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Abstract Power utility companies rely on forecasting for the operation of electricity demand. This presents an application
of linear quantile regression, non-linear quantile regression, and additive quantile regression models for forecasting extreme
electricity demand at peak hours such as 18:00, 19:00, 20:00 and 21:00 using Northern Cape data period 01 January 2000
to 31 March 2014. The variables were selected using the least absolute shrinkage and selection operator. Additive quantile
regression models were found to be the best-fitting models for hours 18:00 and 19:00, whereas linear quantile regression
models were found to be the best-fitting models for hours 20:00 and 21:00. Out of sample forecasts for seven days (01 to
07 April 2014) were used to solve the unit commitment problem using mixed-integer programming. The unit commitment
problem results showed that using all the generating units such as hydroelectric, wind power, concentrated solar power and
solar photovoltaic is less costly. This study’s main contribution is the development of models for forecasting hourly extreme
peak electricity demand. These results could be useful to system operators in the energy sector who have to maintain the
minimum cost by scheduling and dispatching electricity during peak hours when the grid is constrained due to peak load
demand.
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1. Introduction

1.1. Background

Economic dispatch is essential in power system operation and is defined as the power planning operation with
minimum operating costs [1]. The purpose of economic dispatch is to provide optimal power generation at a
minimum cost of operation. It also provides the important aspects of power system operation such as meeting
load demand at minimum cost by scheduling the committed generating units, reducing the emissions, maintaining
the system stability, and security restriction [2]. Electricity load forecasting is important for economic dispatch
because it provides future electricity production and consumption [3], which helps electricity utility to maintain
the balance of demand and supply [4]. Electricity load forecasting is also important for production planning and
trading on the electricity markets. It has different implementations such as energy acquiring and production,
load switching, contract rating and infrastructure evolution. Load forecasting helps electric utility management
in planning the distribution of electricity [5, 6, 7]. Electricity load forecasting faces rising challenges due to
innovative technologies such as smart grids, electric cars, and renewable energy production. The purpose of
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electricity load forecasting is to predict hourly, daily, weekly and yearly demand or peak demand [8]. However,
this paper will model hourly extreme peak electricity demand. The focus is on an estimation of high tail quantiles
of the distribution.

Peak electricity is the highest load at a given time. Peak electricity load forecasting is essential because it
assures the availability of enough supply. Under forecasting of peak electricity load results in an insufficient
capacity for meeting load demand and blackouts. Power blackouts are a problem because they affect the operation
of the economy. Extreme peak electricity load forecasting is the solution to the underprediction of the peak
electricity load demand. Accurate peak electricity load forecasting is very important as it provides future forecasts
which are useful to prevent system failure and power blackouts [9].

1.2. An overview of the literature on load forecasting

Electricity load forecasting has received much attention from industrialists and academics in recent years [8].
Various forecasting techniques for forecasting electricity loads have been developed and they are classified into
statistical and artificial intelligence techniques [10]. The type of electricity load forecasting can vary depending
on the result desired. It may be spatial if it mainly relates to studying future patterns in a specific region, country,
or state. Otherwise, it is temporal if concerned with forecasting hourly, daily, monthly or yearly. Electricity load
forecasting is carried out according to their time horizons, such as very short-term load forecasts (VSTLF),
short-term load forecasts (STLF), which are from one hour to one week, medium-term load forecasts (MTLF) are
generated from a week to a year, and long term load forecasts (LTLF) range up for longer than a year [10, 11, 12].
Reference [9] used a quantile regression model to develop 1.00 quantiles of the distribution to prevent system
failure and eliminate power blackouts. In other words, the idea was to provide a model that would avoid under
prediction. The estimates from the quantile regression model were compared with the actual demand to investigate
the ability of the model to avoid power blackouts (avoid underprediction). The results showed that the prediction of
the upper limit for the daily peak demand is accurate when using the 1.00 quantile from the 0.99 to 0.97 quantiles
of the distribution [9].

