄) := {t ∈ T |gt(x̄) = 0} the index set of
all active constraints at x̄. The collection of active constraint multipliers at x̄ ∈ S is

Λ(x̄) := {λ ∈ R|T |+ |λtgt(x̄) = 0,∀t ∈ T}.

Notice that λ ∈ Λ(x̄) if there exists a finite index set K ⊂ T (x̄) such that λt > 0 for all t ∈ K and λt = 0 for all
t ∈ T \K.

Definition 8
Let x̄ ∈ S and U(x̄) be the set of neighborhoods of x̄.

(i) [32] x̄ is a locally strongly efficient solution of (P), denoted by x̄ ∈ locSE(P, 1), if there exists U ∈ U(x̄)

such that there is no x ∈ S ∩ U \ {x̄} satisfying f̃i(x) 5 f̃i(x̄) ∀i ∈ I.
(ii) [32, 19] x̄ is a locally (Pareto) type-1 efficient solution of (P), denoted by x̄ ∈ locE(P, 1), if there exists

U ∈ U(x̄) such that there is no x ∈ S ∩ U fulfilling{
f̃i(x) 5 f̃i(x̄) ∀i ∈ I,
f̃i0(x) ≤ f̃i0(x̄) for at least one i0 ∈ I.

(iii) [32, 19] x̄ is a locally weakly type-1 efficient solution of (P), denoted by x̄ ∈ locWE(P, 1), if there exists
U ∈ U(x̄) such that there is no x ∈ S ∩ U fulfilling f̃i(x) ≤ f̃i(x̄) ∀i ∈ I.

(iv) [19] x̄ is a locally (Pareto) type-2 efficient solution of (P), denoted by x̄ ∈ locE(P, 2), if there exists
U ∈ U(x̄) such that there is no x ∈ S ∩ U fulfilling{

f̃i(x) 5 f̃i(x̄) ∀i ∈ I,
f̃i0(x) 5s f̃i0(x̄) for at least one i0 ∈ I.

(v) [19] x̄ is a locally weakly type-2 efficient solution of (P), denoted by x̄ ∈ locWE(P, 2), if there exists
U ∈ U(x̄) such that there is no x ∈ S ∩ U fulfilling f̃i(x) 5s f̃i(x̄) ∀i ∈ I.

(vi) x̄ is a locally (Pareto) type-3 efficient solution of (P), denoted by x̄ ∈ locE(P, 2), if there exists U ∈ U(x̄)
such that there is no x ∈ S ∩ U fulfilling{

f̃i(x) 5 f̃i(x̄) ∀i ∈ I,
f̃i0(x) <s f̃i0(x̄) for at least one i0 ∈ I.
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(vii) x̄ is a locally weakly type-3 efficient solution of (P), denoted by x̄ ∈ locWE(P, 3), if there exists U ∈ U(x̄)

such that there is no x ∈ S ∩ U satisfying f̃i(x) <s f̃i(x̄) ∀i ∈ I.

If U = Rn, the word “locally” is omitted. In this case, the strongly efficient solution sets is denoted by SE(P, 1)
and so are the other efficient solution sets.

Remark 5
If f̃i : Rn → FC(R) satisfying f̃i = χ{f} (i ∈ I := {1, ...,m}), i.e., f̃i : Rn → R is a crisp function, then

(i) fuzzy type-1 efficient ≡ fuzzy type-2 efficient ≡ fuzzy type-3 efficient ≡ crisp efficient solution, see e.g.
[14];

(ii) fuzzy weakly type-1 efficient≡ fuzzy weakly type-2 efficient≡ fuzzy weakly type-3 efficient≡ crisp weakly
efficient solution, see e.g. [14];

(iii) fuzzy strongly efficient ≡ crisp strictly efficient solution, see Definition 3.2 in [9].

Remark 6
The following relations are immediate:

(i) [32] SE(P, 1) ⊆ E(P, 1) ⊆WE(P, 1);
(ii) [19] E(P, 1) ⊆ E(P, 2) ⊆WE(P, 1) and E(P, 1) ⊆WE(P, 1) ⊆WE(P, 2);

(iii) WE(P, 1) ⊆WE(P, 2) ⊆WE(P, 3);
(iv) E(P, 1) ⊆ E(P, 2) ⊆ E(P, 3) ⊆WE(P, 3);
(v) If m = 1, then E(P, 1) ≡WE(P, 1), E(P, 2) ≡WE(P, 2) and E(P, 3) ≡WE(P, 3).

