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Abstract The fractional variational calculus is a recent field, where classical variational problems are considered, but in
the presence of fractional derivatives. Since there are several definitions of fractional derivatives, it is logical to think of
different types of optimality conditions. For this reason, in order to solve fractional variational problems, two theorems of
necessary conditions are well known: an Euler-Lagrange equation which involves Caputo and Riemann-Liouville fractional
derivatives, and other Euler-Lagrange equation that involves only Caputo derivatives. However, it is undecided which of
these two methods is convenient to work with. In this article, we make a comparison solving a particular fractional variational
problem with both methods to obtain some conclusions about which one gives the optimal solution.
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1. Introduction

The variational calculus refers to the search for extremes and, in this sense, can be considered a branch of
optimization. It deals with finding extremes of functionals rather than functions. Functionals are generally defined
by integrals, sets of functions are often defined by boundary conditions and smoothness requirements, which arise
in the problem formulation [37, 39]. The interest in the calculus of variations is, in part, due to its applications in
several areas as mechanics, electromagnetism, economics, urban planning, etc [18, 38, 40].

The fractional variational calculus is a recent field, started in 1997, where classical variational problems are
considered, but in the presence of fractional derivatives or integrals [1, 6, 32, 36]. In the last years numerous
works have been developed tending to extend the theory of the variational calculus in order to be able to be
applied to problems of fractional variational calculus. This is fundamentally due, on the one hand, to an important
development of the fractional calculus both from the mathematical point of view and its applications in other areas
(electricity, magnetism, mechanics, dynamics of fluids, medicine, etc [5, 13, 31]), which has led to great growth
in its study in recent decades. On the other hand, the fractional differential equations establish models far superior
to those that use differential equations with integer derivatives because they incorporate into the model issues of
memory [11, 21] or later effects that are neglected in the models with classical derivative.

There are several definitions of fractional derivatives [19, 25]. The most commonly used are the Riemann-
Liouville fractional derivative and the Caputo fractional derivative. It is important to remark that while the
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Riemann-Liouville fractional derivatives [34] are historically the most studied approach to fractional calculus,
the Caputo [16, 17] approach to fractional derivatives is the most popular among physicists and scientists, because
the differential equations defined in terms of Caputo derivatives require regular initial and boundary conditions.
Furthermore, differential equations with Riemann-Liouville derivatives require nonstandard fractional initial and
boundary conditions that lead, in general, to singular solutions, thus limiting their application in physics and science
[22, 23].

In order to solve fractional variational problems, two theorems of necessary conditions are well known: an Euler-
Lagrange equation which involves Caputo and Riemann-Liouville fractional derivatives [2, 3, 4, 6, 9, 14, 28, 29,
30, 33] and other Euler-Lagrange equation that involves only Caputo derivatives [7, 10, 12, 15, 24, 26]. However,
it is undecided which of these two methods is convenient to work with.

In the present work we will make a comparison between the solutions of the two Euler-Lagrange equations,
solving a particular fractional variational problem. The paper is organized as follows: some basic definitions
of fractional derivatives and fractional variational problems are shown in section two. Section three presents a
particular fractional variational problem, solutions of it using both methods and the comparison between them. We
end this paper with our conclusions.

2. Mathematical tools

2.1. Introduction to fractional calculus

In this section, we present some definitions and properties of the Caputo and Riemann-Liouville fractional calculus.
For more details on the subject and applications, we refer the reader to [19, 34, 35].

Definition 1
The Mittag Leffler function with parameters α, β, is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
(1)

for all z ∈ C.

