
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 10, September 2022, pp 1162–1167.
Published online in International Academic Press (www.IAPress.org)

Testing the Validity of Laplace Model Against Symmetric Models, Using
Transformed Data

Hadi Alizadeh Noughabi*

Department of Statistics, University of Birjand, Birjand, Iran

Abstract In this paper, we first present three characterizations of Laplace distribution and then we introduce a goodness
of fit test for Laplace distribution against symmetric distributions, based on one of the transformations. The power of the
proposed test under various alternatives is compared with that of the existing tests, by simulation. To show the behavior of
the proposed test in real cases, two real examples are presented.
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1. Introduction

Laplace distribution L(µ, θ) has the following density function:

f(x;µ, θ) =
1

2θ
exp (−|x− µ| /θ) , −∞ < µ <∞ , θ > 0 ,

where θ is a positive scale parameter and µ is the location parameter. This distribution was discovered by Laplace
in 1774 for describing the errors of measurement. It is also known as the double exponential distribution.

The Laplace distribution is widely used in many applications. It is therefore very important to test whether the
underlying distribution has a Laplace form. Our goal in this article is constructing a new goodness of fit test for
Laplace distribution using transformed data.

[1] proposed the following test statistic for testing uniformity.

TA =
1

n

n∑
i=1

∣∣∣ui.f̂(ui)− F0(ui)
∣∣∣ ,

where u(1) ≤ u(2) ≤ ... ≤ u(n) are order statistics from a random sample of size n, F0 is the uniform distribution
function and | . | is the absolute value function. Also

f̂(ui) =
1

nh

n∑
j=1

K(
ui − uj
h

),

is the kernel estimate of f , K is the standard normal density and the bandwidth h is obtained from the normal
optimal smoothing formula, h = 1.06sn−

1
5 , where s is the sample standard deviation.
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[1], [2] and [3] introduced some goodness of fit tests for exponentiality using transformed data. Also, they
[4] introduced a goodness of fit test for normal distribution using transformed data. Then, [5] improved the
exponentiality test using transformed data.

Main contribution of this paper is as follows. We first introduce a new goodness of fit test for Laplace distribution
using transformed data. The properties of new test statistic are stated. Then, the critical values and power values of
the proposed test are obtained and compared with the powers of the competing tests. We show that the proposed
test has the higher power as compared with the other tests against the considered alternatives. Finally, two real
examples to show the behavior of the proposed test in real cases are presented. Moreover, recently [6], [7] and [8]
proposed new goodness of fit tests for some statistical distributions.

In Section 2, we introduce three characterizations of Laplace distribution and next, based on one of the
transformations, we introduce a goodness of fit test for Laplace distribution against symmetric distributions. The
power of the proposed test is obtained, by simulation, and the results are in Section 3 where the proposed test is
compared with other tests. In Section 4, two real examples are presented and analyzed.

2. The test statistic

Given a random sample X1, ..., Xn from a continuous symmetric probability distribution F with a density f(x),
the hypothesis of interest is

H0 : f(x) = f0(x;µ, θ) =
1

2θ
exp (−|x− µ| /θ) , for some (µ, θ) ∈ Θ ,

where µ and θ are unspecified and Θ = R×R+. The alternative to H0 is

H1 : f(x) 6= f0(x;µ, θ) for any (µ, θ) ∈ Θ .

In order to obtain a test statistic, we use the following theorem.

Theorem 1. Let X1 and X2 be two independent observations from a symmetric continuous distribution F . Then
i) W = |X1|

|X1|+|X2| is distributed as U(0, 1) if and only if F is Laplace with mean 0.

ii) Y = |X1|
|X2| is distributed as F(2,2) if and only if F is Laplace with mean 0.

iii) Z = |X1|−|X2|
|X1|+|X2| is distributed as U(−1, 1) if and only if F is Laplace with mean 0.

(F(2,2) is Fisher’s distribution with 2 and 2 degrees of freedom and | . | is the absolute value function.)

Proof. [2] showed that the above transformations (i), (ii) and (iii) (with absolute value signs removed) characterize
exponential distribution. It is also mentioned in [9]. We know that if X has a symmetric distribution, then X is
distributed as Laplace(0, θ) if and only if |X| is distributed as exponential(θ). Thus the results follow. �

To construct a test using the mentioned characterizations, we transform the sample data (X1, X2, ..., Xn ) to

Yi = Xi − µ,

where µ = E(X). Note that if Xi’s constitute an i.i.d. sample from a Laplace distribution L(µ, θ), then Yi’s are
L(0, θ).
Now, we transform Yi’s to

Wij =
|Yi|

|Yi|+ |Yj |
, i 6= j , i, j = 1, 2, ..., n.