The concepts of efficient solutions in Definition 8 are distinct as in the following examples.

Example 1
Consider the following problem (P)

m̃in (f̃1(x), f̃2(x)) = ((1, 1, 1)×̃Ĩ{x2
1}+̃(0, 0, 1)×̃Ĩ{x2

2}, (1, 1, 1)×̃Ĩ{x2
1}+̃(1, 2, 4, 6)×̃Ĩ{x2})

s.t. gt(x) = −x1 + t ≤ 0, t ∈ [−1, 0].
Then, S = R+ ×R and, for x ∈ S,

(f̃1)α(x) = [x2
1, x

2
1 + (1− α)x2

2],

(f̃2)α(x) =

{
[x2

1 + (1− α)x2, x
2
1 + (6− 2α)x2], if x2 ≥ 0;

[x2
1 + (6− 2α)x2, x

2
1 + (1− α)x2], if x2 < 0.

Picking x̄ = (0, 1) ∈ S, one has

(f̃1)α(x) = [x2
1, x

2
1 + (1− α)x2

2] 6<sLR [0, 1− α] = (f̃1)α(x̄) ∀α ∈ [0, 1], (1)

leading that there is no x ∈ S fulfilling f̃1(x) 5 f̃1(x̄), and hence, x̄ ∈WE(P, 2) ⊂WE(P, 3). However, for
x̂ = (0,−1) ∈ S, we have{

(f̃1)α(x̂) = [0,−(1− α)] <LR [0, 1− α] = (f̃1)α(x̄) ∀α ∈ [0, 1],

(f̃2)α(x̂) = [−(6− α),−(1 + α)] <LR [1 + α, 6− 2α] = (f̃2)α(x̄) ∀α ∈ [0, 1],

leading that there is x̂ ∈ S such that f̃i(x̂) ≤ f̃i(x̄),∀i ∈ I . Thus, x̄ 6∈WE(P, 1) and hence, WE(P, 1) $
WE(P, 2).

Further, we also get{
(f̃1)α(x̂) = [0,−(1− α)] ≤LR [0, 1− α] = (f̃1)α(x̄) ∀α ∈ [0, 1],

(f̃2)α(x̂) = [−(6− α),−(1 + α)] ≤LR [1 + α, 6− 2α] = (f̃2)α(x̄) ∀α ∈ [0, 1],
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and, for ᾱ = 1,
(f̃2)ᾱ(x̂) = [−5,−2] <sLR [2, 4] = (f̃2)ᾱ(x̄)

entailing that there is x̂ ∈ S such that f̃i(x̂) 5 f̃i(x̄),∀i ∈ I and f̃2(x̂) 5s f̃2(x̄). Thus, x̄ 6∈ E(P, 2) and hence,
E(P, 2) $WE(P, 2).

On the other hand, we also arrive at{
(f̃2)α(x̂) = [−(6− α),−(1 + α)] <LR [1 + α, 6− 2α] = (f̃2)α(x̄) ∀α ∈ [0, 1],

(f̃2)ᾱ(x̂) = [−5,−2] <sLR [2, 4] = (f̃2)ᾱ(x̄), ᾱ = 1,

which in turn implies the existence of x̂ ∈ S such that f̃i(x̂) 5 f̃i(x̄),∀i ∈ I and f̃2(x̂) <s f̃2(x̄). So, x̄ 6∈ E(P, 3),
and hence, E(P, 3) $WE(P, 3).

Example 2
Consider the following problem (P)

m̃in f̃(x) = (−1,−1, 0)×̃Ĩ{x}
s.t. gt(x) = −x+ t ≤ 0, t ∈ [−1, 0].