Definition 2
The Gamma function, Γ : (0,∞)→ R, is defined by

Γ(x) =

∫ ∞
0

sx−1e−s ds. (2)

Definition 3
The Riemann-Liouville fractional integral operator of order α ∈ R+

0 is defined in L1[a, b] by

aI
α
x [f ] =

1

Γ(α)

∫ x

a

(x− s)α−1f(s) ds. (3)

Definition 4
If f ∈ L1[a, b], the left and right Riemann-Liouville fractional derivatives of order α ∈ R+

0 are defined, respectively,
by

RL
a Dα

x [f ] =
1

Γ(n− α)

dn

dxn

∫ x

a

(x− s)n−1−αf(s)ds

and
RL
x Dα

b [f ] =
(−1)n

Γ(n− α)

dn

dxn

∫ b

x

(s− x)n−1−αf(s)ds,

with n = dαe.
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Definition 5
If d

nf
dxn ∈ L1[a, b], the left and right Caputo fractional derivatives of order α ∈ R+

0 are defined, respectively, by

C
aD

α
x [f ] =

1

Γ(n− α)

∫ x

a

(x− s)n−1−α d
n

dsn
f(s)ds

and
C
xD

α
b [f ] =

(−1)n

Γ(n− α)

∫ b

x

(s− x)n−1−α d
n

dsn
f(s)ds,

with n = dαe.
Now some different properties of the Riemann-Liouville and Caputo derivatives will be seen.

Remark 1
Considering 0 < α < 1 and assuming that f is such that RLa Dα

x [f ], RLx Dα
b [f ], CaD

α
x [f ] and C

xD
α
b [f ] exist, then

C
aD

α
x [f ] = RL

a Dα
x [f ]− f(a)

1− α
(x− a)−α

and
C
xD

α
b [f ] = RL

x Dα
b [f ]− f(b)

1− α
(b− x)−α.

If f(a) = 0 then
C
aD

α
x [f ] = RL

a Dα
x [f ]

and if f(b) = 0 then
C
xD

α
b [f ] = RL

x Dα
b [f ].

Remark 2
An important difference between Riemann-Liouville derivatives and Caputo derivatives is that, being K an arbitrary
constant,

C
aD

α
x [K] = 0 , C

xD
α
b [K] = 0,

however
RL
a Dα

x [K] =
K

Γ(1− α)
(x− a)−α, RL

x Dα
b [K] =

K

Γ(1− α)
(b− x)−α,

RL
a Dα

x [(x− a)α−1] = 0, RL
x Dα

b [(b− x)α−1] = 0.

In this sense, the Caputo fractional derivatives are similar to the classical derivatives.

Theorem 1
Let 0 < α < 1. Let f ∈ C1([a, b]) and g ∈ L1([a, b]). Then,∫ b

a

g(x)CaD
α
x [f ] dx =

∫ b

a

f(x)RLx Dα
b [g] dx+

[
xI

1−α
b [g]f(x)

] ∣∣b
a

and ∫ b

a

g(x)CxD
α
b [f ] dx =

∫ b

a

f(x)RLa Dα
x [g] dx−

[
aI

1−α
x [g]f(x)

] ∣∣b
a .

Moreover, if f(a) = f(b) = 0, we have that∫ b

a

g(x)CaD
α
x [f ] dx =

∫ b

a

f(x)RLx Dα
b [g] dx

and ∫ b

a

g(x)CxD
α
b [f ] dx =

∫ b

a

f(x)RLa Dα
x [g] dx.

This theorem is known as integration by parts. See [25].
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2.2. Fractional variational problems

Consider the following problem of the fractional calculus of variations which consists in finding a function y ∈ α
aE

that optimizes (minimizes or maximizes) the functional

J(y) =

∫ b

a

L(x, y, CaD
α
x [y]) dx (4)

with a Lagrangian L ∈ C1([a, b]×R2) and

α
aE = {y : [a, b]→ R : y ∈ C1([a, b]), CaD

α
x [y] ∈ C([a, b])},

subject to the boundary conditions: y(a) = ya , y(b) = yb.
Now Euler-Lagrange equations for this problem will be stated. In the first one appears both Caputo and Riemann-

Liouville derivatives (Theorem 2), meanwhile the second one only depends on Caputo derivatives (Theorem 4).
The proof of the following theorem is in [30].