By the above theorem, under the null hypothesis, eachWij has a uniform distribution, and it seems to be appropriate
to use our proposed uniformity test (described in the Introduction) to test the uniformity of the distribution of Wij’s
and thus to test that the distribution of Xi’s is Laplace.
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Briefly, the proposed procedure is as follows.
Suppose the order statistics of the sample are x(1), x(2), ..., x(n).

1. Find the maximum likelihood estimate of the location parameter (under the assumption that the observations
come from Laplace distribution) as follows. The median of the sample is the estimate of µ. Thus

µ̂ =

{
x(n+1

2 ) if n is odd.

(x(n
2 ) + x(n

2 +1))/2 if n is even.

2. Make the transformation yi = xi − µ̂ for i = 1, 2, ..., n. Next transform the yi’s to

wij =
|yi|

|yi|+ |yj |
, i 6= j , i, j = 1, 2, ..., n.

3. Compute the test statistic as

DA =
1

n′

n′∑
i=1

∣∣∣wif̂(wi)− F0(wi)
∣∣∣ ,

where n′ = n(n− 1) and f̂(.) and F0(.) are as introduced in preceding Section.
4. Find the critical point C∗ at a given significance level (α), for sample size n. If DA is greater than C∗, the

null hypothesis is rejected at level α.

The test statistic is invariant with respect to location and scale transformations. To see this, note that if xi’s are
multiplied by a constant c > 0 and are added by a constant d then µ̂ is multiplied by c and is then added by d. Thus

wij =
|cxi + d− (cµ̂+ d)|

|cxi + d− (cµ̂+ d)|+ |cxj + d− (cµ̂+ d)|
=

|xi − µ̂|
|xi − µ̂|+ |xj − µ̂|

=
|yi|

|yi|+ |yj |
,

that is, wij is not changed. Thus the test statistic remains invariant.

Remark 1. Since the proposed test statistic is invariant to transformations of location and scale and the parameter
space for Laplace distribution is transitive, the distribution of the proposed test statistic does not depend on the
unknown parameters and the test is exact. Consequently, we can conclude that the actual size of the proposed test
is equal to the nominal size. Therefore, we don’t need to provide the size of the test for comparison. In our power
comparisons, the actual size of the tests are equal to the nominal size i.e., 0.05.

We think that the transformed data approach is useful because

1. The estimation of the scale parameter is not necessary, in fact by transformation the scale parameter is
eliminated and the test statistic does not depend on it. For example in testing exponentiality using transformed
data the scale parameter (λ) is eliminated and the test statistic does not depend on λ, thus we don’t need to
estimate it. Here, for Laplace distribution the scale parameter (θ) is eliminated by transformation and the
test statistic does not depend on θ, then it is not necessary to estimate scale parameter for computing the
proposed test statistic. Note that the statistics based on empirical distribution function (EDF) depend on both
parameters and they must be estimated.

2. The data that we obtain by transformation, although not independent, are much more numerous than the
original data. For example for n = 10 the number of transformed data is n′ = n(n− 1) = 90 and we deal
with a larger sample.

3. Simulation study

In this section, the performance of the proposed test is investigated using Monte Carlo simulations.
For small to moderate sample sizes 5, 10, 15, 20, 25, 30 and 50, we used Monte Carlo methods with 10,000
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Table 1. Critical values of the proposed test statistic

α

n n′ 0.01 0.05 0.10
5 20 0.6804 0.3314 0.2145
10 90 0.3174 0.1943 0.1466
15 210 0.2269 0.1532 0.1229
20 380 0.1964 0.1379 0.1081
25 600 0.1844 0.1263 0.1013
30 870 0.1563 0.1132 0.0951
50 2450 0.1251 0.0904 0.0764

replicates from standard Laplace distribution to obtain critical values of our procedure. These values are reported
in Table 1.

Since the tests based on the empirical distribution function are important tests which are commonly used in
practice, we compare the power of the proposed test with the power of these tests. These tests are the Cramer-von
Mises W 2, the Watson U2, the Anderson-Darling A2, the Kolmogorov-Smirnov D, and the Kuiper V . For further
information about these tests see [10].

The following symmetric distributions were considered as alternative distributions:

• standard normal distribution, denoted by N(0, 1),
• student’s t distribution with 3, 5, and 10 degrees of freedom, denoted by t(3), t(5), t(10), respectively,
• standard Cauchy distribution, denoted by C(0, 1),
• standard logistic distribution, denoted by Lo(0, 1),
• uniform distribution, denoted by U(0, 1),
• beta distribution with parameters 2 and 2, denoted by Beta(2, 2),
• Normal Inverse Gaussian distribution, denoted by NIG(α, β, µ, δ).