Then, S = R+ and f̃α(x) = [−1,−α]x. Let x̄ = 0 ∈ S. Since there exist x = 1 ∈ S such that{
f̃α(x) = [−1,−α] ≤LR [0, 0] = f̃α(x̄) ∀α ∈ [0, 1],

f̃ᾱ(x) <sLR f̃ᾱ(x̄), ᾱ = 1
2 ∈ [0, 1],

one derives the existence of x = 1 ∈ S such that f̃(x) 5s (f̃i)(x̄). Thus, x̄ 6∈WE(P, 2). Nevertheless, since

f̃ᾱ(x) = [−1, 0] 6<sLR [0, 0] = f̃ᾱ(x̄), ᾱ = 0 ∈ [0, 1] ∀x ∈ S,

one has, for all x ∈ S, f̃α(x) 66<sLR f̃α(x̄) ∀α ∈ [0, 1]. This implies that there is no x ∈ S satisfying f̃(x) <s f̃(x̄),
i.e., x̄ ∈WE(P, 3). Hence,WE(P, 2) $WE(P, 3). Furthermore, by invoking Remark 6 (v), one yieldsE(P, 2) $
E(P, 3).

Example 3
Consider the following problem (P)

m̃in f̃(x) = (−1,−1, 0)×̃Ĩ{x}
s.t. gt(x) = −x+ t ≤ 0, t ∈ [−1, 0].

Then, S = R+ and f̃α(x) = [−1,−α]x. Let us choose x̄ = 0 ∈ S. Since there exist x = 1 ∈ S such that{
f̃α(x) = [−1,−α] ≤LR [0, 0] = f̃α(x̄) ∀α ∈ [0, 1],

f̃ᾱ(x) <sLR f̃ᾱ(x̄), ᾱ = 1
2 ∈ [0, 1],

one infers the existence of x = 1 ∈ S such that f̃(x) 5s (f̃i)(x̄). Thus, x̄ 6∈WE(P, 2). Nonetheless, since

f̃ᾱ(x) = [−1, 0] 6<sLR [0, 0] = f̃ᾱ(x̄), ᾱ = 0 ∈ [0, 1],∀x ∈ S,

one gets, for all x ∈ S, f̃α(x) 66<sLR f̃α(x̄) ∀α ∈ [0, 1]. This implies that there is no x ∈ S satisfying f̃(x) <s f̃(x̄),
i.e., x̄ ∈WE(P, 3). Hence, WE(P, 2) $WE(P, 3). In addition, by virtue of Remark 6 (v), one yields E(P, 2) $
E(P, 3).

Example 4
Consider the following problem (P)
m̃inf̃(x) = (−2,−1, 0, 0)×̃Ĩ{x},

s.t. gt(x) = −x+ t ≤ 0, t ∈ [−1, 0].
Then, S = R+ and f̃α(x) = [−2 + α, 0]x,∀α ∈ [0, 1]. Let x̄ = 0 ∈ S. Since there exists x = 1 ∈ S such that{

f̃α(x) = [−2 + α, 0] ≤LR [0, 0] = f̃α(x̄) ∀α ∈ [0, 1],

f̃ᾱ(x) = [− 3
2 , 0] <LR [0, 0] = f̃ᾱ(x̄), ᾱ = 1

2 ∈ [0, 1],
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one gets that f̃(x) ≤ f̃(x̄), which in turn shows that x̄ 6∈WE(P, 1). But, there is no x ∈ S satisfying f̃(x) 5s f̃(x̄),
since

f̃α(x) = [(−2 + α)x, 0] 6<sLR [0, 0] = f̃α(x̄) ∀α ∈ [0, 1].

Thus, x̄ ∈WE(P, 2). Therefore, WE(P, 1) $WE(P, 2). Additionally, employing Remark 6 (v) gives us
E(P, 1) $ E(P, 2).

Example 5
Consider the following problem (P)

m̃in f̃(x) = (0, 0, 1, 1)
s.t. gt(x) = −x+ t ≤ 0, t ∈ [−1, 0].

Then, S = R+ and f̃α(x) = [0, 1],∀α ∈ [0, 1]. Taking x̄ = 0 ∈ S and x = 1 ∈ S \ {x̄}, one has

f̃α(x) = [0, 1] ≤LR [0, 1] = f̃α(x̄) ∀α ∈ [0, 1], (2)

leading that f̃(x) 5 f̃(x̄) and hence, x̄ 6∈ SE(P, 1). However, for any x ∈ S,

f̃α(x) 6<LR f̃α(x̄) ∀α ∈ [0, 1],

deducing that there is no x ∈ S such that f̃ᾱ(x) <LR f̃ᾱ(x̄) for some ᾱ ∈ [0, 1], i.e., f̃(x) ≤ f̃(x̄). Thus, x̄ ∈
E(P, 1), and hence, SE(P, 1) $ E(P, 1).