Theorem 2
If y is a local optimizer to the above problem, then y satisfies the next Euler-Lagrange equation

∂L

∂y
+ RL

x Dα
b

[
∂L

∂ CaD
α
x [y]

]
= 0. (5)

Remark 3
Equation (5) is said to involve Caputo and Riemann-Liouville derivatives. This is a consequence of the Lagrange
method to optimize functionals: the application of integration by parts (Theorem 1) for Caputo derivatives in the
Gateaux derivative of the functional relates Caputo with Riemann-Liouville derivatives.

Remark 4
Equation (5) is only a necessary condition to existence of the solution. We are now interested in finding sufficient
conditions. Typically, some conditions of convexity over the Lagrangian are needed.

Definition 6
We say that f(x, y, u) is convex in S ⊆ R3 if fy and fu exist and are continuous, and the condition

f(x, y + y1, u+ u1)− f(x, y, u) ≥ fy(x, y, u)y1 + fu(x, y, u)u1,

holds for every (x, y, u), (x, y + y1, u+ u1) ∈ S.

The following theorem is valid only for the solution of the Euler-Lagrange equation involving Riemann-Liouville
and Caputo derivatives (5). Its proof can be seen at [6].

Theorem 3
Suppose that the function L(x, y, u) is convex in [a, b]×R2. Then each solution y of the fractional Euler-Lagrange
equation (5) minimizes (4), when restricted to the boundary conditions y(a) = ya and y(b) = yb.

Following [26], in the below theorem, we will see an Euler-Lagrange fractional differential equation only
depending on Caputo derivatives.

Theorem 4
Let y be an optimizer of (4) with L ∈ C2

(
[a, b]×R2

)
subject to boundary conditions y(a) = ya , y(b) = yb, then

y satisfies the fractional Euler-Lagrange differential equation

∂L

∂y
+ C

xD
α
b

[
∂L

∂ CaD
α
x [y]

]
= 0. (6)
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Remark 5
We can see that the equation (6) depends only on the Caputo derivatives. It is worth noting the importance that
L ∈ C2

(
[a, b]×R2

)
, without this the result would not be valid. As we remarked before, the advantage of this new

formulation is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville
derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior
of classical derivatives.

From now on, when we work with the Euler-Lagrange equation that uses derivatives of Caputo and Riemann-
Liouville (5), we will abbreviate it with C-RL and when we use the Euler-Lagrange equation that uses only
derivatives of Caputo (6), we will abbreviate it with C-C.

Remark 6
Unlike the equation (5), at the moment, there are not sufficient conditions for the equation (6) which only involves
Caputo derivatives.

Now we present an example that we are going to solve using these two different methods, in order to make
comparisons.

3. Example

The scope of this section is to present two different candidates to be a solution for a particular problem that arise
from solving the two Euler-Lagrange equations presented in the previous section.

First, we are going to solve the classical case, where only appears an integer derivative, and then we are going to
deal with the fractional case.

3.1. Classical case

The classical problem consist in finding a function y ∈ aE
′ that optimizes (minimizes or maximizes) the functional

J(y) =

∫ 1

0

(
(y′(x))

2 − 24 y(x)
)
dx,

y(0) = 0 , y(1) = 0,

where aE
′ = {y : [a, b]→ R : y ∈ C1([a, b])}.

To solve this (refer to [37]), we consider the Lagrangian

L(x, y, y′) = (y′)
2 − 24 y. (7)

Its Euler-Lagrange equation is
∂L

∂y
− ∂

∂x

(
∂L

∂y′

)
= 0,

that is,
y′′(x) = −12.

Solving this equation and taking into account that y(0) = y(1) = 0, we obtain the solution

y(x) = −6x2 + 6x. (8)

3.2. Fractional case

The fractional problem consist in finding a function y ∈ α
aE that optimizes (minimizes or maximizes) the functional

J(y) =

∫ 1

0

((
C
0 D

α
x [y]

)2 − 24 y(x)
)
dx,
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y(0) = 0 , y(1) = 0,

where α
aE = {y : [a, b]→ R : y ∈ C1([a, b]), CaD

α
x [y] ∈ C([a, b])}.