Unit sectors require accurate peak electricity load forecasting, as climate change, technological development, and
energy policies contribute to rising peak load. Decision-makers and power generation companies rely on accurate
energy demand forecasting regarding policy creation and power generation planning [13]. Accurate forecasting of
peak electricity demand is essential in the electricity sector for planning capacity enlargement and medium-term
risk assessment [14]. Peak electricity load forecasting and modelling using South African data are discussed in the
literature, see [14, 15, 16]. Reference [15] used the additive model that allows non-linear and nonparametric terms
to forecast daily winter peak electricity demand in South Africa. The study showed that peak electricity demand
is highly sensitive to cold temperatures compared to hot temperatures in South Africa. Modelling extreme peak
electricity load is useful for quantifying the amount of electricity that can be shifted from the grid to off-peak
periods [16]. Reference [16] modelled extreme daily increases in peak electricity demand in South Africa, focusing
on tail quantiles of the distribution of daily peak electricity demand. The forecasting of peak electricity demand
using South African data is studied by [14] in which the authors focused on an application of partially linear
additive quantile regression models for modelling and forecasting peak electricity demand.

Additive quantile regression (AQR) models were used in South Africa to forecast short-term hourly load. A
combination of forecasts from four developed models was done based on pinball loss and quantile regression
averaging (QRA). The study found that the AQR model with interactions produced accurate forecasts compared
to the QRA model [17]. Factors such as wind speed, solar irradiance, temperature, cloud cover, and seasonal
variations significantly affect electricity demand, resulting in uncertain and unpredictable electricity demand
patterns. However, it is important to create a robust, intelligent, and adaptive forecast model that accommodates
the factors affecting power demand for higher forecast accuracy [18].
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Unit commitment (UC), also known as an optimisation problem, helps in managing generating units (when
to switch on or off) under various restrictions and environments [19]. UC maximises power systems operational
with the minimal costs of production and reserve requirements [20, 21]. A reasonable solution to the optimisation
problem is very important because it provides operational planners with the optimal number of required generators.
According to [22] there are different methods for determining a reasonable solution to the optimisation problem.
Some optimisation techniques used in solving the unit commitment are, Lagrangian relaxation (LR), mixed-integer
linear programming (MILP), tabu search (TS), dynamic programming (DP) and stochastic programming (SP)
techniques, see [19]. However, reference [23] revealed that many authors used mixed integer programming (MIP)
and LR methods. Reference [23] developed an approach that integrates short-term load forecasting with UC, which
minimises production costs from one thermal plant in Turkey, the Kutahya region. Applying the LR method [23]
provides solutions to a UC problem using forecasts from two developed models for electricity demand. Accurate
load forecasts are essential as they are some of the inputs in solving the UC problem.

1.3. Motivation and contributions

This study intends to solve the economic dispatch of electricity through the following contributions:

• Forecasting extreme high quantile of the distribution, which improves the accuracy of forecasts,
• Using seven days out of sample forecasts to solve the unit commitment problem,
• Improve the economic dispatch of electricity through the inclusion of renewable energy sources on the unit

commitment problem,
• Providing results which help operate electricity utility at a minimal cost.

2. The proposed models

2.1. Linear quantile regression model

Quantile regression (QR) was introduced by [24], which provides a modelling approach to predict conditional
quantiles of the response variable. Linear quantile regression assumes a linear relationship between the response
variable and a vector of explanatory variables when estimating the quantiles of the cumulative distribution function
of the response variable [25]. Following [25], linear quantile regression is given by:

yt,h,τ = βτXt + ξt,τ ; τ ϵ (0, 1), (1)

where yt,h,τ is electricity demand on day t = 1, .., n at hour h, h = 18 : 00, 19 : 00, 20 : 00, 21 : 00 at quantile τ , β
denotes a vector of parameters and ξt,τ is a random error term. From [24], quantiles are estimated using asymmetric
weights to the mean absolute error. The quantile loss function is represented by:

ρτ (u) =

{τ(u), if u ≥ 0,

(1 − τ)u, if u < 0,

(2)

where τ is the quantile probability level. The τ th quantile is estimated by the quantile regression method and the
vector β̂ using the minimisation problem given by:

