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Abstract We introduce a new distribution, so called A new generalized modified Weibull (NGMW) distribution. Various
structural properties of the distribution are obtained in terms of Meijer’s G–function, such as moments, moment generating
function, conditional moments, mean deviations, order statistics and maximum likelihood estimators. The distribution
exhibits a wide range of shapes with varying skewness and assumes all possible forms of hazard rate function. The NGMW
distribution along with other distributions are fitted to two sets of data, arising in hydrology and in reliability. It is shown that
the proposed distribution has a superior performance among the compared distributions as evidenced via goodness–of–fit
tests.
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1. Introduction

The Weibull distribution is a popular distribution for modeling and analyzing lifetime data with monotonic hazard
rates. On the other hand, for complex systems, the hazard rate function can often be of non–monotonic shape,
which the Weibull distribution cannot accommodate. To overcome such shortcomings, various generalizations of
the classical Weibull distribution have been investigated by several authors in the recent years; among them, the
extended flexible Weibull distribution [2], the generalized modified Weibull distribution [3], the exponentiated
Weibull distribution [17], the additive Weibull distribution [20] , Weibull Birnbaum-Saunders distribution [12] and
the modified beta Weibull distribution [11] and new type 1 half-logistic weibull [1]. Also, Sarhan and Zaindin
[28] introduced the modified–Weibull (MW) distribution having three parameters β > 0, λ > 0 and γ > 0, with
the cumulative distribution function (cdf) and probability density function (pdf)

G(x) = 1− e−β x−λxγ

(1)

and
g(x) =

(
β + λγ xγ−1

)
e−β x−λxγ

, x > 0, (2)

respectively. It is worth noting that the MW distribution has submodels the exponential (λ = 0) and Weibull
(β = 0).
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Consider starting form a parent continuous cdf G(x), where Ḡ(x) = 1−G(x) and α > 0. The cdf of generalized
odd log–logistic family of distributions (Gleaton and Lynch [10]) is defined by

F (x) =
G(x)α

G(x)α + θ Ḡ(x)α
. (3)

Its corresponding pdf is

f(x) =
αθ g(x)G(x)α−1 Ḡ(x)α−1{

G(x)α + θ Ḡ(x)α
}2 , (4)

where g(x) = dG(x)/dx is the density of the baseline distribution.
Here, we introduce a new distribution having four parameters, so called A new generalized modified Weibull

(NGMW) distribution, which is a generalization for the MW distribution. Our motivation for introducing the
NGMW distribution is due to the simple analytic expressions of G(x) and g(x) of the MW distribution and it can
be represented as infinite linear combination of MW distributions. Furthermore, the distribution provides a wide
range of shapes with varying skewness, varied tail weights and shifting modes based on its additional parameters.
It also accommodates most forms of hazard rates that are encountered in a variety of real-life problems.

The NGMW distribution is obtained by taking G(x) in (3) to be the cdf (1) of the MW distribution. Accordingly,
the cdf of the NGMW distribution is

F (x) =

(
1− e−β x−λxγ)α

(1− e−β x−λxγ )
α
+ θ e−αβ x−αλxγ . (5)

The NGMW density function is

f(x) =
α θ (β + γ λxγ−1) e−αβ x−αλxγ (

1− e−β x−λxγ)α−1{
(1− e−β x−λxγ )

α
+ θ e−αβ x−αλxγ

}2 , x > 0. (6)

The survival function and the hazard rate function of the NGMW distribution are

S(x) =
θ e−αβ x−αλxγ

(1− e−β x−λxγ )
α
+ e−αβ x−αλxγ (7)

and

τ(x) =
α θ (β + γ λxγ−1)

(
1− e−β x−λxγ)α−1

(1− e−β x−λxγ )
α
+ θ e−αβ x−αλxγ . (8)

An interpretation of the NGMW family (5) can be given as follows. Let T be a random variable describing a
stochastic system with cdf G(x) = 1− e−β x−λ xγ

. If the random variable X represents the odds ratio, the risk that
the system following the lifetime T will not working at time x is given by G(x)/[1−G(x)]. If we are interested
in modeling the randomness of the odds ratio by the Marshall-Olkin log-logistic pdf r(t) = α θ tα−1/(1 + θ tα)2

(and cdf R(t) = tα

1+θ tα , for t > 0), the cdf of X is given by

Pr(X ≤ x) = R

(
G(x)

1−G(x)

)
,

which is exactly the cdf (5) of the new family.
The remainder of this article is organized as follows. Some statistical functions of the NGMW distribution are

provided in Section 2, such as the quantile function, moments, moment generating function, conditional moments,
mean deviations, reliability curves and the distribution of order statistics. Certain characterizations of the proposed
distribution are presented in section 3. The estimation of the parameters by maximum likelihood (ML) method is
investigated in Section 4. Simulation study is performed in Section 5. In Section 6, the NGMW distribution along
with other distributions are fitted to two sets of data. It is shown that, the proposed distribution has a better fit as
verified by several goodness–of–fit tests.
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Table 1. Some special cases of the NGMW distribution