Now, we recall the following constraint qualification in [6], which are similar to Abadie constraint qualification
in the literature. For others constraint qualifications and their relations, see e.g. [7] and references therein.

Definition 9

The (ACQ) holds at x̄ ∈ S if

( ⋃
t∈T (x̄)

∇gt(x̄)

)−
⊆ T (S, x̄) and ∆ := pos

⋃
t∈T (x̄)

∇gt(x̄) is a closed set.

In the following, we will establish the Karush-Kuhh-Tucker necessary optimality condition for a locally weakly
type-3 efficient solution of (P). In view of Remark 6, this necessary optimality is also the necessary optimality for
others efficient solutions of (P). The KKT necessary condition could be employed to reject a feasible point as an
efficient solution. It is also utilized as a condition in strong duality relations between the primal problem and the
dual problem in optimization.

Proposition 3
Assume that x̄ ∈ locWE(P, 3) and (ACQ) holds at x̄. Then, there exist nonnegative real-valued functions
ξLi , ξ

R
i (i ∈ I) defined in [0, 1] with

∑
i∈I ξ

L
i (α) + ξRi (α) = 1 for all α ∈ [0, 1] and nonnegative functions λt(t ∈ T )

defined in [0, 1] with λ := (λt)t∈T ∈ Λ(x̄) such that∑
i∈I

(
ξLi (α)∇(f̃i)

L
α(x̄) + ξRi (α)∇(f̃i)

R
α (x̄)

)
+
∑
t∈T

λt(α)∇gt(x̄) = 0,∀α ∈ [0, 1].

Proof
We derive from x̄ ∈ locWE(P, 3) the existence U ∈ U(x̄) such that there is no x ∈ S ∩ U satisfying f̃i(x) <s

f̃i(x̄) ∀i ∈ I, or equivalently,
(f̃i)α(x) <sLR (f̃i)α(x̄) ∀i ∈ I, ∀α ∈ [0, 1]. (3)

We first justify that (⋃
i∈I

∇(f̃i)
L
α(x̄) ∪∇(f̃i)

R
α (x̄)

)s
∩ T (S, x̄) = ∅, ∀α ∈ [0, 1]. (4)

There are only two possible cases here:
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Case 1. ∇(f̃i)
L
ᾱ(x̄) = 0 (or ∇(f̃i)

R
ᾱ (x̄) = 0) for some i0 ∈ I and ᾱ ∈ [0, 1]. Then, one has(⋃

i∈I
∇(f̃i)

L
α(x̄) ∪∇(f̃i)

R
α (x̄)

)s
= ∅, leading that (4) holds.

Case 2. ∇(f̃i)
L
α(x̄) 6= 0 and ∇(f̃i)

R
α (x̄) 6= 0 for all i ∈ I , for all α ∈ [0, 1]. Suppose to the contrary that (4) is false.

Then, there exists ᾱ ∈ [0, 1] such that(⋃
i∈I

∇(f̃i)
L
ᾱ(x̄) ∪∇(f̃i)

R
ᾱ (x̄)

)s
∩ T (S, x̄) 6= ∅

Therefore, we ensure the existence of

d ∈

(⋃
i∈I

∇(f̃i)
L
ᾱ(x̄) ∪∇(f̃i)

R
ᾱ (x̄)

)s
∩ T (S, x̄)

for some ᾱ ∈ [0, 1]. This implies that 〈∇(f̃i)
L
ᾱ(x̄), d〉 < 0 and 〈∇(f̃i)

R
ᾱ (x̄), d〉 < 0 for all i ∈ I . As d ∈ T (S, x̄),

there exist τ` ↓ 0 and d` → d such that x̄+ τ`d` ∈ S for all `. We derive from the fact (f̃i)
L
ᾱ(i ∈ I) are continuously

differentiable at x̄ that

(f̃i)
L
ᾱ(x̄+ τ`d`) = (f̃i)

L
ᾱ(x̄) + τ`〈∇(f̃i)

L
ᾱ(x̄), d`〉+ o(τ`‖d`‖) ∀i ∈ I.

Consequently, for all i ∈ I ,

(f̃i)
L
ᾱ(x̄+ τ`d`)− (f̃i)

L
ᾱ(x̄)

τ`
= 〈∇(f̃i)

L
ᾱ(x̄), d`〉+

o(τ`‖d`‖)
τ`

→ 〈∇(f̃i)
L
ᾱ(x̄), d〉 < 0,

when `→∞. Thus, for each i ∈ I , there exists `Li > 0 such that

(f̃i)
L
ᾱ(x̄+ τ`d`)− (f̃i)

L
ᾱ(x̄)

τ`
< 0 ∀` > `Li .