β̂τ = argmin
β

n∑
t=1

ρτ (yt,τ − Xtβτ ). (3)

2.2. Non-linear quantile regression model

Non-linear quantile regression assumes a non-linear relationship between the response variable and a vector of
explanatory variables when predicting the quantiles of the distribution. In non-linear quantile regression modelling,
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a non-linear mapping function qτ converted the vectors of explanatory variables Xt into a viable higher dimensional
feature space [26]. A non-linear quantile regression model is defined by [26, 27, 28]:

yt,h,τ = qτ
(
Xt, βτ

)
+ ξt,τ ; τ ϵ (0, 1), (4)

where yt,h,τ is electricity demand on day t = 1, .., n at hour h, h = 18 : 00, 19 : 00, 20 : 00, 21 : 00 at quantile τ ,
βτ denotes a vector of parameters, qτ is the mapping function and ξt,τ denotes random error term. Equation (4) can
be estimated by:

β̂(τ) = argmin
βϵR

n∑
t=1

ρτ
(
yt,τ − qτ (Xt, β)

)
, (5)

2.3. Additive quantile regression model

An additive quantile regression (AQR) model is a hybrid model that integrates GAM and QR models. AQR models
were initially used by [29] to estimate short term load demand and also extended by [30, 31]. The AQR model is
written as [29, 30, 31]:

yt,h,τ =

p∑
i=1

si,h,τ (xti) + εt,h,τ ; τ ∈ (0, 1), (6)

where yt,h,τ is electricity demand on day t = 1, .., n at hour h, h = 18 : 00, 19 : 00, 20 : 00, 21 : 00 at quantile τ ,
si,h,τ denote the smooth functions and ξt,h,τ is the error term. The smooth function, s, is given by:

si(x) =

q∑
j=1

βijbij(xti), (7)

where βij represents the ith unknown coefficient (parameter) and bij(xti) are known as spline basis functions. The
parameter estimates of Equation (6) are obtained by minimising the function given by:

qY |X(τ) =

n∑
t=1

ρτ

(
yt,τ −

p∑
i=1

si,τ (xti)

)
, (8)

where
ρτ (z) = (τ − 1)zI(z < 0) + τzI(z ≥ 0)

represents the pinball loss function. This study uses the penalised pinball loss function discussed in [31]. Let
µ(xt) = XT

t β, with xt denoting the tth row of the n× d design matrix X . The penalised pinball loss function is
then defined as [31]:

V (β, γ, σ) =

n∑
t=1

1

σ
ρτ [yt, τ − µ(xt)] +

1

2

p∑
i=1

γiβ
TSiβ, (9)

where γ denotes a vector of smooth parameters, i.e. γ = {γ1, ..., γp}, Si represents the positive semi-definite
matrices which are meant to penalise the wiggliness of µ(x) [31]. The term 1

σ represents the learning rate used
to determine the weight of the loss and the penalty. For more details see [31].

2.4. Error measures for probabilistic forecasting and evaluation of methods

Probabilistic forecasts from proposed models will be evaluated and compared using scoring rules. The scoring rule
assigns a penalty score represented by S(y, F ) to the probabilistic forecast, where y denotes the observation used
for forecast assessment and F represents the forecast distribution [32]. A small score shows a better forecast. In
this study, three error measures will be used such as continuous rank probability score (CRPS), Dawid-Sebastiani
score (DSS) and the pinball loss function (PLF).
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2.4.1. Continuous rank probability score The CRPS compares the distance between the predicted and the observed
cumulative density functions of scalar variables [32]. The CRPS is defined by:

CRPS(y, F ) =

∫ 1

0

QSτ

(
F−1(τ), y

)
dτ, (10)

where F represents the forecast distribution and QSτ denotes the quantile score defined by:

QSτ

(
F−1(τ), y

)
= 2

(
I

[
y ≤ F−1(τ)

]
− τ

)(
F−1(τ) − y

)
, (11)

where I denotes an indicator function.