α β λ γ θ Reduced distribution
1 - 0 - 1 Exponential distribution
1 - 0 - - Marshall-Olkin Exponential distribution
1 0 - - 1 Weibull distribution
1 0 - - - Marshall-Olkin Weibull distribution
1 0 - 2 1 Rayleigh distribution
1 0 - 2 - Marshall-Olkin Rayleigh distribution
1 - - 2 1 Linear failure rate distribution
1 - - 2 - Marshall-Olkin Linear failure rate distribution
1 - - - 1 Exponential weibull distribution
1 - - - - Marshall-Olkin Exponential weibull distribution
- - 0 - 1 OLL exponential distribution [9]
- - 0 - - Marshall-Olkin OLL exponential distribution [10]
- 0 - - 1 OLL weibull distribution [9]
- 0 - - - Marshall-Olkin OLL weibull distribution [10]
- 0 - 2 1 OLL Rayleigh distribution [9]
- 0 - 2 - Marshall-Olkin OLL Rayleigh distribution [10]
- - - 2 1 OLL linear failure rate [9]
- - - 2 - Marshall-Olkin OLL linear failure rate [10]
1 - - - - Marshall-Olkin MW [25]
- - - - 1 OLLMW [26]

2. Structural properties of the NGMW distribution

Using generalized binomial expansion we can write

(
1− e−β x−λxγ)α

=

∞∑
j=0

aj
(
1− e−β x−λxγ)j

,

where aj =
∑∞

i=j(−1)i+j

(
α

i

)(
i

j

)
and

(
1− e−β x−λxγ)α

+ θ e−αβ x−αλxγ

=

∞∑
j=0

bj
(
1− e−β x−λxγ)j

,

where bj = aj + θ (−1)j
(
α

j

)
. Therefore, we can write

F (x) =

∑∞
j=0 aj

[
1− e−β x−λxγ ]j∑∞

j=0 bj [1− e−β x−λxγ ]
j

=

∞∑
j=0

cj
[
1− e−β x−λxγ ]j

=

∞∑
j=0

cj Hj(x) (9)

where c0 = a0

b0
and for j ≥ 1,

cj = b−1
0

(
aj − b−1

0

j∑
r=1

br cj−r

)
(10)

and
Hj(x) =

(
1− e−β x−λxγ)j

.
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Figure 1. Plots of the NGMW pdf for some parameter values

The pdf specified by (6) can be written as

f(x) =

∞∑
j=0

cj+1 hj+1(x) (11)

and hj+1(x) = (j + 1)
(
β + λ γ xγ−1

)
e−β x−λxγ (

1− e−β x−λxγ)j
.

It is clear from (11) that f(x) can be expressed as infinite linear combinations of exponentiated MW distributions
and hence many properties of the NGMW can be deduced from the corresponding ones of the MW distribution.
In what follows, we discuss some properties of the NGMW distribution and consider several associated statistical
functions.

Stat., Optim. Inf. Comput. Vol. 9, March 2021



M. ALIZADEH, M. NAUMAN KHAN, M. RASEKHI AND G.G HAMEDANI 21

Γ = 0.1 Dotted line

Γ = 0.4 Dashed line

Γ = 1.0 Long Dashes

Γ = 1.3 Solid line

Γ = 3.0 Thick line

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

x

h
rf

Β=0.2, Λ=0.8, Α=1.2, Θ=1.1

Β = 2.3, Α = 0.3, Θ = 0.8 ,

Λ = 0.1, Γ = 12, HDotted lineL,

Λ = 10, Γ = 3.4 HDashed lineL,

Β = 0.9, Λ = 1.2, Α = 2.3, Θ = 0.8,

Γ = 0.5 HSolid lineL,

Γ = 0.9 HThick lineL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

6

x

h
r
f

Figure 2. Plots of the NGMW hrf for some parameter values

If X ∼ NGMW, then one can easily show that the random variable Y = (eβ x+λ xγ − 1) has Marshall-Olkin
log-logistic distribution with shape parameter α and scale parameter equal 1.

2.1. Asymptotic and Shapes

In this section, we discuss the asymptotic and possible shapes of the pdf (6) and the hazard rate function (8).
The asymptotics of equations (5), (6) and (8) as x → 0 are given by

F (x) ∼ (β x+ λxγ)α

θ
as x → 0,

f(x) ∼ α(β + λ γ xγ−1)(β x+ λxγ)α−1

θ
as x → 0,

h(x) ∼ α(β + λ γ xγ−1)(β x+ λxγ)α−1

θ
as x → 0,

The asymptotics of equations (5), (6) and (8) as x → ∞ are given by

1− F (x) ∼ θ e−α(β x+λ xγ) as x → ∞,

f(x) ∼ αθ (β + λ γ xγ−1) e−α(β x+λ xγ) as x → ∞,

h(x) ∼ αθ (β + λ γ xγ−1) as x → ∞.

Observed that plots (a), (b), (c) and (d) indicate how the parameters β, λ, γ and α affect the NGMW density
and show flexibility of density shapes where skewness, heavy tails and modality can be observed. Figures (e) and
(f) represent increasing, decreasing, unimodal, v–shaped, upside–down bathtub and bathtub–shaped hazard rate
function.

2.2. Quantile function

For simulation of NGMW, if U ∼ u(0, 1), then the solution of non-linear equation

β x+ λxγ + log

[
(1− u)

1
α

(θ u)
1
α + (1− u)

1
α

]
= 0 (12)

has cdf (5).