Setting `
L

= max
i∈I

`Li , we have

(f̃i)
L
ᾱ(x̄+ τ`d`) < (f̃i)

L
ᾱ(x̄) ∀` > `

L
,∀i ∈ I.

Similarly, there exists l
R
> 0 such that

(f̃i)
R
ᾱ (x̄+ τ`d`) < (f̃i)

R
ᾱ (x̄) ∀` > `

R
,∀i ∈ I.

Designating ` := max{`L, `R}, we assure the existence of ` > ` large enough such that x̄+ τ`d` ∈ S ∩ U and{
(f̃i)

L
ᾱ(x̄+ τ`d`) < (f̃i)

L
ᾱ(x̄) ∀i ∈ I,

(f̃i)
R
ᾱ (x̄+ τ`d`) < (f̃i)

R
ᾱ (x̄) ∀i ∈ I,

i.e., (f̃i)ᾱ(x̄+ τ`d`) <
s
LR (f̃i)ᾱ(x̄),∀i ∈ I , which contradicts (3). Therefore, (4) holds for Case 2, and hence, (4)

holds for the both possible cases.
We deduce from (4)and (ACQ) that, ∀α ∈ [0, 1],(⋃

i∈I

∇(f̃i)
L
α(x̄) ∪∇(f̃i)

R
α (x̄)

)s
∩

 ⋃
t∈T (x̄)

∇gt(x̄)

− ⊂ (⋃
i∈I

∇(f̃i)
L
α(x̄) ∪∇(f̃i)

R
α (x̄)

)s
∩ T (S, x̄) = ∅.
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This leads that there is no d ∈ Rn such that, for all α ∈ [0, 1], 〈∇(f̃i)
L
α(x̄), d〉 < 0 ∀i ∈ I,

〈∇(f̃i)
R
α (x̄), d〉 < 0 ∀i ∈ I,

〈∇gt(x̄), d〉 ≤ 0,∀t ∈ T (x̄).

Moreover, it follows from Lemma 3 that co

(⋃
i∈I
∇(f̃i)

L
α(x̄) ∪∇(f̃i)

R
α (x̄)

)
is a compact set, and thus,

co

(⋃
i∈I
∇(f̃i)

L
α(x̄) ∪∇(f̃i)

R
α (x̄)

)
+ ∆ is closed. Thanks to Lemma 2, one has

0 ∈ co

(⋃
i∈I

∇(f̃i)
L
α(x̄) ∪∇(f̃i)

R
α (x̄)

)
+ pos

⋃
t∈T (x̄)

∇gt(x̄),

for all α ∈ [0, 1]. From Lemma 1, there exist ξLi (α), ξRi (α) ∈ R+ with
∑
i∈I

(
ξLi (α) + ξRi (α)

)
= 1 and λ(α) ∈ Λ(x̄)

such that ∑
i∈I

(
ξLi (α)∇(f̃i)

L
α(x̄) + ξRi (α)∇(f̃i)

R
α (x̄)

)
+
∑
t∈T

λt(α)∇gt(x̄) = 0,

for all α ∈ [0, 1]. Denoting ξLi , ξ
R
i : [0, 1]→ R+(i ∈ I) with

∑
i∈I

(
ξLi (α) + ξRi (α)

)
= 1 for all α ∈ [0, 1] and λ :=

(λt)t∈T with λt : [0, 1]→ R+(t ∈ T ), the conclusion is obtained.

In the next part, the KKT sufficient optimality condition for the weakly type-3 efficient solution and the strongly
efficient solution of (P) are established under some convexity assumptions. It is well known that the KKT sufficient
optimality condition gives the test for a feasible point to be an optimal solution of optimization problems, which is
a necessary condition in building algorithms to solve optimization problems.

