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Context-driven Bengali Text Generation using Conditional Language Model
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Abstract Text generation is a rapidly evolving field of Natural Language Processing (NLP) with larger Language models
proposed very often setting new state-of-the-art. These models are extremely effective in learning the representation of words
and their internal coherence in a particular language. However, an established context-driven, end to end text generation
model is very rare, even more so for the Bengali language. In this paper, we have proposed a Bidirectional gated recurrent unit
(GRU) based architecture that simulates the conditional language model or the decoder portion of the sequence to sequence
(seq2seq) model and is further conditioned upon the target context vectors. We have explored several ways of combining
multiple context words into a fixed dimensional vector representation that is extracted from the same GloVe language model
which is used to generate the embedding matrix. We have used beam search optimization to generate the sentence with the
maximum cumulative log probability score. In addition, we have proposed a human scoring based evaluation metric and used
it to compare the performance of the model with unidirectional LSTM and GRU networks. Empirical results prove that the
proposed model performs exceedingly well in producing meaningful outcomes depicting the target context. The experiment
leads to an architecture that can be applied to an extensive domain of context-driven text generation based applications and
which is also a key contribution to the NLP based literature of the Bengali language.
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1. Introduction

Text generation is the task of producing texts automatically given some contexts or goals, that are
indistinguishable from human-written texts. It is a subfield of Natural Language Processing (NLP) and a derivative
of Computer linguistics and Artificial Intelligence (AI). The scope of a text generation system is large including
text summarization, typing assistant, machine translation, image captioning, automatic report generation, article
generation, etc. The success of such a system mainly depends on the correctness and quality of the generated text
depending on how comprehensible they are and how accurate they are grammatically.

Implementations of automatic text generation for structured texts such as codes or URLs have been widely
available for a long time. Generation processes for such structured data are relatively straightforward and can
be addressed through conventional programming approaches eg.- a starting tag in a markup language will have
an ending tag of the same name. But for unstructured texts, the task is very difficult as these data can not
be identified through any particular probability distribution. The earliest approach for such data involved direct
translation of texts from knowledge structures [1]. Many other early attempts involved the use of a pipelined
generic architecture [2] [3]. But with the rise of deep neural networks, the field has almost been revolutionized.
Since deep neural networks are extremely effective in representing complex probability distributions, as in natural
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language texts, different neural networks have been explored frequently by researchers to achieve tremendous feats
in text generation tasks.

In order to model the temporal dependency of sequential data like texts, Recurrent Neural Networks (RNNs)
were introduced. RNNs are an extension to standard feedforward networks, where each time step incorporates a
high dimensional hidden state and passes it to the next time step during forward propagation to flow the sequential
information. But standard RNNs can not maintain long-range temporal dependencies due to vanishing or much
rarely, exploding gradients. Several variants of standard RNNs have since been introduced which effectively
addressed all the gradient issues. The most notable of these are- Long-short Term Memory (LSTM) and Gated
Recurrent Unit (GRU) nets. LSTM and GRU both have special gated units controlling memory cells to determine
how and when to update their internal cell states, the difference between the two being that GRU is a much
simplified version of LSTM.

RNNs and their variants are widely used to implement Language Models (LM). LMs can learn the various
representations of the vocabulary of a particular language and its syntax and semantics. These models can be trained
through maximum likelihood estimation and can predict sequences by sampling from the learned probability
distribution. But such implementation requires some input (x0, x1, . . . ) in order to predict the next words in the
sequence. This input has to be sufficiently large to control the context of the target sequence, thus being not quite
effective in generating a sentence within the target context.

Sequence to Sequence (seq2seq) models, first introduced by Sutskever et al. in 2014 [4] are largely used in Neural
Machine Translation (NMT) which can produce sequences with minimal assumption on the sequence structure. The
architecture of such a model includes an encoder RNN (often implemented as LSTM or GRU), that transforms a
reference sequence into a fixed dimensional context vector using a LM, which is then fed to the decoder RNN to
reproduce the sequence into the target distribution. These models are exceptionally accurate in mapping sequences
to other target sequences. The decoder model is also called a conditional language model because unlike LMs
the decoder produces sequences based on the provided conditions with or without any direct input to itself. A
general architecture of a seq2seq model is shown in Figure 1 where the encoder model takes reference sequence
(x0, x1, . . . , xt) and generates a context vector ct. This context vector is then used in the decoder model to reproduce
the target sequence (y0, y1, . . . , y

′
t) one by one.