To solve this we consider the Lagrangian

L(x, y, C0 D
α
x [y]) = C

0 D
α
x [y]

2 − 24 y. (9)

Like we said before, we are going to solve it using two methods, one with the C-RL Euler-Lagrange (5) and the
other one with the C-C Euler-Lagrange equation (6).

3.2.1. Resolution by C-RL equation

Applying the equation (5), we obtain

∂L

∂y
+ RL

x Dα
1

[
∂L

∂ C0 D
α
x [y]

]
= 0

−24 + RL
x Dα

1

[
2C0 D

α
x [y]

]
= 0

RL
x Dα

1

[
C
0 D

α
x [y]

]
= 12.

By definition,
RL
x Dα

1

[
(1− x)β

]
=

Γ(1 + β)

Γ(1 + β − α)
(1− x)β−α

and the property
RL
x Dα

1

[
(1− x)α−1

]
= 0,

which we have seen on remark 2, considering β = α we can conclude

C
0 D

α
x [y] =

12

Γ(1 + α)
(1− x)α + c1 (1− x)α−1 (10)

where c1 ∈ R.
Taking into account the following equalities

(−1)n
n−1∏
j=0

(α− j) =
Γ(n− α)

Γ(−α)
,

(−1)n
n−1∏
j=0

(α− 1− j) =
Γ(n− α+ 1)

Γ(−α+ 1)
,

we can write

(1− x)α =
∞∑
n=0

(−1)n
∏n−1
j=0 (α− j)
n!

xn

=
∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
,

(1− x)α−1 =
∞∑
n=0

(−1)n
∏n−1
j=0 (α− 1− j)
n!

xn

=
∞∑
n=0

Γ(n− α+ 1)

Γ(−α+ 1)

xn

n!
,

replacing this in (10),

C
0 D

α
x [y] =

12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
+ c1

∞∑
n=0

Γ(n− α+ 1)

Γ(−α+ 1)

xn

n!
.
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Considering C
0 D

α
x

[
xβ
]

= Γ(1+β)
Γ(1+β−α)x

β−α and the linearity of the Caputo derivative, we obtain

y(x) =
12

Γ(1 + α)2
xα

∞∑
n=0

Γ(n+ 1)Γ(n− α)Γ(1 + α)

Γ(1)Γ(−α)Γ(1 + n+ α)

xn

n!

+
c1

Γ(1 + α)
xα

∞∑
n=0

Γ(n+ 1)Γ(n− α+ 1)Γ(1 + α)

Γ(1)Γ(1− α)Γ(1 + n+ α)

xn

n!
+ c2,

where c2 ∈ R.
Using the definition of the Hypergeometric function of parameters a, b, c in [20]:

2F1(a, b, c, x) =

∞∑
n=0

Γ(a+ n)Γ(b+ n)Γ(c)

Γ(a)Γ(b)Γ(c+ n)

xn

n!
, (11)

we can rewrite the solution as

y(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x) +

c1
Γ(1 + α)

xα 2F1(1, 1− α, 1 + α, x) + c2.

Taking into account that y(0) = y(1) = 0, we obtain

yRL(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x)− 6

Γ(1 + α)2

xα

2F1(1, 1− α, 1 + α, 1)
2F1(1, 1− α, 1 + α, x). (12)

Remark 7
This solution is valid only for α > 0.5 since otherwise the solution tends to infinity and does not satisfy the terminal
condition.