Proposition 4
Let x̄ ∈ S. Assume that, for each i ∈ I , there exist nonnegative real-valued functions ξLi , ξ

R
i defined in [0, 1]

with
∑
i∈I

(
ξLi (α) + ξRi (α)

)
= 1 for all α ∈ [0, 1] and nonnegative functions λt(t ∈ T ) defined in [0, 1] with λ :=

(λt)t∈T ∈ Λ(x̄) such that∑
i∈I

(
ξLi (α)∇(f̃i)

L
α(x̄) + ξRi (α)∇(f̃i)

R
α (x̄)

)
+
∑
t∈T

λt(α)∇gt(x̄) = 0 (5)

for all α ∈ [0, 1]. Then,

(i) If f̃i(i ∈ I) are convex at x̄ and gt(t ∈ T ) are convex at x̄, then x̄ ∈WE(P, 3);
(ii) If f̃i(i ∈ I) are strongly convex at x̄ and gt(t ∈ T ) are convex at x̄, then x̄ ∈ SE(P, 1).

Proof
Since, x̄ ∈ S fulfilling (5), there exists a finite subset Jα of T (x̄) such that∑

t∈Jα

λt(α)∇gt(x̄) = −
∑
i∈I

(
ξLi (α)∇(f̃i)

L
α(x̄) + ξRi (α)∇(f̃i)

R
α (x̄)

)
(6)

for each α ∈ [0, 1].
(i) Reasoning ad absurdum, assume that x̄ is not a weakly type-3 efficient solution of (P). Then, there exists x̂ ∈ S
satisfying f̃i(x̂) <s f̃i(x̄),∀i ∈ I, or equivalently,

(f̃i)
L
α(x̂) < (f̃i)

L
α(x̄) and (f̃i)

R
α (x̂) < (f̃i)

R
α (x̄),
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for all i ∈ I and for all α ∈ [0, 1]. The above inequalities together with the fact that, for each i ∈ I , ξLi , ξ
R
i are

nonnegative real-valued functions in [0, 1] satisfying
∑
i∈I

(
ξLi (α) + ξRi (α)

)
= 1 for all α ∈ [0, 1] implies that

∑
i∈I

(
ξLi (α)((f̃i)

L
α(x̂)− (f̃i)

L
α(x̄)) + ξRi (α)((f̃i)

R
α (x̂)− (f̃i)

R
α (x̄))

)
< 0, (7)

for all α ∈ [0, 1]. It follows from the convexity of f̃i(i ∈ I) at x̄, Remark 2 and Remark 4, one has

(f̃i)
L
α(x̂)− (f̃i)

L
α(x̄) ≥ 〈∇(f̃i)

L
α(x̄), x̂− x̄〉, and (f̃i)

R
α (x̂)− (f̃i)

R
α (x̄) ≥ 〈∇(f̃i)

R
α (x̄), x̂− x̄〉,

for all i ∈ I and α ∈ [0, 1]. Hence, combining the above inequalities, (6) and (7) leads us that∑
t∈Jα

λt(α)〈∇gt(x̄), x̂− x̄〉

= −
∑
i∈I

(
ξLi (α)〈∇(f̃i)

L
α(x̄), x̂− x̄〉+ ξRi (α)〈∇(f̃i)

R
α (x̄), x̂− x̄〉

)
> 0, α ∈ [0, 1]. (8)

On the other hand, since x̂ ∈ S and gt(x̄) = 0 for all t ∈ Jα for each α ∈ [0, 1], we get gt(x̂) ≤ gt(x̄),∀t ∈ Jα for
each α ∈ [0, 1]. Therefore, by the convexity of gt(t ∈ T ) at x̄, one concludes that for each α ∈ [0, 1],∑

t∈Jα

λt(α)〈∇gt(x̄), x̂− x̄〉 ≤
∑
t∈Jα

λt(α)(gt(x̂)− gt(x̄)) ≤ 0,

which contradicts (8).
(ii) Arguing by contradiction, suppose that x̄ is not a strongly efficient solution of (P). Then, there exists a
x̂ ∈ S \ {x̄} satisfying (f̃i)(x̂) 5 (f̃i)(x̄),∀i ∈ I , or equivalently,

(f̃i)
L
α(x̂) ≤ (f̃i)

L
α(x̄) and (f̃i)

R
α (x̂) ≤ (f̃i)

R
α (x̄)

for all i ∈ I and α ∈ [0, 1]. The above inequalities along with the fact that, for each i ∈ I , ξLi , ξ
R
i are nonnegative

real-valued functions in [0, 1] with
∑
i∈I

(
ξLi (α) + ξRi (α)