Figure 1. seq2seq Architecture (a) Encoder (b) Decoder

Most of these advances in literature and research works are confined to languages such as- English, Chinese,
French, Spanish, etc. Bengali is the official and most widely spoken language of Bangladesh and the second most
spoken regional language in India, behind Hindi. With almost 230 million speakers, Bengali is the seventh most
spoken language in the world [5]. Even with such popularity, present NLP works for Bengali are very few in
number, most of which are autoregressive language models.
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This work is motivated by this lack of effectiveness of existing Bengali text generation based works. In particular,
the issue has never been addressed for the language with the highly successful seq2seq recurrent networks. Besides,
the ability to generate coherent and semantically meaningful text plays a key role in many NLP applications.

In this paper, we have presented context-based Bengali text generation using a conditional language model. The
decoder model in seq2seq architecture is used here to produce the target sentence using a Bengali language model
where the context for the decoder is also provided from the same language model.

We have used GloVe word embedding to map the words of every sentence to a vector space. The same
representation is also used to generate context vectors. We have explored some ways of combining multiple
context words into a fixed-length vector by determining its resemblance with the vector representation of a single
word with a similar combined meaning. Then we used the Bengali Wikipedia dataset to train the baseline training
model and used the weights from this network for inferring predictions given some seed words or phrases and the
target context as input using a separate network. We have then used beam search to search for the most probable
outcome. Finally, we proposed a scoring mechanism which is then used to analyze the comparative performance
with different recurrent units and empirical results along with some sample generated texts are also presented.

Overall, the major contributions of this research work are:

1. We present an embellished overview of a successful work on context-driven text generation for the Bengali
language on which no established work of research has been conducted.

2. We experiment and analyze several associated factors including the inspection of context vectors, NN
architectures, and also optimization algorithms to find the most effective and apt combination. All these
profound insights can be crucial for future works of research, especially on the Bengali language.

3. Finally, we propose a novel evaluation mechanism that involves real-world feedback for this kind of scenario,
which is not possible to be evaluated with existing methods. According to this mechanism, on average, each
generated sequence holds 70.86% of the expected properties.

2. Related Works

Research works on Natural language generation first came into light as the process of transforming non-linguistic
machine representation of information into structured natural language. Although Recurrent Networks existed for
a long time, these were extremely hard to train on sequential data with long-range temporal dependency due to
vanishing or exploding gradient issues. In 2011 Sutskever et al. [6] proposed that combining standard RNNs with
Hessian-Free (HF) optimizer mitigates the gradient issues. The authors referred to the model as multiplicative
RNN (MRNN) due to its multiplicative nature of transforming the hidden state weight matrix into a function of the
current input. The effectiveness of the proposed model is proven by building a large character level LM trained on
three different datasets to predict the next characters given a sequence of characters as input.

Sundermeyer et al. presented an alternate solution of using the LSTM architecture for language modeling [7]. The
gating mechanism in LSTM controls what information might contribute more to any present context. The method
is applied to two LM tasks achieving 8% relative perplexity than standard RNNs and is also computationally more
efficient.

A very notable work of Chinese poetry generation using RNNs was proposed by Zhang et al. The implementation
takes some keywords for a poem as input and generates a set of all possible phrases containing the keywords.
Among these, n phrases are selected using a tri-gram RNN LM with a stack decoder at character level to produce
the first line of the poem. Then all the next lines of the poem are generated iteratively from previous lines using 3
different models (convolutional sentence model, recurrent context model, recurrent generation model) [8].

Cho et al. proposed an encoder-decoder architecture very similar to the seq2seq model, where the encoder RNN
encodes an input sequence to a fixed length vector and the decoder produces an output sequence conditioned on the
vector. The joined-model is trained using a gradient based algorithm to maximize the conditional log-likelihood
[9].

Extending the applications of encoder-decoder model pairs, Jiwei Li et al. [10] introduced a neural autoencoder
for paragraph and document generation. The encoder model generates a high-level embedding for paragraphs from
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low-level sentences and word embeddings, forming a hierarchical structure. The decoder model is then used to
reconstruct the paragraphs from these embeddings and verifying through ROGUE and BLEU metrics it is shown
how these encoded texts preserved the syntax, semantics, and coherence.