2.4.2. Dawid-Sebastiani score The drawback of CRPS is that it is difficult to compute complex forecast
distributions. The DDS is the alternative solution because it overcomes the drawback of CRPS by computing
the complex forecast distribution easily. It is given by [33]:

DSSy,F =
(y − µF )

2

(σ2
F )

+ 2 log(σF ), (12)

where F denotes forecast distribution, with the mean and standard deviation given by µF and σ2
F , respectively.

2.4.3. Pinball loss function The PLF is relatively easy to use and is defined by:

L(qτ , yt) =

{τ(yt − qτ ), if yt > qτ ,

(1 − τ)(qτ − yt), if yt ≤ qτ ,

(13)

where qτ represents quantile forecast and yt is the observed value of electricity demand.

2.5. Unit commitment

Unit commitment (UC) minimises generating units’ total cost within a specific time, or interval [21]. According to
[34] different methods and algorithms used to determine the optimal solution of the UC problems are classified into
deterministic, heuristic, and hybrid approaches. This study will use mixed-integer linear programming (MILP),
which falls under the deterministic approach. MILP is a special class of linear programming [21, 35], where
variables are made of integer and continuous variables [34]. This study envisions demonstrating how to use
forecasts to solve the UC problem. Let Pht

Gi be Northern Cape system load at hour h, h = 18 : 00; 19 : 00; 20 :

00; 21 : 00 on day t, t = 1, ..., n, Pht
Gi(min) is the lower limit of the power output, Pht

Gi(max) represents the upper
limit of the unit power output, xht

i be the 0 - 1 variable (This study assumes that during the peak period all units are
up, i.e xht

i = 1 for all units), Fsi is the start-up cost of unit i at hour h (for this study we assume that the start-up
cost is zero), Pht

R is the power reserve at hour h on day t and Fi is the average production cost of unit i (cost/MW).
This study will use the fuel cost to represent the average production cost per megawatt.

Generating units are grouped into one hydroelectric, eight wind power, eight concentrated solar power (CSP)
and 19 solar photovoltaic (PV) power. These will be denoted as:

g1d; g2w, g3w, ..., g9w; g10c, g11c, ..., g17c; g18p, g19p, ..., g36p.

The objective function to minimise generating unit cost over a specific time is given by [21, 35]:

min
H∑

h=1

m∑
i=1

[
Fi

(
Pht
Gi

)
xht
i + Fsi(ht)x

ht
i

]
= F

(
Pht
Gi, x

ht
i

)
, (14)
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The constraints are defined as follows:
Load balance equation

m∑
i=1

Pht
Gix

ht
i = Pht

D , h = 18, 19, 20, 21, t = 1, ..., n, (15)

Generator power output limits

xht
i P

Gimin ≤ Pht
Gi ≤ xht

i PGimax, h = 18, 19, 20, 21, t = 1, ..., n, i = 1, ...,m (16)

In this study m = 36.

3. Empirical results and discussion

This section presents the results of forecasting electricity demand at hours 18:00, 19:00, 20:00, and 21:00. The
data used in this study is hourly electricity load demand for the Northern Cape, South Africa, for the period 01
January 2000 to 31 March 2014 giving a sample size of n = 5204. The load at hours 18:00, 19:00, 20:00 and 21:00,
respectively, represents the response variable and the predictor variables are temperature, non-linear trend, and
daytype. Hourly temperature data used is from De Aar weather station (Latitude: 30◦ 38’ 59” S and Longitude: 24◦

0’ 44” E) and Calvinia weather station (Latitude: 31◦ 28’ 14” S and Longitude: 19◦ 46’ 34” E) in Northern Cape,
South Africa. The temperature data were aggregated to get each station’s maximum, minimum, and average daily
temperature. The maximum, minimum, and average daily temperature for both stations were then combined to get
the average of the maximum (AveMaxT), minimum (AveMinT), and average daily temperature (AveTem) of the
province that they represent. A penalised cubic smoothing spline was fitted to the response variable to determine
the non-linear trend (noltrend18, noltrend19, noltrend20, and noltrend21). Daytype variable denotes the days of
the week, coded as 1 for Monday, 2 for Tuesday to 7 for Sunday.