Stat., Optim. Inf. Comput. Vol. 9, March 2021



22 A NEW GENERALIZED MODIFIED WEIBULL DISTRIBUTION

2.3. Moments and moment generating function

We now obtain representations of the moments and moment generating function of the NGMW random variable
on the basis of the result developed in [19]:

∫ ∞

0

xη−1e−θ xk

es xdx=
(2π)1−(q+p)/2 q1/2p η−1/2

(−s)η

×Gq,p
p,q

((
−p

s

)p (θ

q

)q
∣∣∣∣∣ 1− i+η

p , i = 0, 1, ...., p− 1

j/q , j = 0, 1, ...., q − 1

)
, (13)

where ℜ(η),ℜ(θ),ℜ(s) < 0 and k = p
q is a rational number with p and q ̸= 0 integers.

Making use of (13), the rth order moment and moment generating function of the NGMW distribution can be
expressed in terms of Meijer’s G–functions as

E(Xr) = β

∞∑
j=0

j∑
k=0

(−1)k (j + 1) cj+1

(
j

k

)
(2π)1−(q+p)/2q1/2pr+1/2

(β(k + 1))r+1

×Gq,p
p,q

((
p

β(k + 1)

)p(
λ(k + 1)

q

)q
∣∣∣∣∣ 1− i+r+1

p , i = 0, 1, . . . , p− 1

j/q, j = 0, 1, . . . , q − 1

)

+ λ γ

∞∑
j=0

j∑
k=0

(−1)k (j + 1) cj+1

(
j

k

)
(2π)1−(q+p)/2q1/2pr+γ−1/2

(β(k + 1))r+γ

×Gq,p
p,q

((
p

β(k + 1)

)p(
λ(k + 1)

q

)q
∣∣∣∣∣ 1− i+r+γ

p , i = 0, 1, . . . , p− 1

j/q, j = 0, 1, . . . , q − 1

)
, (14)

The hth order moment can readily be determined by replacing r with −h in (14). The moment generating function
of the NGMW is

M(t) = β

∞∑
j=0

j∑
k=0

(−1)k (j + 1) cj+1

(
j

k

)
(2π)1−(q+p)/2 q1/2p 1/2

β(k + 1)− t

×Gq,p
p,q

((
p

β(k + 1)− t

)p(
λ(k + 1)

q

)q
∣∣∣∣∣ 1− i+1

p , i = 0, 1, . . . , p− 1

j/q, j = 0, 1, . . . , q − 1

)

+ λ γ

∞∑
j=0

j∑
k=0

(−1)k (j + 1) cj+1

(
j

k

)
(2π)1−(q+p)/2 q1/2p γ−1/2

((n+ ρ)λ− t)
γ

×Gq,p
p,q

((
p

β(k + 1)− t

)p(
λ(k + 1)

q

)q
∣∣∣∣∣ 1− i+γ

p , i = 0, 1, . . . , p− 1

j/q, j = 0, 1, . . . , q − 1

)
. (15)
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2.4. Order statistics

Suppose X1, . . . , Xn is a random sample from the NGMW family of distributions. Denote the ordered random
variables in the ascending as X1:n ≤, . . . ,≤ Xn:n; the pdf of Xi:n is (David and Nagarajah [6])

fi:n(x) = K f(x)F i−1(x) {1− F (x)}n−i
= K

n−i∑
j=0

(−1)j
(
n− i

j

)
f(x)F (x)j+i−1

=

∞∑
r,k=0

n−i∑
j=0

mj,r,k hr+k+1(x), (16)

where K = n!/[(i− 1)! (n− i)!].
Here hr+k+1(x) denotes the exp-MW density function with power parameter r + k + 1,

mj,r,k =
(−1)j n!

(i− 1)! (n− i− j)! j!

(r + 1) cr+1 fj+i−1,k

[r + k + 1]
, (17)

and ck is defined by Equation (10). Here, the quantities fj+i−1,k is obtained recursively by fj+i−1,0 = cj+i−1
0 and

(for k ≥ 1)

fj+i−1,k = (k c0)
−1

k∑
m=1

[m(j + i)− k] cm fj+i−1,k−m.

Thus one can easily obtain moments, generating function and incomplete moment of order statistics of NGMW.
In the remainder of this section, we shall make use of the next lemma.

Lemma 1
Let

J(x; r, θ) =

∫ x

0

y rf(y) dy =

∞∑
j,l=0

j∑
k=0

(j + 1) cj+1

(
j

k

)
(−1)k+l

l!
{β(k + 1)}l

×
∫ x

0

yl+r
(
β + λγ yγ−1

)
e−λ(k+1) yγ

dy, r = 1, 2, . . . ,

where θ := (β, γ, λ, α). Then, we have

J(x; r, θ) =

∞∑
j,l=0

j∑
k=0

(j + 1) cj+1

(
j

k

)
(−1)k+l

l!
{β(k + 1)}l

×
{

β q xp (l+r+1)

p (2π)(q−1)/2

×Gq,p
p,p+q

(
(λ(k + 1))q xp

qq

∣∣∣∣∣ −l−r
p , 1−l−r

p , . . . , p−l−r−1
p ,−

0 , −l−r−1
p , l+r

p , . . . , p−l−r−2
p

)

+
λxp (l+r+γ)

(2π)(q−1)/2

× Gq,p
p,p+q

(
(λ(k + 1))q xp

qq

∣∣∣∣∣ −l−r−γ+1
p , 2−l−r−γ

p , . . . , p−l−r−γ
p ,−

0 , −l−r−γ
p , l+r+γ−1

p , . . . , p−l−r−γ−1
p

)}
.
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Proof

The proof follows ny considering the arbitrary function e−g(x) = G1,0
0,1

(
g(x)