Wen et al. introduced an NLG application of dialogue generation conditioned on a context vector type and slot
value pair [11]. They accomplished the task of integrating the context vector values by modifying the LSTM cell
to have an additional gate to control the sentence planning. This solution is named semantically controlled LSTM
(SC-LSTM). To preserve the coherence of words from both directions, they stacked two layers of SC-LSTM, one
for each of forward and backward directions. They also presented human critics as evaluation.

The next revolution in NMT architectures came with the introduction of the Transformer model proposed by
Vaswani et al. in 2017 [12]. The architecture completely replaces the use of recurrent or convolutional units with
the attention mechanism, often used with the encoder-decoder model. As a result, the simpler network achieves
tremendous computational efficiency as well as achieving state-of-the-art performance on several NLP tasks.
Later, Devlin et al. proposed a powerful LM representation using the transformer architecture, referred to as the
Bidirectional Encoder Representations from Transformers (BERT) in 2018. These representations were fascinating
and outperformed all existing attempts on several natural language tasks [13].

In 2019, Egonmwan et al. used the seq2seq architecture for a work of Paraphrase generation [14]. The novelty
of the work lied in combining the advantages of the Transformer model with the seq2seq architecture. The encoder
consisted of two layers- the first one a Transformer model for rich language properties, and the second one a
unidirectional recurrent unit. It used the GloVe embedding to represent input sequences. The framework performed
extremely well in practice improving the state-of-the-art in two different paraphrasing datasets.

Santhanam (2020) introduced a context-based text generation using LSTM networks. This work demonstrated
the use of context vectors in an NLG application, where the context vector effectively learns the semantic meaning
of sentences. The author also inspected two different ways to calculate the context vector, namely word importance,
and word clustering [15].

For text generation specific to the Bengali language, Sheikh Abujar et al. introduced a bi-directional RNN model
in which hidden state transitions for every time step occur both in forward and backward direction [16]. The model
used pre-trained embeddings for a custom dataset of Bengali texts. On experimentation, training accuracy for the
model was very good but validation accuracy was not evaluated.

Most Bengali text generation tasks are based on RNNs with LSTM cells. In 2018 Sadidul et al. proposed an
encoder-decoder based LSTM network that handled 3 types of error (missing words, misplaced words, and wrong
arrangements). The model achieves good test set accuracy on a limited dataset [17]. Sanzidul et al. implemented
a LSTM network with 100 nodes and a softmax activation function to generate output sequences of given length
from a seed word [18].

Faruk et al. proposed an extended version of n-gram language models by introducing GRU based RNN on an n-
gram dataset. The model is trained on a Bengali text corpus to iteratively predict the next word to form a complete
sequence from an input sequence and experimentation shows that on average the model achieves better accuracy
than LSTM based models [19].

3. Background and Preliminaries

3.1. Recurrent Neural Network variants

Due to the gradient issues, training RNNs with backpropagation through time (BPTT) is very difficult. Several
gated variants of RNNs effectively eliminate these issues while producing robust models that are capable of
maintaining long term dependencies. We have evaluated the performance of two of the most popular ones- LSTM
and GRU for this work.

3.1.1. Long Short-Term Memory (LSTM) LSTM network was initially proposed by Hochreiter et al. in 1997 [20]
as a remedy to the gradient issues of standard RNNs with many further improvements, but it gained the most
popularity in sequence modeling very recently. LSTMs, in addition to the activation signal as in RNNs, maintain
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and propagate a high-level cell state in every time step. LSTMs employ three different gated units- an update gate,
an output gate and a forget gate to determine, store and regulate the flow of information that holds more significance
over long-range relations. The Figure 2a represents the architecture of a single LSTM unit.

The equations that govern a single LSTM cell (based on the implementation of Graves et al. 2013 [21]) are (1) -
(6):

c̃t = tanh (Wc[ct−1, at−1, xt] + bc) (1)

ut = σ(Wu[ct−1, at−1, xt] + bu) (2)

ft = σ(Wf [ct−1, at−1, xt] + bf ) (3)

ot = σ(Wo[ct−1, at−1, xt] + bo) (4)

ct = ut ∗ c̃t + ft ∗ ct−1 (5)

at = ot ∗ tanh (ct) (6)

Here, ut, ft and ot represents the update, forget and output gate at time step t respectively. ct holds the cell state
information and at is the activation information at time step t. Asterisk (*) denotes element-wise multiplication
here.

