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Abstract In this article, we introduce a new three-parameter transmuted Cauchy distribution using the quadratic rank
transmutation map approach. Some mathematical properties of the proposed model are discussed. A simulation study is
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data sets and compare various statistics to show the fitting and versatility of the proposed model.
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1. Introduction

The Cauchy distribution, named after Augustin Cauchy (1789 -1857), is a stable familiy of distributions in which
the expected value and variance do not exist. Stable distributions are a special family of probability distributions
appropriate for modeling data that are heavy tailed and skewed. By Kateregga et al. [22], probability densities
of stable distributions do not have closed-form representations except for the case of a Gaussian, Cauchy and
Inverse Gaussian or Pearson distributions. There are some generalizations of the Cauchy distribution using
different frameworks, for instance, [7], [13], among others. A detailed study of the generalized Cauchy family
of distributions with applications has been studied by Alzaatreh et al. [7] in 2016 where authors use the framework
proposed by Aljarrah et al. [2]. The Cauchy distribution has been used in many applications such as mechanical
and electrical theory, physical anthropology, measurement problems, risk and financial analysis, Alzaatreh et al.
[7].

The probability density function (PDF) of the Cauchy distribution with location parameter x0 ∈ R and the scale
parameter γ > 0 is given by

g(x;x0, γ) =
1

π

[
γ

(x− x0)2 + γ2

]
, (1)

where −∞ < x < ∞.
The corresponding cumulative distribution function (CDF) of the Cauchy distribution is given by

G(x;x0, γ) =
1

π
arctan

(
x− x0

γ

)
+

1

2
. (2)
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Note that for γ = 1 and x0 = 0, equations (1) and (2) reduces to the PDF and the CDF of the standard Cauchy
distribution

g(x, 0, 1) =
1

π(1 + x2)

and

G(x; 0, 1) =
arctan(x)

π
+

1

2

respectively, where −∞ < x < ∞.
A new approach of generalizing statistical distributions was proposed by Shaw et al. ([28],[29]). Their concept

is defined by transmutation maps that are functional composition of the cumulative distribution function of one
distribution with the quantile function of another distribution. Shaw et al. ([28],[29]) used quadratic rank transmuted
map (QRTM) approach to construct flexible models by adding an additional parameter.

We consider a pair of distributions F (x) and G(x), where G(x) is the baseline (or a sub-model) distribution of
F (x). A random variable X is said to have a transmuted probability distribution with the CDF F (x) if

F (x) = (1 + λ)G(x)− λG(x)2, |λ| ≤ 1, (3)

and the corresponding PDF f(x) of the transmuted probability distribution is

f(x) = g(x)(1 + λ− 2λG(x)), (4)

where g(x) is the PDF of the sub-model G(x). We note that when λ = 0, equations (3) and (4) reduces to the
distribution of the baseline random variable.

Many new distributions and generalizations using transmutation map have been proposed after Aryal et al.
[8] studied “On the transmuted extreme value distribution with application” in (2009). Some of them are the
work by Ashour [11]: transmuted Lomax distribution, Merovci et al. [24]: transmuted Pareto distribution, Pal et
al. [26]: beta transmuted Weibull distribution, Khan et al. [23]: transmuted Kumaraswamy distribution, Elbatal
et al. [21]: transmuted Dagum distribution with applications, Chhetri et al. [16]: the beta transmuted Pareto
distribution, Chhetri et al. [15]: the Kumaraswamy transmuted Pareto distribution, Aryal [9]: transmuted log-
logistic distribution, Chesneau et al. [14]: a weighted transmuted exponential distribution with environmental
applications, and others. Many researchers have proposed generalized probability distributions using various
approaches. Some of the recent works are by Nadarajah et al. [25] : a skewed truncated Cauchy distribution
with applications in economics, Cordeiro et al. [17]: the beta-half-Cauchy distribution, Aryal et al. [10]: on the
beta exponential Pareto distribution, Alzaatreh et al. [5]: a new method for generating families of continuous
distributions, Alshkaki [4]: a generalized modification of the Kumaraswamy distribution for modeling and
analyzing real-life data, Alizadeh et al. [1]: a new two-parameter lifetime distribution: properties, applications
and different method of estimations, Cordeiro et al. [18]: a new family of generalized distributions, and host of
others.