3.1. Exploratory data analysis

The summary statistics of electricity demand at hours 18:00, 19:00, 20:00, and 21:00 for the sampling period 01
January 2000 to 31 March 2014 is presented in Table 1. The maximum demand is 880, 905, 884, and 855 for each
of the four hours. The mean and the median are not equal, which confirms that the distributions of the four hours
are not normally distributed. The skewness and kurtosis also confirm that the distributions are non-normal.

Table 1. Summary statistics for electricity demand (MW) at hours 18:00, 19:00, 20:00, and 21:00.

Hour Mean Median Minimum Maximum Standard deviation Skewness Kurtosis
18:00 676.7 684 397 880 83.15992 -0.2860717 -0.3457701
19:00 707.8 714 403 905 86.97296 -0.3078065 -0.3036559
20:00 715.9 727 434 884 74.94497 -0.4881771 -0.2331249
21:00 690.6 699 439 855 69.54004 -0.3849729 -0.3146267

The Northern cape electricity demand time series and density plots at 18:00, 19:00, 20:00, and 21:00 are shown
in Figure 1. The left panels of Figure 1 present the time series plots, whereas the right panels show density plots of
the demand for the considered hours, respectively. Seasonality patterns of electricity demand in the Northern Cape
on the left panels of Figure 1 show that higher electricity demand occurs in winter and lower demand occurs in
summer yearly. The densities of the four hours on the right panels of Figure 1 indicate that the distributions do not
follow normal distributions, which supports the report of skewness and kurtosis in Table 1. Figure 2 highlighted
electricity demand for four hours in box and whisker plots. Figure 3 shows the plots of electricity demand for four
hours superimposed with a non-linear trend.
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Figure 1. Plot of electricity demand and densities at 18:00, 19:00, 20:00, and 21:00.
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Figure 2. Box plots for hours 18:00, 19:00, 20:00, and 21:00.
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Figure 3. Plot of electricity demand at hours 18:00, 19:00, 20:00, and 21:00 with a non-linear trend (red curve).
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3.2. Forecasting results

3.2.1. Forecasting electricity demand when covariates are given The data is for 01 January 2000 to 31 March
2014, giving a sample size of n = 5204 observations. The data is split into two parts. The data for the period 01
January 2000 to 25 May 2011 is used for training, which is 80% of the data (n1 = 4163), and the period from 26
May 2011 to 31 March 2014 is used for testing, which is 20% of the data (n2 = 1041). The models considered are
linear quantile regression (LQR), non-linear quantile regression (NLQR), and additive quantile regression (AQR).
Based on the pinball loss presented in Table 2, the best fitting model is AQR for hours 18:00 and 19:00, and LQR
for hours 20:00 and 21:00. This is done for τ = 0.9999 using R-package “qgam” for AQR, and “quantreg” for LQR,
and NLQR.

0 200 600 1000

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

Observation number

E
le

c
tr

ic
it
y
 d

e
m

a
n
d
 (

M
W

) 
a
t 
1
8
:0

0

Actuals

Forecasts (AQR18:00)

0 200 600 1000

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Observation number

E
le

c
tr

ic
it
y
 d

e
m

a
n
d
 (

M
W

) 
a
t 
1
9
:0

0

Actuals

Forecasts (AQR19:00)

0 200 600 1000

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Observation number

E
le

c
tr

ic
it
y
 d

e
m

a
n
d
 (

M
W

) 
a
t 
2
0
:0

0

Actuals

Forecasts (LQR20:00)

0 200 600 1000

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

Observation number

E
le

c
tr

ic
it
y
 d

e
m

a
n
d
 (

M
W

) 
a
t 
2
1
:0

0

Actuals

Forecasts (LQR21:00)

Figure 4. Plot of actual demand and forecasts at 18:00, 19:00, 20:00, and 21:00.
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Table 2. Summary table for Pinball loss for τ = 0.9999

18:00 19:00 20:00 21:00
LQR 0.014980 0.013776 0.012544 0.01146

NLQR 0.027425 0.020668 0.019867 0.020587
AQR 0.013498 0.013441 0.012827 0.011964
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Figure 5. Plot of actual demand and forecasts at hours 18:00, 19:00, 20:00, and 21:00 (Operational forecasts).
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The best-fitting models were used to forecast the electricity demand after variable importance and variable
selection using the least absolute shrinkage and selection operator (Lasso). The plots of actual demand and forecasts
from the developed models are for hours 18:00, 19:00, 20:00, and 21:00 in Figure 4. It is shown in Figure 4 that
the forecasts from each model follow the actual demand data remarkably well at a high quantile.