∣∣∣∣∣ −
0

)
. letting k = p/q where

p ≥ 1 , q ≥ 1 are natural co-prime numbers and making use of the identity∫ x

0

yt G1,0
0,1

(
λ(k + 1)yp/q

∣∣∣∣∣ −
0

)
dy

=
q xp (t+1)

p(2π)(q−1)/2
Gq,p

p,p+q

(
(λ(k + 1))q xp

qq

∣∣∣∣∣ −t
p , 1−t

p , . . . , p−t−1
p ,−

0 , −t−1
p , t

p , . . . ,
p−t−2

p

)
,

which results from Equation (13) of [4].

2.5. Conditional moments and mean deviations

In connection with lifetime distributions, it is important to determine the conditional moments E(Xr|X > t),
r = 1, 2, · · · , which are of interest in predictive inference. The rth conditional moment of the NGMW distribution
can be obtained as

E(Xr|X > t) =
1

S(t)

[
E(Xr)−

∫ t

0

x rf(x) dx

]
=

(
1− e−β x−λxγ)α

+ e−αβ x−αλxγ

e−αβ x−αλxγ [E(Xr)− J(t; r, θ)] . (18)

The mean deviations provide useful information about the characteristics of a population and it can be calculated
from the first incomplete moment. Indeed, the amount of dispersion in a population may be measured to some
extent by all the deviations from the mean and median. The mean deviations of X about the mean µ = E(X) and
about the median M can be expressed as δ = 2µF (µ)− 2m(µ) and η = µ− 2m(M), where F (µ) is calculated
from (5) and

m(z) =

∫ z

0

x f(x)dx = J(z; 1, θ). (19)

2.6. Reliability curves

The Bonferroni and Lorenz curves have various applications in economics, reliability, insurance and medicine.
The Bonferroni curve BF [F (x)] for the NGMW distribution is given by

BF [F (x)] =
1

E (X) .F (x)

∫ x

0

yf(y)dy =
J(x; 1, θ)

E (X) .F (x)
,

and the Lorenz curve of F is
LF [F (x)] =

J(x; 1, θ)

E (X)
. (20)

The scaled total time on test transform of a distribution function F [?] is defined by SF [F (t)] = 1
E(X)

∫ t

0
F̄ (y)dy,

and it is important for the ageing properties of the underlying distribution and can be applied to solve geometrically
some stochastic maintenance problems.

3. Characterizations of NGMW Distribution

This section deals with various characterizations of NGMW distribution. These characterizations are based on: (i)
a simple relationship between two truncated moments; (ii) the hazard function and (iii) the reverse (or reversed)
hazard function. It should be mentioned that for characterization (i) the cdf may not have a closed form.

We present our characterizations (i)− (iii) in three subsections.
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3.1. Characterizations based on two truncated moments

In this subsection we present characterizations of NGMW distribution in terms of the ratio of two truncated
moments. This characterization result employs a theorem due to Glänzel [7], see Theorem 1 in Appendix B. Note
that the result holds also when the interval H is not closed. As shown in [7], this characterization is stable in the
sense of weak convergence.

proposition 1
Let X : Ω → (0,∞) be a continuous random variable and let, h (x) =(
e−βx−λxγ)1−α {(

1− e−βx−λxγ)α
+ θe−αβx−αλxγ}2

and g (x) = h (x)
(
1− e−βx−λxγ)α

for x > 0. The
random variable X has pdf (6) if and only if the function ξ defined in Theorem 1 has the form

ξ (x) =
1

2

{
1 +

(
1− e−βx−λxγ)α}

, x > 0.

Proof
If X has pdf (6), then

(1− F (x))E [h (x) | X ≥ x] = θ
{
1−

(
1− e−βx−λxγ)α}

, x > 0,

and
(1− F (x))E [g (x) |X ≥ x] =

θ

2

{
1−

(
1− e−βx−λxγ)2α}

, x > 0,

and finally

ξ (x)h (x)− g (x) =
1

2
h (x)

{
1−

(
1− e−βx−λxγ)α}

> 0 for x > 0.

Conversely, if ξ is given as above, then

s′ (x) =
ξ′ (x)h (x)

ξ (x)h (x)− g (x)
=

α
(
β + γλxγ−1

)
e−βx−λxγ (

1− e−βx−λxγ)α−1

1− (1− e−βx−λxγ )
α x > 0,

and hence
s (x) = − log

{
1−

(
1− e−βx−λxγ)α}

, x > 0.

Now, in view of Theorem 1, X has density (6).

Corollary 1
Let X : Ω → (0,∞) be a continuous random variable and let h (x) be as in Proposition 1. Then, X has pdf 6 if and
only if there exist functions g and ξ defined in Theorem 1 satisfying the differential equation

ξ′ (x)h (x)

ξ (x)h (x)− g (x)
=

α
(
β + γλxγ−1

)
e−βx−λxγ (

1− e−βx−λxγ)α−1

1− (1− e−βx−λxγ )
α , x > 0.