Finally, since L(x, y, u) = u2 − 24y is a convex function, indeed

L(x, y + y1, u+ u1)− L(x, y, u) = (u+ u1)2 − 24(y − y1)− u2 + 24y
= u2 + 2uu1 + u2

1 − 24y − 24y1 − u2 + 24y
= u2

1 + 2uu1 − 24y1

≥ −24y1 + 2uu1 = ∂2L(x, y, u, v)y1 + ∂3L(x, y, u, v)u1,

it is verified for every (x, y, u), (x, y + y1, u+ u1) ∈ [0, 1]×R2, applying the theorem 3, yRL minimizes the
problem for 0.5 < α ≤ 1.

Remark 8
We can notice that Theorem 3 only works for functions y that satisfy the C-RL Euler-Lagrange equation, but
furthermore they must satisfy the boundary conditions. In the case of not satisfying the boundary conditions (as in
the case of 0 < α < 0.5), the theorem does not work.

Remark 9
We can observed that the solution (12) tends to (8) when α tends to 1. This means that when α = 1, we recover the
solution of the classical problem.

3.2.2. Resolution by C-C equation

As the Lagrangian (9) L ∈ C2
(
[0, 1]×R2

)
, we can apply the Theorem 4. Then using the equation (6), we obtain

∂L

∂y
+ C

xD
α
1

[
∂L

∂ C0 D
α
x [y]

]
= 0

−24 + C
xD

α
1

[
2C0 D

α
x [y]

]
= 0

C
xD

α
1

[
C
0 D

α
x [y]

]
= 12.
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By definition,
C
xD

α
1

[
(1− x)β

]
=

Γ(1 + β)

Γ(1 + β − α)
(1− x)β−α

and the property in remark 2 that, unlike the Riemann-Liouville derivative,

C
xD

α
1 [d1] = 0,

for every d1 ∈ R, considering β = α we can conclude

C
0 D

α
x [y] =

12

Γ(1 + α)
(1− x)α + d1. (13)

Note that in this step this equation is different from (10), and that is why we are going to obtain two different
solutions.

Now we can write
12

Γ(1 + α)
(1− x)α =

12

Γ(1 + α)

∞∑
n=0

(−1)n
∏n−1
j=0 (α− j)
n!

xn.

Taking into account the following equality

(−1)n
n−1∏
j=0

(α− j) =
Γ(n− α)

Γ(−α)
,

we obtain
12

Γ(1 + α)
(1− x)α =

12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
.

Replacing this in (13),
C
0 D

α
x [y] =

12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
+ d1.

Considering C
0 D

α
x

[
xβ
]

= Γ(1+β)
Γ(1+β−α)x

β−α and the linearity of the Caputo derivative, we obtain

y(x) =
12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

Γ(1 + n)

Γ(1 + n+ α)

xn+α

n!
+ d1x

α + d2,

where d2 ∈ R.
Using the definition (11) of the Hypergeometric function of parameters a, b, c, we can rewrite the solution as

y(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x) + d1x

α + d2.

Taking into account that y(0) = y(1) = 0, we obtain

yC(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x)− 6

Γ(1 + α)2
xα. (14)

Remark 10
Unlike yRL in (12), yC is valid for every 0 < α ≤ 1. However, we can not ensure that it is a minimum of the
problem because there are no sufficient conditions theorem for the C-C Euler-Lagrange equation.

Remark 11
We can observe that the solution (14) tends to (8) when α tends to 1. This means that both solutions of each
Euler-Lagrange equations, yRL and yC tend to the solution of the classical Euler-Lagrange equation when α = 1.
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3.3. Comparison between methods

In this section we are going to show some graphics in order to compare the solutions obtained from the different
methods.

Figure 1 below presents the convergence of both solutions yRL (12) in the left and yC (14) in the right, when
we take limit as α approaches one. We can see that both converge to the classical solution y (8). It shows us the
difference between the shapes of the solutions obtained from the different methods. We can clearly see how the
shapes of the solutions yC are more similar to the classical solution in contrast to the shapes of the solutions yRL.

Figure 2 below presents a comparison between both solutions yRL (12) and yC (14), for different values of α.
We can see how the difference between the shapes of both solutions becomes more remarkable when α approaches
0.5, where the solutions yRL diverge as we saw in Remark 7.