3.2.2. Forecasting electricity demand when covariates are not given The predictor variables Daytype, Month,
and Trend are used to forecast the unknown variables: AveMaxT, AveMinT, AveTem, noltrend18, noltrend19,
noltrend20, and noltrend21. The forecasted predictor variables are then used to forecast electricity demand at hours
18:00, 19:00, 20:00, and 21:00 shown in Figure 5.

Table 3. Base load demand stations.

Unit Min Ave prod cost ci (rands) Min (MW) Max (MW)

g10c 3753 0 50
g11c 3753 0 100
g12c 3753 0 36.652
g13c 3753 0 100
g14c 3753 0 100
g15c 3753 0 100
g16c 3753 0 100
g17c 3753 0 100
g18p 2518 0 60.085
g19p 2518 0 9.65
g20p 2518 0 9.65
g21p 2518 0 10
g22p 2518 0 19.9
g23p 2518 0 19.93
g24p 2518 0 48.3
g25p 2518 0 9.7
g26p 2518 0 40
g27p 2518 0 75
g28p 2518 0 45.4
g29p 2518 0 64
g30p 2518 0 75
g31p 2518 0 74
g32p 2518 0 36.8
g33p 2518 0 75
g34p 2518 0 8.9
g35p 2518 0 75
g36p 2518 0 14.915

3.2.3. Unit commitment results Table 3 shows the base load demand stations, i.e. CSP and PV. This study used
fuel cost to represent the average production cost, given in column 2 of Table 3. Columns 3 and 4 represent the
megawatts’ minimum and maximum production levels, respectively. Data for peaking stations, i.e. hydroelectric
and wind power, are given in Table 4, which is similar to Table 3. The fuel costs data is from [36]. The out-of-
sample forecasts for the first seven days of April 2014 obtained using the models for hours 18:00, 19:00, 20:00
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and 21:00 are presented in Table 5. The application unit commitment problem is demonstrated using the forecasted
demand for Monday, 07 April 2014, shown in bold. UC problem was solved using Lingo version 18. Although the
study applied the UC problem for the day 07 April 2014, it is important to note that the procedure can be applied
to other hours of the day. The bounded variable MILP model is given by:

Min TC = c1g1d +

9∑
j=2

cjgjw +

17∑
j=10

cjgjc +

36∑
j=18

cjgjp, (17)

where TC is the total cost to be minimised. The demand used for hour 18:00, 19:00, 20:00 and 21:00 are P 18t
D =

821.145, P 19t
D = 894.737, P 20t

D = 20:00 and P 21t
D = 21:00 respectively.

Table 4. Peaking stations.

Unit Min Ave prod cost ci (rands) Min (MW) Max (MW)

g1d 1470 0 77.46
g2w 1293 0 73.8
g3w 1293 0 139
g4w 1293 0 96
g5w 1293 0 140
g6w 1293 0 80
g7w 1293 0 140
g8w 1293 0 70.555
g9w 1293 0 70.555

Table 5. Out of sample forecasts.