In this work, we use Cauchy distribution to develop the transmuted Cauchy distribution using the framework
proposed by Shaw et al. [[28], [29]]. The main contribution of this work is the introduction of a new distribution that
outperforms its classical base distribution as well as other distributions in applications. This further demonstrates
the need to investigate more general distributions used in engineering and scientific applications.

This paper is outlined as follows. In section 2, we formulate the transmuted Cauchy distribution. In section
3, we discuss the quantile function and random number generation. Estimation of parameters of the distribution
using the maximum likelihood method is discussed in section 4 and expressions for the hazard rate function and
reversed hazard rate function are derived in section 5. Simulation studies and applications of the proposed model
are presented in section 6 and section 7 respectively and, finally we provide the concluding remarks in section 8.
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2. The Transmuted Cauchy Distribution

In this section, we use the transmutation map method proposed by Shaw et al. [[28], [29]] and derive the PDF and
CDF of the generalization of the Cauchy distribution so-called “transmuted Cauchy distribution” (TCD).

Substituting (2) into (3), we obtain the CDF of the three parameter transmuted Cauchy distribution:

F (x;x0, γ, λ) = − λ

π2

[
arctan

(
x− x0

γ

)]2
+

1

π
arctan

(
x− x0

γ

)
+

λ

4
+

1

2
, (5)

where x0 ∈ R, γ > 0, |λ| ≤ 1 and x ∈ R.
Figures (1) and (2) show the graphical behavior of the CDF of transmuted Cauchy distribution for selected values

of the parameters x0, γ and λ.
Similarly, the PDF of the transmuted Cauchy distribution may be written as

f(x;x0, γ, λ) =
γ

π2[(x− x0)2 + γ2]

[
π − 2λ arctan

(
x− x0

γ

)]
. (6)

Figures (3) and (4) show the graphical behavior of the PDF of transmuted Cauchy distribution for selected values
of the parameters x0, γ and λ.

Figure 1. CDF plots of the transmuted Cauchy distribution with various parameters
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Figure 2. CDF plots of the transmuted Cauchy distribution with various parameters

Figure 3. PDF plots of the transmuted Cauchy distribution with various parameters
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Figure 4. PDF plots of the transmuted Cauchy distribution with various parameters

3. Quantile Function and Random Number Generator

We use the inverse transformation method to generate random numbers form the transmuted Cauchy distribution.
The qth quantile, xq, of the TCD is defined as the real solution of

q = Pr(X ≤ xq) = F (xq), 0 ≤ q ≤ 1,

where F (.) is given by (5).
Thus, we obtain

q = − λ

π2

[
arctan

(xq − x0

γ

)]2
+

1

π
arctan

(xq − x0

γ

)
+

λ+ 2

4
,

which is quadratic in arctan
(

xq−x0

γ

)
. Then xq is the real solution of the equation

arctan
(xq − x0

γ

)
=

π
(
1±

√
λ2 − 4λq + 2λ+ 1

)
2λ

. (7)

Thus,

xq = x0 + γ tan
(π(1±√

λ2 − 4λq + 2λ+ 1
)

2λ

)
. (8)

As q → 1−, we want xq → ∞ and as q → 0+, we want xq → −∞. So for λ ̸= 0, we have

xq = x0 + γ tan
(π(1−√

λ2 − 4λq + 2λ+ 1
)

2λ

)
. (9)

For simulation studies, we will choose specific values of parameters x0, γ, λ and q ∈ (0, 1), and use expression
(9) to generate a random variable X having the transmuted Cauchy distribution (5).
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4. Parameter Estimation