The NIG distribution is completely determined by four parameters, α, β, µ and δ. For an NIG distribution
α, β, µ and δ are shape, skewness, location and scale parameters respectively. The mean, variance, skewness
and kurtosis of NIG are defined respectively by µ+ βδ/γ, δα2

/
γ3, 3β

/
α
√
δγ and 3(1 + 4β2

/
α2)
/
δγ ,where

γ =
√
α2 − β2.

The estimated powers of the present test, based on 10,000 samples of size n equal to 10 and 20, are given in Table
2. The maximum power in each row is bold faced.

We see that the proposed test has the highest power against all considered alternatives distributions (with exception
of Cauchy distribution), as compared with the other tests.
Generally, we observe that the proposed test performs quite well, as compared with the other tests. Thus, in
applications, the use of the proposed test is recommended for achieving a higher gain in power.

4. Real data examples

Two real examples to show the behavior of the proposed test in real cases is presented in this section.
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Table 2. Empirical powers of the tests against symmetric distributions at level 5%.

altern. n W 2 U2 A2 D V DA

N(0, 1) 10 0.046 0.056 0.041 0.043 0.053 0.096
20 0.075 0.114 0.067 0.086 0.106 0.196

Lo(0, 1) 10 0.049 0.049 0.043 0.046 0.049 0.078
20 0.060 0.072 0.054 0.062 0.070 0.132

C(0, 1) 10 0.347 0.397 0.360 0.332 0.383 0.021
20 0.536 0.633 0.556 0.515 0.611 0.010

t(3) 10 0.059 0.065 0.060 0.061 0.063 0.059
20 0.069 0.081 0.073 0.071 0.080 0.081

t(5) 10 0.045 0.053 0.045 0.045 0.049 0.077
20 0.060 0.072 0.056 0.064 0.068 0.119

t(10) 10 0.050 0.052 0.044 0.049 0.053 0.088
20 0.067 0.086 0.060 0.073 0.085 0.158

U(0, 1) 10 0.112 0.156 0.097 0.100 0.132 0.191
20 0.245 0.445 0.242 0.242 0.371 0.478

Beta(2, 2) 10 0.071 0.092 0.061 0.064 0.087 0.144
20 0.124 0.232 0.116 0.151 0.209 0.322

NIG(0.5, 0, 1, 0) 10 0.054 0.061 0.054 0.057 0.060 0.056
20 0.052 0.060 0.057 0.053 0.061 0.061

NIG(1, 0, 1, 0) 10 0.046 0.045 0.043 0.045 0.045 0.061
20 0.051 0.058 0.051 0.057 0.057 0.098

NIG(2, 0, 1, 0) 10 0.044 0.047 0.040 0.044 0.048 0.074
20 0.054 0.063 0.044 0.053 0.063 0.118

Example 1. The following data are 100 breaking strengths of yarn presented by [11].

66, 117, 132, 111, 107, 85, 89, 79, 91, 97, 138, 103, 111, 86, 78, 96, 93, 101, 102, 110, 95, 96, 88, 122, 115, 92,
137, 91, 84, 96, 97, 100, 105, 104, 137, 80, 104, 104, 106, 84, 92, 86, 104, 132, 94, 99, 102, 101, 104, 107, 99, 85,
95, 89, 102, 100, 98, 97, 104, 114, 111, 98, 99, 102, 91, 95, 111, 104, 97, 98, 102, 109, 88, 91, 103, 94, 105, 103,
96, 100, 101, 98, 97, 97, 101, 102, 98, 94, 100, 98, 99, 92, 102, 87, 99, 62, 92, 100, 96, 98.

[12] concluded that the Laplace assumption is not rejected for any of EDF tests, even at a significance level of 0.10.
Our procedure can be used to investigate the above conclusion. The value of the proposed test statistic is T = 0.0416
and the critical value is 0.061 at 0.05 level. Since the value of the proposed test statistic is smaller than the critical
value, the Laplace assumption is accepted and our procedure confirms the results obtained by EDF methods.

Example 2. [13] considered the following dataset, consisting of 33 differences in flood levels between stations on
a river.

1.96, 1.97, 3.60, 3.80, 4.79, 5.66, 5.76, 5.78, 6.27, 6.30,6.76, 7.65, 7.84, 7.99, 8.51, 9.18, 10.13, 10.24, 10.25,
10.43, 11.45, 11.48, 11.75, 11.81, 12.34, 12.78, 13.06, 13.29, 13.98, 14.18, 14.40, 16.22, 17.06.

They suggested that the Laplace distribution might provide a good fit. Puig and Stephens (2000) concluded that
D, W 2, and U2 just reject the Laplace distribution for the data at 0.05 level.
For this example we find µ̂ = 10.13, T = 0.1414 and the critical value is 0.1072 at 0.05 level. Then the Laplace
assumption is rejected as it is by D, W 2, and U2 tests.
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