Date 18:00 19:00 20:00 21:00

Tue 01-04-14 816.721 869.6 884.442 827.603
Wed 02-04-14 827.579 862.975 872.569 821.538
Thu 03-04-14 840.839 856.346 859.523 815.473
Fri 04-04-14 814.269 858.669 835.682 792.56
Sat 05-04-14 778.888 848.844 825.485 786.495
Sun 06-04-14 735.893 835.653 818.171 780.43
Mon 07-04-14 821.145 894.737 879.355 816.819

The generator power output limits are given by:

0 ≤ g1d ≤ 77.46 (18)

. (19)

. (20)

. (21)

0 ≤ g36p ≤ 14.915 (22)

The optimal solution for each of the four hours on Monday 07 April 2014 is presented in Table 6. The amount
of electricity in megawatts of the generating units is shown in column 2 of Table 6, which should be produced to
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meet the predicted demand while ensuring that the power reserve constraint is met. The minimum cost in rands of
producing electricity for each of the four hours is also shown. This study is different from [35] study because it
uses extremely high quantile (τ = 0.9999) forecasts to solve the UC problem. This procedure can be used by power
utility companies like Eskom with the economic dispatching and UC scheduling of electricity.

Table 6. Optimal Solution using bounded variable MILP.

18:00 (R2,067,643.00) 19:00 (R2,483,463.00) 20:00 (R1,137,006.00) 21:00 (R1,069,858.00)
Variable Soln RC Soln RC Soln RC Soln RC

g1d - - - - - - 77.46 0
g2w - - - - 73.8 0 73.8 0
g3w - - - - 139 0 139 0
g4w - - - - 96 0 96 0
g5w - - - - 140 0 140 0
g6w - - - - 80 0 80 0
g7w - - - - 140 0 140 0
g8w - - - - 140 0 70.555 0
g9w - - - - 70.555 0 - -
g10c 0 1235 50 0 0 2460 - -
g11c 0 1235 100 0 0 2460 - -
g12c 0 1235 36.652 0 0 2460 - -
g13c 0 1235 - - 0 2460 - -
g14c 0 1235 - - 0 2460 - -
g15c 0 1235 - - 0 2460 - -
g16c 0 1235 - - - - - -
g17c 0 1235 - - - - - -
g18p 75 0 60.085 0 - - - -
g19p 9.65 0 75 0 - - - -
g20p 9.65 0 28 0 - - - -
g21p 10 0 75 0 - - - -
g22p 19.9 0 75 0 - - - -
g23p 19.93 0 75 0 - - - -
g24p 48.3 0 75 0 - - - -
g25p 9.7 0 75 0 - - - -
g26p 75 0 40 0 - - - -
g27p 75 0 75 0 - - - -
g28p 45.4 0 55 0 - - - -
g29p 64 0 - - - - - -
g30p 75 0 - - - - - -
g31p 74 0 - - - - - -
g32p 36.8 0 - - - - - -
g33p 75 0 - - - - - -
g34p 8.9 0 - - - - - -
g35p 75 0 - - - - - -
g36p 14.915 0 - - - - - -
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4. Conclusion

Using Northern Cape data, this study applied LQR, NLQR, and AQR models to peak electricity demand forecasting
at extreme quantile (τ = 0.9999). The paper’s thrust was on peak hourly electricity demand at an extremely high
quantile (τ = 0.9999). Lasso was for variable selection. The AQR models were found to be the best fitting models
for hours 18:00 and 19:00, whereas LQR models were the best fitting models for hours 20:00 and 21:00. The best-
fitting models were used to forecast the demand for each hour. Operational forecasts were also done for each of the
four hours. Out of sample forecasts given in Table 5 from the four hours were then used as inputs in solving the UC
problem. The Lingo version 18 was used to solve optimisation models. The out of sample forecasts for Monday 07
April 2014 were 821.145 MW, 894.737 MW, 879.355 MW and 816.819 MW for the hours 18:00, 19:00, 20:00 and
21:00 respectively, with the corresponding optimal minimal costs of R2,067,643.00, R2,483,463.00, R1,137,006.00
and R1,069,858.00. The UC problem results showed that using all the hydroelectric generating units, wind power,
CSP and PV is less costly. These were all selected as part of the optimal solution. This study’s main contribution is
the development of models for forecasting hourly extreme peak electricity demand. These results could be useful
to system operators in the energy sector who have to maintain the minimum cost by scheduling and dispatching
electricity during peak hours when the grid is constrained due to peak load demand.
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