Proof
The general solution of the differential equation in Corollary 1 is

ξ (x) =
{
1−

(
1− e−βx−λxγ)α}−1

×
[
−
∫

α
(
β + γλxγ−1

)
e−βx−λxγ (

1− e−βx−λxγ)α−1
(h (x))

−1
g (x) +D

]
, (21)

where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition
1 with D = 1

2 . However, it should be also noted that there are other triplets (h, g, ξ) satisfying the conditions of
Theorem 1.
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3.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F , satisfies the first order
differential equation

f ′(x)

f (x)
=

h′
F (x)

hF (x)
− hF (x).

For many univariate continuous distributions, this is the only characterization available in terms of the hazard
function. The following characterization establish a non-trivial characterization of NGMW, in terms of the hazard
function, which is not of the above trivial form.

proposition 2
Let X : Ω → (0,∞) be a continuous random variable. The pdf of X is (6) if and only if its hazard function hF (x)
satisfies the differential equation

h′
F (x)− α

(
β + γλxγ−1

)
hF (x)

= αe−αβx−αλxγ d

dx

{ (
β + γλxγ−1

)
(1− e−βx−λxγ )

[
(1− e−βx−λxγ )

α
+ θe−αβx−αλxγ

]} , x > 0, (22)

with boundary condition limx→∞ hF (x) = 0.

Proof
If X has pdf (6), then clearly the above differential equation holds. Now, if the differential equation holds, then

d

dx

{
e−αβx−αλxγ

hF (x)
}

= αe−2(αβx+αλxγ) d

dx

{ (
β + γλxγ−1

)
(1− e−βx−λxγ )

[
(1− e−βx−λxγ )

α
+ θe−αβx−αλxγ

]} , (23)

or

hF (x) =
α
(
β + γλxγ−1

)
e−αβx−αλxγ

(1− e−βx−λxγ )
[
(1− e−βx−λxγ )

α
+ θe−αβx−αλxγ

] ,
which is the hazard function of the NGMW distribution.

3.3. Characterization in terms of the reverse hazard function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined as

rF (x) =
f (x)

F (x)
, x ∈ support of F.

proposition 3
Let X : Ω → (0,∞) be a continuous random variable. The pdf of X is (6) if and only if its reverse hazard function
rF (x) satisfies the differential equation

r′F (x)− α
(
β + γλxγ−1

)
rF (x)

= αθe−αβx−αλxγ d

dx

{ (
β + γλxγ−1

)
(1− e−βx−λxγ )

[
(1− e−βx−λxγ )

α
+ θe−αβx−αλxγ

]} , (24)

with boundary condition limx→∞ rF (x) = 0.
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Proof
If X has pdf (6), then clearly the above differential equation holds. Now, if this differential equation holds, then

d

dx

{
e−αβx−αλxγ

rF (x)
}

= αθe−2(αβx+αλxγ) d

dx

{ (
β + γλxγ−1

)
(1− e−βx−λxγ )

[
(1− e−βx−λxγ )

α
+ θe−αβx−αλxγ

]} , (25)

or

rF (x) =
αθ
(
β + γλxγ−1

)
e−αβx−αλxγ

(1− e−βx−λxγ )
[
(1− e−βx−λxγ )

α
+ θe−αβx−αλxγ

] ,
which is the reverse hazard function of the OLLMW distribution.

4. Estimation, inference and goodness-of-fit statistics

Estimating the unknown parameters of a distribution is an essential issue in applied statistics. In this section, we
obtain the maximum likelihood (ML) estimation of the parameters of the NGMW distribution based on a random
sample X1, ..., Xn from this distribution. Further, five goodness-of-fit statistics are given to compare the density
estimates and selection of the models.

4.1. Maximum Likelihood Estimation

By using the loglikelihood of the sample in conjunction with the NMaximize command in the symbolic
computational package Mathematica, we can estimate the unknown parameters of a distribution. Given the
observed values xi, i = 1, . . . , n of the taken sample from the NGMW distribution, the maximum likelihood
estimators (MLEs) of the parameters are obtained by maximization of the log-likelihood function given by

ℓ(xi; Θ) = ℓ(xi, α, β, θ, λ, γ) = n log(αθ) +

n∑
i=1

log
(
β + γλxγ−1

i

)
+ α

n∑
i=1

log(1− ti) + (α− 1)

n∑
i=1

log(ti)− 2

n∑
i=1

log(tαi + θ(1− ti)
α) , (26)

where ti = 1− e−β x−λ xγ
i and the associated nonlinear loglikehood system ∂ℓ(Θ)

∂θ = 0, where

∂ℓ(Θ)

∂α
=

n

α
−

n∑
i=1

log(ti (1− ti))− 2

n∑
i=1

tαi log(ti) + θ(1− ti)
α log(1− ti)

tαi + θ(1− ti)α
= 0,

∂ℓ(Θ)

∂β
=

n∑
i=1

1

β + γλxγ
i

− α

n∑
i=1

t
(β)
i

1− ti
+ α

n∑
i=1

t
(β)
i

ti
− 2α

n∑
i=1

t
(β)
i

tα−1
i − θ(1− ti)

α−1

tαi + θ(1− ti)α
= 0,

∂ℓ(Θ)

∂λ
=

n∑
i=1

γ xγ−1
i

β + γλxγ
i

− α

n∑
i=1

t
(λ)
i

1− ti
+ α

n∑
i=1

t
(λ)
i

ti
− 2α

n∑
i=1

t
(λ)
i

tα−1
i − θ(1− ti)