3.1.2. Gated recurrent unit (GRU) GRU, proposed by Cho et al., is a much simpler version of LSTM. In contrast
to LSTM, the cell state information at time step t is the same as the activation of that time step. Moreover, GRUs
employ only two gates- the update gate and the relevance gate. Due to fewer gates, GRUs have less control over
maintaining more important long-term information. But the lower number of gates also means that GRUs have a
lower number of parameters to train, thus, making them easier and faster to train compared to LSTMs.

The GRU implementation we used for this paper is based on the work of Chung et al. [22] as in Figure 2b. The
equations defining the implementation are (7) - (10):

c̃t = tanh (Wc[rt, at−1, xt] + bc) (7)

ut = σ(Wu[at−1, xt] + bu) (8)

rt = σ(Wr[at−1, xt] + br) (9)

ct = ut ∗ c̃t + (1− ut) ∗ ct−1 (10)

Here, only the update gate ut determines how much information should be forgotten and how much should be
updated. Relevance gate, rt, is used to measure the relevance of the input at time step t over long-term dependency.

(a) LSTM cell (b) GRU cell

Figure 2. Architecture of a single Recurrent Unit
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3.2. Optimization Algorithms

The optimization of a stochastic objective function for a problem like a language modeling, which involves
a large amount of data, is computationally very expensive. Moreover, as the parameters lie in high-dimensional
spaces, it takes a lot of time to converge to the minima of the function using the standard gradient descent algorithm.
In order to enable rapid convergence for problems with large numbers of data, and high-dimensional parameters
several variants of gradient-based algorithms also with adaptive estimation of the learning rate are often used for
machine learning problems. We have experimented few of the most frequently used optimization algorithms, which
are discussed briefly in this section.

3.2.1. Stochastic Gradient Descent (SGD) In contrast to batch gradient descent, Stochastic gradient descent (SGD)
algorithm iteratively calculates and applies gradient-based optimization for each training sample [23]. Although
SGD increases the number of operations, with a small enough learning rate, convergence to a local minimum is
almost certain. Moreover, for large training batches, progress can be made without calculating the accumulated cost
for the whole training batch. For a function f(θ) with parameter θ, in each iteration of SGD, the approximation of
gradient is given by (11).

θ = θ − α×∇θft(θ) (11)

Here, ft(θ) refers to the value of objective function for tth training example, where t = 1, 2, . . . , n. ∇θft(θ) refers
to the first-order gradient of the function and α is the learning rate.

3.2.2. RMSprop RMSprop algorithm, proposed by Hinton et al. [24], aims to incorporate adaptive learning rates
with the mini-batch gradient descent algorithm. The algorithm keeps an exponentially weighted moving average
of the squared gradients for each parameter and adaptively estimates the parameters by dividing by the square
root of these values. As a result, for non-stationary objective functions, RMSprop performs exceedingly well by
speeding the learning process as well as resulting in better convergence. Also, it reduces the memory requirements
drastically. However, as the method puts no attempt on trying to correct bias terms, the initial approximations of the
algorithm diverge from the actual data points. The moment vector V (θ, T ) for the T th mini-batch and parameter θ
is calculated as (12).

V (θ, T ) = γ × V (θ, T − 1) + (1− γ)× (∇θf(θ, T ))
2 (12)

Here, γ is the decay rate and ∇θf(θ, T ) denotes the first-order gradient of the objective function with the parameter
θ at T th iteration.

The gradient is used for optimization as shown in (13).

θ = θ − α× ∇θf(θ, T )√
V (θ, T )

(13)

3.2.3. Adagrad Adagrad or Adaptive gradient algorithm by Duchi et al. is a customized version of the SGD
algorithm with adaptive learning rates for each parameter. In an online setting, the algorithm works very well,
particularly with sparse gradients. The algorithm functions by scaling the learning rate with a scaling factor that
corresponds to the sparsity of the data.

The update operation in Adagrad for parameter θ is given by (14).

θt+1 = θt − α× ∇θf(θt)√∑t
1 (∇θf(θt))2

(14)

Here, θt denotes the parameter θ at time step t, where t = 1, 2, . . . , n and α is the global learning rate.