Figure 3 below presents the solution yC (14) for α = 0.4. While the C-RL Euler-Lagrage equation does not
provide us solutions for the cases 0 < α ≤ 0.5, the C-C equation does.

Table 1 below presents the values obtained in each case. To calculate the integrand we approximate the Caputo
fractional derivatives of both yC and yRL. For this we use a method of L1 type that can be seen in [8, 27]. This
method consists of making a regular partition of the interval [0, 1] as 0 = x0 ≤ x1 ≤ ... ≤ xm = 1, of size h > 0
sufficiently small, and then approximating the Caputo derivative as follows

C
0 D

α
xm

[y] =

m−1∑
k=0

bm−k−1(y(xk+1)− y(xk)),

where

bk =
h−α

Γ(2− α)

[
(k + 1)1−α − k1−α] .

Then, to calculate the integrals, we use the Riemann sums approximation.

Remark 12
In Table 1 we can see that as we get closer to α = 0.5, the difference between the values is very large, being the
minimum the solution of the C-RL equation, while for values 0 < α ≤ 0.5 obviously we only have the solution of
the C-C equation, since it is the only one that verifies the border conditions.
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Figure 1. Convergence of yRL and yC solutions
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Figure 2. Comparison of the C-RL and C-C solutions

0.2 0.4 0.6 0.8 1

1

2

3

4

x

y(
x)

C-C

Figure 3. Solution C-C for α = 0.4
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α C-RL C-C
1 -12.1752 -12.1752

0.95 -16.4431 -14.3133
0.9 -17.3685 -16.7006
0.8 -36.6555 -22.2567
0.7 -60.2608 -28.9016

0.55 -127.9983 -40.9804
0.4 the solution does not exist -55.5863
Table 1. Values obtained with C-RL and C-C

4. Conclusion

In this article, two theorems of necessary conditions to solve fractional variational problems were studied: an
Euler-Lagrange equation which involves Caputo and Riemann-Liouville fractional derivatives (C-RL), and other
Euler-Lagrange equation that involves only Caputo derivatives (C-C). A particular example was presented in order
to make a comparison between both conditions.

We were able to get several conclusions. The first thing is that we were able to verify that for 0.5 < α ≤ 1, the
minimum was obtained from the solution of the C-RL Euler-Lagrange equation, as suggested by the Theorem 3.
Now, for 0 < α ≤ 0.5, the C-RL Euler-Lagrange equation did not provide us with a solution, while C-C equation
did. However, we wonder, can we ensure that the solution of the C-C equation (yC) is the optimal solution for
the problem at least for these values of α? The answer to this question is NO. Although in [26] it was shown that
the solution yC is a critical solution of the problem, and we also saw that its shape is graphically more similar to
the shape of the classical solution, we cannot ensure that yC is an optimal solution or even for the cases in which
0 < α ≤ 0.5. If there was a Theorem of Sufficient Conditions for the C-C equations, our example would not verify
it, because if it did, this Theorem would be in contradiction with the Theorem of Sufficient Conditions for the C-
RL equations (Theorem 3). This means that the convexity conditions over the Lagrangian does not reach to obtain
sufficient conditions for the C-C equations. Then, if there were other conditions and such a Theorem existed, in
order not to contradict Theorem 3, it should depends on the value of α.

In other hand, we can observe that when α = 1, yC was the classical solution and it was the minimum of the
problem, but when α decreased, when 0.5 < α < 1, these solutions were not minimums, because the yRL solutions
were. There is a discontinuity in the yC solution when α goes to 1. Then, why yC would be the minimum solutions
when 0 < α < 0.5? If they were minimums, it would exist another discontinuity of these solutions with respect to
α.

In conclusion, while working with C-C equations make the work easier when it comes to calculations, many
times we have to be careful with the implementation of this method since C-RL Euler-Lagrange equations are the
ones that truly provide us with the optimal solution.
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