α−1

tλi + θ(1− ti)α
= 0,

∂ℓ(Θ)

∂γ
= λ

n∑
i=1

xγ−1
i [1 + γ log(xi)]

β + γλxγ
i

− α

n∑
i=1

t
(γ)
i

1− ti
+ α

n∑
i=1

t
(γ)
i

ti

− 2α

n∑
i=1

t
(γ)
i

tα−1
i − θ(1− ti)

α−1

tαi + θ(1− ti)α
= 0,
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∂ℓ(Θ)

∂θ
=

n

θ
− 2

n∑
i=1

(1− ti)
α

tλi + θ(1− ti)α
= 0 . (27)

where

t
(λ)
i = xγ

i (1− ti)

t
(β)
i = xi (1− ti)

t
(γ)
i = xγ

i (1− ti) log(xi)

(28)

By solving the above equations simultaneously, we obtain the MLEs of the parameters. The numerical iterative
techniques may be used for estimating the parameters and the global maxima of the log-likelihood is possible
to investigate by putting different starting values for the parameters. The information matrix will be required
for interval estimation. The elements of the 5× 5 total observed information matrix J(Θ) = Jrs(Θ) for r, s =
α, β, λ, γ, θ, can be obtained from authors upon request. Under conditions that are fulfilled for parameters
in the interior of the parameter space but not on the boundary, the asymptotic distribution of

√
n(Θ̂−Θ) is

N5(O, I(θ)−1), where I(Θ) = E{J(Θ)} is the expected information matrix. The approximate multivariate normal
N5(O, I(Θ)−1) distribution, where I(Θ)−1 is the inverse observed information matrix evaluated at Θ = Θ̂, can be
used to set up the approximate confidence intervals of the distribution parameters.

5. Simulation study

The performance of the MLEs of the NGMW distribution with respect to sample size n is considered. Simulation
study is done based on the following steps:
1. generate five thousand samples of size n from (6). This work is done by solving Equation (12) with numerical
method based on R program (”uniroot” function).
2. compute the MLEs for the five thousand samples, say

(
α̂i, β̂i, λ̂i, γ̂i, θ̂i

)
for i = 1, 2, ..., 5000.

3. compute the biases and mean squared errors given by

Biasε(n) =
1

5000

5000∑
i=1

(ε̂i − ε)

and

MSEε(n) =
1

5000

5000∑
i=1

(ε̂i − ε)
2

for ε = α, β, λ, γ, θ.
We repeated these steps for n = 100, 105, ..., 400 with special case of parameters α = 0.6, β = 0.1, λ = 0.1, γ = 8
and θ = 2. The shape of pdf for this case of parameters is bimodal and it is presented in Figure 1. So computing
biasε(n) and MSEε(n) for ε = α, β, λ, γ, θ and n = 100, 105, ..., 400.
Figure 3 shows how the five biases vary with respect to n. The biases for each parameter either decrease or increase
to zero as n → ∞.
Figure 4 shows how the five mean squared errors vary with respect to n. The mean squared errors for each parameter
decrease to zero as n → ∞.
The reported observations in both figures are for only one choice for (α, β, λ, γ, θ), namely (α, β, λ, γ, θ) =
(0.6, 0.1, 0.1, 0.1, 8, 2). The results, however were similar for a wide range of other choices for (α, β, λ, γ, θ). In
particular, 1) the biases for each parameter either decreased or increased to zero and appeared reasonably small at
n ≥ 350, 2) the mean squared errors for each parameter decreased to zero and appeared reasonably small at n ≥
350.

Stat., Optim. Inf. Comput. Vol. 9, March 2021



M. ALIZADEH, M. NAUMAN KHAN, M. RASEKHI AND G.G HAMEDANI 29

100 150 200 250 300 350 400

−0
.0

2
−0

.0
1

0.
00

0.
01

0.
02

0.
03

n

bi
as

ed

100 150 200 250 300 350 400

0.
05

0.
10

0.
15

0.
20

0.
25

n

bi
as

ed

100 150 200 250 300 350 400

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

bi
as

ed

100 150 200 250 300 350 400

0.
2

0.
4

0.
6

0.
8

n

bi
as

ed

100 150 200 250 300 350 400

0.
5

1.
0

1.
5

2.
0

2.
5

n

bi
as

ed

Figure 3. biasα(n) (top left), biasβ(n) (top right), biasλ(n) (middle left), biasγ(n) (middle right) and biasθ(n) (bottom left)
versus n = 100, 105, ..., 400.

6. Applications

In this section, we compare the NGMW model with other related lifetime models, namely: generalized modified
Weibull (GMW) [3], Mcdonald Lomax (McLomax) [14], beta modified Weibull (BMW) [18] and transmuted
generalized modified Weibull (TGMW) [5] distributions. To do so, we make use of two real data sets: first, the
carbon fibre data [4] and, secondly, the bladder cancer data [13]. More specifically, the fitted models are (for
x > 0):

• The GMW density function [3]

f(x) = φαxγ−1 (γ + λx) eλx−αxγeλx
(
1− e−αxγeλx

)φ−1

,
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Figure 4. MSEα(n) (top left), MSEβ(n) (top right), MSEλ(n) (middle left), MSEγ(n) (middle right) and MSEθ(n)
(bottom left) versus n = 100, 105, ..., 400.