3.2.4. Adam Adam or Adaptive motion estimation presented by Kingma et al. is another very effective adaptive
optimization method for stochastic cost functions. It is suitable for both stationary and non-stationary objective
functions and also performs very well with noisy objectives [26]. In fact, the algorithm combines the advantages
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of momentum-based optimization with the RMSprop algorithm. Consequently, the algorithm results in rapid
convergence with memory efficiency, and also as bias-correction is incorporated, the approximation is also very
accurate. So, it is very well suited for many machine learning problems including NLP and Computer Vision.

The algorithm estimates two moments. These are as shown in (15), (16).

V1(θ, t) = β1 × V (θ, t− 1) + (1− β1)×∇θf(θ, t) (15)

V2(θ, t) = β2 × V (θ, t− 1) + (1− β2)× (∇θf(θ, t))
2 (16)

Here, β1 and β2 denote the two decay rates for exponential moment estimation for the moment vectors, V1 and V2

respectively. These moment vectors are then bias-corrected as in (17) and (18) respectively, before being used to
optimize the parameter θ as in (19).

Ṽ1(θ, t) =
V1(θ, t)

(1− βt
1)

(17)

Ṽ2(θ, t) =
V2(θ, t)

(1− βt
2)

(18)

θt = θt−1 − α× Ṽ1(θ, t)√
Ṽ2(θ, t) + ϵ

(19)

Here, ϵ is an infinitesimal number used to prevent a possible division by zero when the denominator is very small
and close to zero.

4. Proposed Framework

The proposed framework is based on a generative conditional language model, similar to the decoder of the
autoencoder architecture. Let the total set of the vocabulary, V = (w0, w1, . . . , wm). Given some input sequence
from the vocabulary, the model uses a LM to transform this word representations into the vector space as
(x0, x1, . . . , xt−1) and predicts the probability distribution over the set V , further conditioned by some context
words to direct the overall meaning of the output sequence. This context is also provided as input to the
model and transformed into a fixed dimensional vector ct using the same LM. The output of the model is
p(xt|ct, x0, x1, . . . , xt−1). This probability distribution is then used to determine the output sequence until the
end tag or <eof> is found. A generic diagram depicting the workflow of the model is shown in Figure 3.

Figure 3. Context-driven Text Generation Model
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4.1. Word Embeddings: GloVe

Word embedding is the representation of words into a fixed dimensional vector space. This mapping operation
results in a vector in close proximity in the vector space for words with similar meaning. GloVe or Global vectors
for word representation is used for this work. Proposed by Pennington et al., GloVe embeddings leverage usage
of statistical information efficiently from a global corpus [27]. The model also produces meaningful substructures
enabling arithmetic operations on these vectors to preserve semantic and syntactic regularities.

We have used pre-trained GloVe embeddings (from https://github.com/sagorbrur/GloVe-Bengali)
trained on a vocabulary of size 178152 from the Bengali Wikipedia dataset. The word vectors are 300 dimensional.
Each of these dimensions represents a different attribute for each word. Similarity or dissimilarity between two
word vectors (u⃗, v⃗) can be determined by the cosine similarity given by (20) and an example of a cosine similarity
cross matrix is given in Table 1 for words representing a common context and a diagram of GloVe Vector
Visualization (800 most frequent words) using the t-SNE algorithm is shown in Figure 4.

cos (u⃗, v⃗) =
(u⃗, v⃗)

|u⃗|.|v⃗|
(20)

Table 1. Cosine similarity cross matrix example

Figure 4. t-SNE Visualization of GloVe Vectors

The context vector, ct, is passed to the model as the initial hidden state of the model and must be a single vector of
a specific length. However, the model must also be able to interpret provided contexts using several combinations
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of words. So, one single vector representing a combination of all the context words must be found. As GloVe
embedding preserves semantic information, we have compared different ways to combine the embedding vectors
for each word in the context and evaluated the similarity with a single word that best describes the combination of
all context words as in Table 2.

Table 2. Different techniques for combining multiple vectors

From the table, it can be seen that the sum of all the embedding vectors achieves almost 30% of similarity
with the embedding vector of a single word that best defines the context, which is very decent considering the
accuracy of the embeddings. So we have combined the context vectors using addition for this work and a visual
representation of the effectiveness of this combination process is shown in Figure 5. Although a model with a dense
layer can be used to provide a context vector with even better similarity, we have omitted this as it puts a limit on
the number of context words, and obtaining training-testing pairs of data is also very tough.