There are several approaches for parameter estimation. The most commonly used method is the maximum
likelihood estimation method to estimate model parameters.
Let X1, X2, . . . , Xn be a random sample from the transmuted Cauchy distribution with observed values
x1, x2, . . . , xn and Θ = (x0, γ, λ)

T be the parameter vector. The likelihood function of the transmuted Cauchy
distribution is

L(Θ|x) = γn

π2n

n∏
i=1

π − 2λ arctan(xi−x0

γ )

(xi − x0)2 + γ2
. (10)

So, the log-likelihood function can be written as

l(Θ|x) = n log γ − 2n log π +

n∑
i=1

[
log

(
π − 2λ arctan(

xi − x0

γ
)
)

− log
(
(xi − x0)

2 + γ2
)]
. (11)

The respective score equations are given by

∂l(Θ)

∂x0
=

n∑
i=1

[
2λγ[

γ2 + (xi − x0)2
][
π − 2λ arctan

(
xi−x0

γ

)] +
2(xi − x0)

(xi − x0)2 + γ2

]
, (12)

∂l(Θ)

∂γ
=
n

γ
+

n∑
i=1

[
2λ(xi − x0)[

γ2 + (xi − x0)2
][
π − 2λ arctan

(
xi−x0

γ

)]
− 2γ

(xi − x0)2 + γ2

]
, (13)

and
∂l(Θ)

∂λ
=

n∑
i=1

[ −2 arctan
(

xi−x0

γ

)
π − 2λ arctan

(
xi−x0

γ

)]. (14)

Let x̂0, γ̂ and λ̂ be the maximum likelihood estimates of the unknown parameters x0, γ and λ respectively. We can
numerically solve the system of equations ∂l(Θ)

∂x0
= 0, ∂l(Θ)

∂γ = 0 and ∂l(Θ)
∂λ = 0 to estimate the unknown parameters

x0, γ and λ respectively.

5. Hazard Rate Function and Reversed Hazard Rate Function

The survival function or the reliability function R(t) is the probability of an item not failing prior to some time t,
and the survival function is defined by

R(t) = 1− F (t),

where F (·) is the CDF of the transmuted Cauchy distribution defined by equation (5).
The hazard rate function of a random variable X with PDF f(x) and CDF F (x) is defined by

h(t) =
f(t)

1− F (t)
. (15)
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Substituting equations (5) and (6) into equation (15), the hazard rate function of the transmuted Cauchy distribution
can be expressed as

h(t) =

γ
π2[(t−x0)2+γ2]

[
π − 2λ arctan

(
t−x0

γ

)]
1
2 − π

4 + λ
π2

[
arctan

(
t−x0

γ

)]2
− 1

π arctan
(

t−x0

γ

) . (16)

By Desai et al. [20], the reversed hazard rate function is a useful tool in the area of maintenance management,
particularly for condition monitoring. Its typical behaviour makes it suitable for the assessment of waiting time and
hidden failures. The reversed hazard rate function is defined by the expression

r(t) =
f(t)

F (t)
. (17)

By substituting equations (5) and (6) into equation (17), the reversed hazard rate function of the transmuted Cauchy
distribution can be expressed as

r(t) =

γ
π2[(t−x0)2+γ2]

[
π − 2λ arctan

(
t−x0

γ

)]
− λ

π2

[
arctan

(
t−x0

γ

)]2
+ 1

π arctan
(

t−x0

γ

)
+ λ

4 + 1
2

. (18)