• The McLomax density function [14]

f(x) =
c α βα (β + x)−(α+1)

Beta (a c−1, b)

{
1−

(
β

β + x

)α}a−1 [
1−

{
1−

(
β

β + x

)α}c]b−1

,

• The BMW density function [18]

f(x) =
αxγ−1 (γ + λx) eλx

(
1− e−αxγeλx

)a−1

e−b α xγeλx

Beta(a, b)
,
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Table 2. MLEs (standard errors in parentheses) for the carbon fibres

Distributions Parameter estimates
GMW(φ, α, γ, λ ) 5.49894 0.43639 0.14811 0.51628

(8.02208) (0.64986) (0.53839) (0.16932)
McLomax(α, β, a, b, c) 4.01844 44.9998 3.37645 1499.98 5.43418

(16.155) (177.75) (0.79071) (7941.2) (3.49922)
BMW(α, γ, λ, a, b) 0.44730 0.13899 0.49618 5.87258 1.12967

(0.72868) (0.54698) (0.46150) (12.2267) (2.95269)
TGMW(α, φ, γ, λ, η) 0.19212 3.31948 0.27486 0.58561 0.67440

(0.40783) (4.54722) (0.82386) (0.23501) (0.37119)
NGMW(α, β, λ, γ, θ) 1.312813 0.739076 0.088051 2.211504 43.07359

(1.28462) (2.74113) (0.942847) (4.20357) (207.414)

Table 3. Goodness-of-fit statistics for the carbon fibres

Distributions A∗ W ∗

GMW(φ, α, γ, λ) 0.38543 0.06279
McLomax(α, β, a, b, c) 0.49648 0.08398
BMW(α, γ, λ, a, b) 0.38423 0.06261
TGMW(α, φ, γ, λ, η) 0.33211 0.05279
NGMW(α, β, λ, γ, θ) 0.26541 0.03948

• The TGMW density function [5]

f(x) = φαx−1+γ (γ + xλ) e−exλxγα+xλ
(
1− e−exλxγ

)−1+φ {
1 + η − 2

(
1− e−exλxγα

)φ
η
}
.

6.1. The Carbon fibre data

The first data set which is uncensored pertains to the breaking stress of carbon fibres (in Gba) as reported in [4].

6.2. The bladder cancer data

The second data set represents the remission times (in months) of a random sample of 128 bladder cancer patients
as reported in LeeWang : 2003.

The estimated pdf’s and cdf’s of the TGMW model are plotted in Figures 4 and 5 for the carbon fibres and
cancer data, respectively. The estimates of the parameters as well as the values of the Anderson-Darling (A∗) and
Cramér-von Mises (W ∗) statistics are listed in Tables 2 to 5. We note that the TGMW model provides the best fit
for both data sets.

7. Conclusions

There has been a growing interest among statisticians and applied researchers in constructing flexible lifetime
models in order to improve the modelling of survival data. As a result, significant progress has been made
towards the generalization of the traditional Weibull model. In this paper, we propose a five–parameter model
named the odd log-logistic Marshal-Olkin modified Weibull (NGMW), which is obtained by applying the odd log-
logistic Marshal-Olkin technique to the modified Weibull model. The new model extends several important lifetime
distributions. We studied some of its statistical properties and obtained representations of the positive, negative and
factorial moments, as well as the quantile function and the density of the order statistics. The proposed distribution
as applied to two actual data sets turned out to provide better fits than other competing lifetime models.
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Table 4. MLEs (standard errors in parentheses) for the bladder cancer data

Distributions Parameter estimates
GMW(φ, α, γ, λ ) 2.79601 0.45369 0.65441 5.8× 10−13

(1.85772) (0.37182) (0.24811) (0.00628)
McLomax(α, β, a, b, c) 0.8085 11.2929 1.5060 4.1886 2.1046

(3.364) (15.818) (0.243) (25.029) (3.079)
BMW(α, γ, λ, a, b) 0.46965 0.66613 5.8× 10−13 2.73477 0.90825

(0.47875) (0.31225) (0.00639) (2.02018) (1.52196)
TGMW(α, φ, γ, λ, η) 0.25215 2.24129 0.72431 3.4× 10−11 0.72252

(0.31749) (1.74023) (0.38549) (0.00795) (0.35566)
NGMW(α, β, λ, γ, θ) 1.994473 0.015967 0.022496 0.417419 0.026061

(1.22619) (0.033625) (0.051937) (0.338987) (0.123865)

Table 5. Goodness-of-fit statistics for the bladder cancer data

Distributions A∗
0 W ∗

0
GMW(φ, α, γ, λ ) 0.27198 0.04050
McLomax (α, β, a, b, c) 1.81435 0.3550
BMW (α, γ, λ, a, b) 0.27197 0.04051
TGMW (α, φ, γ, λ, η) 0.18733 0.02732
NGMW(α, β, λ, γ, θ) 0.08753 0.01364
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Figure 5. The estimated densities superimposed on the histogram

Appendix A. Meijer G–function

The symbol Gm,n
p,q (·| ·) denotes Meijer’s G−function (MEIJ) which is defined in terms of a Mellin–Barnes integral

as

Gm,n
p,q

(
z
∣∣∣ a1, · · · , ap
b1, · · · , bq

)
=

1

2πi

∮
C

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
zs ds, (29)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p and the poles aj , bj are such that no pole of Γ(bj − s), j = 1,m coincides with
any pole of Γ(1− aj + s), j = 1, n; i.e. ak − bj ̸∈ N, while z ̸= 0, C being a suitable integration contour, see [p.
143]Ref8 and MEIJformoredetails. The G-function’s Mathematica code reads

MeijerG[{{a1, ..., an}, {an+1, ..., ap}}, {{b1, ..., bm}, {bm+1, ..., bq}}, z].
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Appendix B.