Figure 5. Visualizing addition of GloVe Vectors through t-SNE

4.2. Neural Network Architecture

The key strategy behind the work is to use two different networks for training and inferring as shown in Figure
6. The training network employs regularization and is used directly on the training data to train the model. The
inference network, as suggested by the name, is used to infer new texts given some input.
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(a) Training Model (b) Inference Model

Figure 6. Proposed Model Architecture

4.2.1. Training Model The training model takes two inputs- an embedding vector representing the context and the
n-gram training sequences from the dataset. As illustrated in Figure 6a, the network employs 3 different types of
layers-

4.2.1.1 Bidirectional GRU

A bidirectional recurrent unit is a combination of two separate recurrent units where the hidden states flow in
both directions for each unit ie- hidden state, h = [⃗h, ⃗h]. Thus bidirectional recurrent units consider inputs from
both the past and the future. The advantage of using bidirectional GRUs is that they can capture the context either
from the end or from the beginning of the sentence.

The first GRU layer in the network is a bidirectional layer and every time step provides an output. The other
GRU layer is unidirectional and only the final time step provides an output. In order to keep the shape of the hidden
state consistent with the shape of context vectors, the number of GRU units is equal to the embedding dimensions.

4.2.1.2 Batch Normalization

The batch normalization layer normalizes the activation from the previous layer by subtracting the batch mean
and dividing by the batch standard deviation. Then these zero mean/zero variation activations are rescaled and
shifted to follow some random distribution for every mini-batch. Thus helping to reduce covariance shift and
making the training process more stable.

4.2.1.3 Dropout

Dropout is a regularization technique. We have used two 20% dropout layers in the training model.
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4.2.1.4 Softmax Layer

The final layer in the training network is a softmax layer with a number of units equal to the vocabulary size.
The layer uses softmax activation to output a probability distribution over the complete vocabulary where the class
with maximum probability denotes the expected output. The softmax activation is given by the equation (21).

Softmax Activation, S(zi) =
ezi∑
k e

zj
(21)

4.2.2. Inference Model The inference model, as the training model, also takes some context vector as input. There
might be some input sequences as well. The inference model predicts the rest of the words in the sequence
conditioned by the context. The model has the bidirectional GRU, the GRU, Batch Normalization layers, and
the final softmax layer, where it acquires the weights for each of these layers from the trained model. As output,
apart from the softmax distribution, the model also outputs the hidden state of the bidirectional GRU layer for the
prediction of the next time step. Dropout regularization is opted out, as during inference, this would create random
noise in prediction. The model is depicted in Figure 6b.

4.3. Training

Britz et al. presented a massive exploratory analysis of hyperparameters in NMT architectures [28]. Because the
model used in this paper is also based on the NMT architecture, most of the hyperparameters required for training
are directly taken from the analysis of Britz et al. Several other factors involved in training the model are discussed
in this section.

4.3.1. Usage of Context Vectors during training The dataset does not contain any separate column for the context
words. So from each sentence, we randomly picked an arbitrary number of words without replacement and used
them as the context vector for all the n-gram sequences produced from that particular sentence. The number of
context words can range from a minimum of one word to a maximum of the length of the sentence. In order to
combine multiple context words, we follow the method described in an earlier section which is represented by (22).

Context Vector, ct =
k∑
n

cn (22)

where 0 < K ≤ length of sentence

So a single context vector is of the same shape as the embedding dimensionality.

4.3.2. Teacher Forcing The model is trained using the teacher forcing method. This method enables efficient
training of RNNs with faster convergence. Generally during training, the output from a recurrent unit at time step
t, ŷt, is fed back to the next time step as input, so xt+1 = ŷt. But in teacher forcing ŷt is calculated but the ground
truth at time step t, yt, from the training data is fed as the input to the next time step. Thus forcing the model to
learn based on the ground truth sequences.

4.3.3. Regularization Regularization is a technique applied to reduce the risk of the model overfitting the training
data. Overfitting causes learning complex approximations of the training data, thus affecting the accuracy of data
it has never seen. We have used dropout regularization in this paper. The dropout method randomly shuts off nodes
in a layer. Thus shrinking the network, preventing it from being able to learn more complex functions on the data.
Here we have used 20% dropout as per the requirements of this particular application.