)
= 1 for all α ∈ [0, 1] deduces that

∑
i∈I

(
ξLi (α)((f̃i)

L
α(x̂)− (f̃i)

L
α(x̄)) + ξRi (α)((f̃i)

R
α (x̂)− (f̃i)

R
α (x̄))

)
≤ 0 (9)

for all α ∈ [0, 1]. It follows from the strong convexity of f̃i(i ∈ I) at x̄, x̂ 6= x̄, Remark 2 and Remark 4 that for all
i ∈ I , it holds:

(f̃i)
L
α(x̂)− (f̃i)

L
α(x̄) > 〈∇(f̃i)

L
α(x̄), x̂− x̄〉, α ∈ [0, 1]

(f̃i)
R
α (x̂)− (f̃i)

R
α (x̄) > 〈∇(f̃i)

R
α (x̄), x̂− x̄〉, α ∈ [0, 1].

Hence, the above inequality, (6) and (8) tell us that, for each α ∈ [0, 1],∑
t∈Jα

λt(α)〈∇gt(x̄), x̂− x̄〉

= −
∑
i∈I

(
ξLi (α)〈∇(f̃i)

L
α(x̄), x̂− x̄〉+ ξRi (α)〈∇(f̃i)

R
α (x̄), x̂− x̄〉

)
> 0. (10)

On the other hand, since x̂ ∈ S and gt(x̄) = 0 for all t ∈ Jα for each α ∈ [0, 1], one yields gt(x̂) ≤ gt(x̄),∀t ∈ Jα
for each α ∈ [0, 1]. By invoking the convexity of gt(t ∈ T ) at x̄, one has∑

t∈Jα

λt(α)〈∇gt(x̄), x̂− x̄〉 ≤
∑
t∈Jα

λt(α)(gt(x̂)− gt(x̄)) ≤ 0,

contradicting with (10).
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Example 6
Let f̃1, f̃2 : Rn → FC(R) be defined respectively by

f̃1(x) = (̃I{x1}+̃(−4,−3,−2))×̃(̃I{x1}+̃(−4,−3,−2))

+̃(̃I{x2}+̃(−5,−4,−2))×̃(̃I{x2}+̃(−5,−4,−2)),
and

f̃2(x) =

(
Ĩ{x1}+̃

(
−7

2
,−3,−2

))
×̃
(
Ĩ{x1}+̃

(
−7

2
,−3,−2

))
+̃(̃I{x2}+̃(−5,−4,−2))×̃(̃I{x2}+̃(−5,−4,−2)).

Consider the following problem (P)
m̃in(f̃1(x), f̃2(x))
s.t. gt(x) = 6− tx1 + (t− 1)x2 ≤ 0, t ∈ T = [0, 1].

Then, S = {x ∈ R2 | 6− x2 ≤ 0, 6− x1 ≤ 0} = [6,+∞)× [6,+∞) and

(f̃1)α(x) = [(x1 − 4 + α)2 + (x2 − 5 + α)2, (x1 − 2− α)2 + (x2 − 2− 2α)2],

(f̃2)α(x) =

[(
x1 −

7

2
+

1

2
α

)2

+ (x2 − 5 + α)2, (x1 − 2− α)2 + (x2 − 2− 2α)2

]
.

Hence,
∇(f̃1)Lα(x) = (2(x1 − 4 + α), 2(x2 − 5 + α)),

∇(f̃1)Rα (x) = (2(x1 − 2− α), 2(x2 − 2− 2α)),

∇(f̃2)Lα(x) =

(
2

(
x1 −

7

2
+

1

2
α

)
, 2(x2 − 5 + α)

)
,

∇(f̃2)Rα (x) = (2(x1 − 2− α), 2(x2 − 2− 2α)).

Let x̄ = (6, 6) ∈ S. Since, ∀x ∈ S,

(f̃1)α(x) = [(x1 − 4 + α)2 + (x2 − 5 + α)2, (x1 − 2− α)2 + (x2 − 2− 2α)2]

6<sLR (f̃1)α(x̄) = [(2 + α)2 + (1 + α)2, (4− α)2 + (4− 2α)2],

(f̃2)α(x) =

[(
x1 −

7

2
+

1

2
α

)2

+ (x2 − 5 + α)2, (x1 − 2− α)2 + (x2 − 2− 2α)2

]