Theorem 1
Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for some d < e
(d = −∞, e = ∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the
distribution function F and let g and h be two real functions defined on H such that

E [g (X) | X ≥ x] = E [h (X) | X ≥ x] ξ (x) , x ∈ H,

is defined with some real function η. Assume that g, h ∈ C1 (H), ξ ∈ C2 (H) and F is twice continuously
differentiable and strictly monotone function on the set H . Finally, assume that the equation ξh = g has no real
solution in the interior of H . Then F is uniquely determined by the functions g, h and ξ , particularly

F (x) =

∫ x

a

C

∣∣∣∣ ξ′ (u)

ξ (u)h (u)− g (u)

∣∣∣∣ exp (−s (u)) du,

REFERENCES

1. Alizadeh, M., Nematollahi, A., Altun, E.,& Rasekhi, M. , A Study on A New Type 1 Half-Logistic Family of Distributions and Its
Applications, Statistics, Optimization & Information Computing 8.4 ,pp934-949, 2020.

2. Bebbington, Mark, Chin-Diew Lai, and Riardas Zitikis., A flexible Weibull extension, Reliability Engineering & System Safety 92.6
,pp 719-726, 2007.

3. J.M.F. Carrasco, M.M. Edwin Ortega, G.M.Cordeiro, A generalized modified Weibull distribution for lifetime modelling,
Computational Statistics and Data Analysis, 53 ,pp450–462, 2008.

4. G.M. Cordeiro, E.M.M. Ortega, A.J. Lemonte The exponential–Weibull lifetime distribution, Journal of Statistical Computation
and Simulation, 84, pp 2592–2606, 2014.

5. G.M. Cordeiro, A. Saboor, M.N. Khan, S.B. Provost and E.M.M. Ortega The Transmuted Generalized Modified Weibull Distribution,
Filomat 31.5 , pp1395-1412, 2017.

6. H.A. David, H.N. Nagaraja Order statistics, John Wiley & Sons, Inc. 1970.
7. Glänzel, W. A characterization theorem based on truncated moments and its application to some distribution families. In

Mathematical statistics and probability theory , . (pp. 75-84). Springer Netherlands, 1987.
8. Glänzel, W. Some consequences of a characterization theorem based on truncated moments, Statistics, 21(4), pp613-618, 1990.
9. J.U. Gleaton, J.D. Lynch Properties of generalized log-logistic families of lifetime distributions, Journal of Probability and Statistical

Science 4, no. 1,pp 51–64, 2006.
10. Gleaton, James U., and James D. Lynch Extended Generalized Log-logistic Families of Lifetime Distributions with an Application,

J. Probab. Stat. Sci 8.1 ,pp 1-17, 2010.
11. M.N. Khan, The modified beta Weibull distribution , Hacettepe Journal of Mathematics and Statistics, 44 ,pp 1553–1568, 2015.
12. Benkhelifa , The Weibull Birnbaum-Saunders distribution and its applications, Statistics, Optimization & Information Computing,

2020.
13. Lee E, Wang J. Statistical Methods for Survival Data Analysis , Wiley & Sons: New York; 2003.
14. Lemonte AJ, Cordeiro GM. An extended Lomax distribution, Statistics: A Journal of Theoretical and Applied Statistics. 47, pp

800–816, 2013.
15. Y.L. Luke, The Special Functions and Their Approximations, San Diego: Academic Press, 1969.
16. C.S. Meijer On the G-function I–VIII, Proc. Kon. Ned. Akad. Wet, 49 227–237, 344–356, 457–469, 632–641, 765–772, 936–943,

1063–1072, 1165–1175, 1946.
17. G. S. Mudholkar, D. K. Srivastava, M. Friemer The exponentiated Weibull family: A reanalysis of the bus-motor-failure data ,

Technometrics, 37 , 436–445, 1995.
18. Silva GO, Edwin MM Ortega and Cordeiro GM. The beta modified Weibull distribution, Lifetime. Data. Anal. 16, 409–430, 2010.
19. A. Saboor, S.B. Provost, M. Ahmad, The moment generating function of a bivariate gamma-type distribution,, Applied Mathematics

and Computation, 218(24) , 11911–11921, 2012.
20. M. Xie, C.D. Lai, Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function, Reliability

Engineering and System Safety, 52 ,87–93, 1995.
21. W.H. Von Alven, Reliability engineering , Prentice Hall, 1964.
22. G.R. Aryal, C.P. Tsokos, Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution, EUROPEAN

JOURNAL OF PURE AND APPLIED MATHEMATICS, 4 , 89–102, 2011.
23. V. Choulakian, M.A. Stephens, Goodness-of-fit for the generalized Pareto distribution, Technometrics, 43 , 478-C484, 2001.
24. M.S. Khan, R. King, Transmuted Modified Weibull Distribution: A Generalization of the Modified Weibull Probability Distribution,

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 6 , 66–88, 2013.
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