4.3.4. Loss Function As the prediction of the model is for categorical data with a softmax output, the loss function
used here is the categorical cross-entropy. The cross-entropy loss is given by the formula (23).
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L(y, ŷ) = −
∑
i

yi log(ŷi) (23)

4.3.5. Optimization In order to optimize the objective function, we have used the Adam algorithm. The motivation
behind using the algorithm is the stochasticity of the objective function of the problem at hand and also the
robustness to noises. Because the function induces noise through dropout regularization. Besides, it results in
faster convergence to a global minimum at an exceptionally low computational cost. The advantage can also be
observed empirically, as it outperforms the SGD, Adagrad, and RMSprop algorithms while resulting in a plunge
in terms of loss after 20 training iterations for the whole training batch. The comparison among these optimization
algorithms is depicted in Figure 7.

Figure 7. Comparison of optimization algorithms

We have used Adam with a fixed learning rate of 0.001. (The other parameters- β1 = 0.9, β2 = 0.999,
ε = 1× 10−8). The training accuracy and loss per epoch for the target vocabulary size, after 100 iterations, is
shown in Figure 8.

5. Experiment

We have carried out experimentation on the proposed framework using a single dataset. Various steps involved
with the experiment, along with a comprehensive evaluation of the outcomes, are demonstrated in this section.

5.1. Experimental Setup

5.1.1. Dataset We have used the Bengali Wikipedia dataset, which is extracted from the raw dump of Wikipedia’s
Bengali version [29] and contains four columns (id, text, title, url). Among the columns, we have only used the text
column that contains a total of 70377 articles. Different characteristics of the dataset are presented in Table 3.

5.1.2. Preprocessing The dataset is preprocessed by first stripping all the punctuations and characters from other
languages. All the stopwords are also removed. Stopwords are the words that appear more frequently in a language
but are not very significant towards the meaning. We have considered a total of 398 Bengali stopwords (from
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(a) (b)

Figure 8. Training (a) accuracy and (b) loss per epoch

Table 3. Properties of the Bengali Wikipedia dataset

Number of Samples 70377
Total Words 13131206
Unique Words 696876
Total occurrence of stopwords 4084078
Number of sentences 1244973
Average Length of sentences 11
Longest sentence 1893
Shortest sentence 2

https://github.com/stopwords-iso/stopwords-bn) which, from the table, can be seen constitutes
almost 31.10% of the total words. After cleaning the dataset, we have used the most frequently appearing first
20000 words as the vocabulary, hoping these sufficiently represent the richness of Bengali vocabulary. Along with
the 20000 words, the vocabulary contains 3 special tags- <start>, <eof> marking the start and end of a sequence
respectively, and <unk> tag to denote words not present in the vocabulary.

5.1.2.1 Tokenization

As the neural network can not associate any meaning to textual data, all the words in the vocabulary are required
to be mapped onto a unique integer number. This process is called tokenization. Every sentence in the dataset is
transformed into word sequences and each sequence is preceded with the <start> tag and ends with a <eof> tag.
These word sequences are then replaced with their corresponding tokens, converting the texts into vectors. Zero is
a reserved token for padding.

5.1.2.2 n-gram sequences

To prepare the training data, n-gram sequences are formed from the word sequence vectors. But due to limitations
in the available computational resources we have only taken 100,000 training sequences. Each training example
Xi = (x0, x1, . . . , xt) and Yi = xt+1 is produced by incrementing the time marker t by one until the <eof> token
is reached for every word sequence vector (X0, X1, . . . , Xn). The Y vector is one-hot encoded for faster training
and better prediction.
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5.1.2.3 Padding

RNNs can not work with inputs of arbitrary length. Thus sequences with a maximum length of 20, including
special tags, are used for this paper. All the sequences in training data shorter than the maximum length are
left padded with zeros. Left padding produced significantly better results than padding to the right on our
experimentation. And longer sequences are truncated to the maximum length also from the beginning. This
procedure results in a total of 1109386 training examples for the algorithm, with X of shape (1109386, 20) and Y
of shape (1109386, 2003).