6<sLR (f̃2)α(x̄) =

[(
5

2
+

1

2
α

)2

+ (1 + α)2, (4− α)2 + (4− 2α)2

]
,

for all α ∈ [0, 1], one has, for all x ∈ S, {
f̃1(x) 6<s f̃1(x̄),

f̃2(x) 6<s f̃2(x̄),

i.e., x̄ ∈WE(P, 3). By some calculations, we have

∇(f̃1)Lα(x̄) = (2(2 + α), 2(1 + α)),∇(f̃1)Rα (x̄) = (2(4− α), 2(4− 2α)),

∇(f̃2)Lα(x̄) =

(
2

(
5

2
+

1

2
α

)
, 2(1 + α)

)
,∇(f̃2)Rα (x̄) = (2(4− α), 2(4− 2α)),

T (S, x̄) = R2
+, T (x̄) = T,∇gt(x̄) = (−t, t− 1),
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⋃
t∈T (x̄)

∇gt(x̄) = {x ∈ R2 | x1 + x2 = −1, x1 ≤ 0, x2 ≤ 0},

 ⋃
t∈T (x̄)

∇gt(x̄)

− = R2
+ ⊆ T (S, x̄),pos

⋃
t∈T (x̄)

∇gt(x̄) = −R2
+

is a closed set. Hence, (ACQ) holds at x̄ and all assumptions in Proposition 3 are satisfied. Now, let ξLi , ξ
R
i : [0, 1]→

R+(i = 1, 2) and λt : [0, 1]→ R+ be defined by

ξL1 (α) =
4

5
, ξR1 (α) = 0 ∀α ∈ [0, 1],

ξL2 (α) = 0, ξR2 (α) =
1

5
∀α ∈ [0, 1],

λt(α) =

{
2(4 + α), if t = 3

5 ,
0, otherwise, ∀α ∈ [0, 1].

Then, the functions ξLi , ξ
R
i (i = 1, 2) are nonnegative real-valued functions defined on [0, 1] with

2∑
i=1

(
ξLi (α) + ξRi (α)

)
= 1 for all α ∈ [0, 1] and λ = (λt)t∈T ∈ Λ(x̄). Moreover, for all α ∈ [0, 1],

2∑
i=1

(
ξLi (α)∇(f̃i)

L
α(x̄) + ξRi (α)∇(f̃i)

R
α (x̄)

)
+
∑
t∈T

λt(α)∇gt(x̄)

=
4

5
(2(2 + α), 2(1 + α)) + 0 + 0 +

1

5
(2(4− α), 2(4− 2α)) + 2(4 + α).

(
−3

5
,−2

5

)
=

(
8(2 + α) + 2(4− α)

5
,

8(1 + α) + 2(4− 2α)

5

)
+ 2(4 + α).

(
−3

5
,−2

5

)
=

(
24 + 6α

5
,

16 + 4α

5

)
+ 2(4 + α).

(
−3

5
,−2

5

)
= (0, 0),

i.e., the conclusion of Proposition 3 is fulfilled.
On the other hand, we can verify that (f̃i)

L
α, (f̃i)

R
α (i = 1, 2) are convex at x̄ = (6, 6) for all α ∈ [0, 1] and

gt(t ∈ T ) are convex at x̄. Hence, all assumptions in Proposition 4 (i) hold. Then, it follows that x̄ ∈WE(P, 3).
Furthermore, (f̃i)

L
α, (f̃i)

R
α (i = 1, 2) are also strictly convex at x̄ = 0. Thus, we deduce from Proposition 4 (ii) that

x̄ ∈ SE(P, 1).

4. Conclusions

In this paper, the Karush-Kuhn-Tucker necessary and sufficient optimality conditions for semi-infinite
programming with multiple fuzzy-valued objective functions are investigated. The outcome of the paper extends
the results in [31, 32] from optimization problems with multiple fuzzy-valued objective functions to semi-infinite
programming problems with multiple fuzzy-valued objective functions. In the case that T is a finite set, the main
results in the paper are also new since the necessary optimality conditions were not investigated in [31, 32].
Moreover, our approach in this paper is different from that of [18, 19]. Considering the optimality conditions
for fuzzy semi-infinite programming problems with nonsmooth functions by using gH-derivatives [18, 19, 23] or
generalized subdifferentials could be an interesting subject for the future research.
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8. J.B. Hiriart-Urruty, and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer, Berlin, 1993.
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