5.2. Prediction and Evaluation

5.2.1. Beam Search During inference, instead of using greedy search to find the most probable outcome at each
time step, we use a better strategy called beam search. The idea behind beam search is that there might be some
better sequence with more cumulative probability but one or a few of its words might not have the maximum
predicted probability. Beam search solves this problem by considering k (beam width) most probable outputs
during each prediction step. All these k predictions are combined with the initial input and used in the next step of
prediction. The same process is followed until a complete sequence is predicted. The k elements that maximize the
scoring function (24) are considered at each step.

S(y, ct) = − argmax
1

Kα

K∑
i

log Pr(yt|ct, y0, y1, . . . , yt−1) (24)

Where α is a length penalty operator. As Britz et al. showed that larger beam widths are not very effective, we
continued with a beam width of 10 and a length penalty of 1.

5.2.2. Evaluation Metric: Human Scoring As there is no standard metric to be able to evaluate the quality and
coherency of the generated text, we have collected human evaluations on some sample generated outputs and
averaged them. This human evaluation is based on three different criteria each having different weights so that
scores are in the range [0, 1]. These criteria and their associated weight is presented in Table 4 and the score for
the model is determined using formula (25).

Score =
1

K

∑
K

(0.4 × φ1,i + 0.4 × φ2,i + 0.2 × φ3,i) (25)

Table 4. Human Evaluation Criteria

Criteria Name Symbol Weight
1. Effectiveness of the sentence (whether it is syntactically and
semantically correct) φ1 0.4

2. The representation of the given context φ2 0.4
3. Relevance of the sentence for user application φ3 0.2

5.3. Experimental Results

The training model is trained and optimized first with 100 epochs over the full training data. In order to make the
model more robust on a larger set of contexts, we generated new context vectors every 10 epochs. Then the weight
matrices from the training network are used in the inference model for inferring. The complete output sequence
is then produced using the beam search mechanism. The Table 5 presents experimental results for different input
word sequences and different combinations of context words.
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Table 5. Example outcomes with English Translations

From the results, it can be observed that the produced sentences include almost no syntactic or semantic mistakes.
Even with shorter training time, the network learns precise sentence representations for the LM. The outputs also
carry the provided context accurately, mainly by trying to find all the context words themselves or similar words in
the sentence. However, the outcomes are more relevant for more frequently occurring topics.

5.3.1. Comparative Analysis We compared the performance on the dataset for 3 different architectures using the
human scoring metric by collecting scores from volunteers on the outputs generated by each architecture. The
bidirectional GRU architecture is the baseline model proposed in the paper. The GRU model only replaces the
bidirectional layer with unidirectional GRU units. The final architecture substitutes GRU units with LSTM cells
for both recurrent layers. The comparative performance is shown in Table 6.

Table 6. Empirical Results for 3 different networks

Architecture φ1 Score φ2 Score φ3 Score Final Score
Bidirectional GRU 77.86% 73.16% 56.06% 71.62%

GRU 72.55% 70.44% 55.76% 68.34%
LSTM 78.31% 61.04% 75.61% 70.86%
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Between the two recurrent units, LSTMs perform a lot better in learning syntax and semantics representation
and also produce more useful sentences. However, LSTMs struggle in preserving and portraying the context
information through hidden states.

In contrast to the networks with unidirectional recurrent layers, the baseline bidirectional network achieves a
better overall score. Bidirectional flow of the hidden state vectors helps significantly in depicting the context as
well as in correct sentence formulation.

6. Conclusion and Future Work

We have proposed a context-driven text generation work in this paper that uses the decoder network from the
seq2seq model often used in NMT applications. The network is conditioned on the context vectors drawn from the
same GloVe language model which is used for embedding the words of each sequence into a vector space. Two
separate networks are used for training and inferring. Beam search optimization was used to generate the sequence
with the maximum log probability score.

In addition, we have proposed an evaluation technique involving human scoring on different criteria of the
outcomes. We have then compared the performance of different recurrent architectures where the baseline model
proves to be very effective in producing meaningful outcomes characterized by the target context.

The success of the work presented in the paper, even with short training time and limited data, lays the foundation
for numerous other natural language generation based applications where the target sequence is required to hold
preferred contextual information. Also, this is the first of a kind work for the Bengali language, which contributes
to the very limited literature of the language.

Although the proposed work very effectively meets its objective of containing the target context, it tends to do so
by trying to include that word in the generated sentence. So for future work, we will consider other more improved
language model representations such as- ELMo [30], which would be able to associate the meaning of the words
also while producing contextualized word embeddings.
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