6. Simulation Study

In this section, the maximum likelihood estimate is evaluated via a simulation study wherein multiple sets of
parameters and sample sizes are tested. The location parameter, x0, takes the values -1, -0.05, 0, and 25, the scale
parameter, γ, takes the values 0.75, 1, and 5, and the transmutation parameter, λ, takes the values -1, -0.5, 0, 0.5,
and 1. In total there are six parameter combinations are used in simulation study. Sample sizes of n = 50, 100, and
500 are considered. The simulation is repeated 200 times for each combination of parameters and sample size. The
estimates and their standard deviations are presented in Table 1. From this table, we see that the expected numerical
convergence of the parameters and their standard deviations converging to zero.
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Sample Size Actual Values ML Estimates Standard Deviations
n x0 γ λ x̂0 γ̂ λ̂ x̂0 γ̂ λ̂

50 0 1 0 0.0058 1.0156 0.0074 0.3336 0.2369 0.3840
0 1 -1 0.0425 0.9617 -0.9382 0.2177 0.1757 0.1347
0 1 1 -0.0732 0.9996 0.9114 0.2336 0.2252 0.1671
-1 1 1 -1.0291 0.9794 0.9501 0.1963 0.1982 0.1007
-0.05 0.75 0.5 -0.0641 0.7922 0.5024 0.2714 0.1744 0.3733
25 5 -0.5 25.0682 5.0847 -0.4869 1.4626 1.0891 0.3178

100 0 1 0 -0.0303 1.0014 -0.03197 0.2405 0.1551 0.2708
0 1 -1 0.0172 1.0027 -0.9573 0.1356 0.1425 0.0755
0 1 1 -0.0363 0.9767 0.9582 0.1260 0.1348 0.0740
-1 1 1 -1.0269 0.9845 0.9594 0.1321 0.1366 0.0788
-0.05 0.75 0.5 -0.0567 0.7559 0.5193 0.1710 0.1207 0.2648
25 5 -0.5 25.1590 4.9935 -0.4579 1.1737 0.7595 0.2801

500 0 1 0 0.0034 1.0060 0.0080 0.1031 0.0645 0.1208
0 1 -1 0.0075 0.9886 -0.9848 0.0576 0.0590 0.0265
0 1 1 -0.0110 0.9925 0.9849 0.0581 0.0639 0.0267
-1 1 1 -1.0065 0.9949 0.9840 0.0517 0.0576 0.0280
-0.05 0.75 0.5 -0.0466 0.7548 0.4994 0.0714 0.0451 0.1067
25 5 -0.5 24.9792 4.9715 -0.4958 0.4491 0.3534 0.1103

Table 1. ML Estimates and Standard Deviations

7. Applications

In this section, we apply the transmuted Cauchy distribution to two real data sets. The first data set is the strength
of glass fibers, which originates from the National Physical Lab in England, and the second data set is annual
maximum one-day rainfall at Florida Atlantic University.

7.1. Strength of Glass Fibers

In this subsection, we fit the transmuted Cauchy distribution to the set of data concerning the strength of the 1.5
cm glass fibers which is obtained from Smith et al. [30].

Strengths of 1.5 cm glass fibers.
0.55 0.74 0.77 0.81 0.84 0.93
1.04 1.11 1.13 1.24 1.25 1.27
1.28 1.29 1.30 1.36 1.39 1.42
1.48 1.48 1.49 1.49 1.50 1.50
1.51 1.52 1.53 1.54 1.55 1.55
1.58 1.59 1.60 1.61 1.61 1.61
1.61 1.62 1.62 1.63 1.64 1.66
1.66 1.66 1.67 1.68 1.68 1.69
1.70 1.70 1.70 1.73 1.76 1.77
1.78 1.81 1.82 1.84 1.84 1.89
2.00 2.01 2.24

Table 2. Strengths of 1.5 cm glass fibers
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The data set, consisting of 63 observations presented in Table 2 has been analyzed in several papers. Barreto-
Souza et al. [12] analyzed the data using the beta-generalized-exponential distribution. Their paper reported the
parameter estimates and the maximized log-likelihood values for the beta-exponential and the beta-generalized
exponential distributions. Alzaatreh et al. [6] did the same with the Two-parameter gamma-normal and Four-
parameter gamma-normal distributions. The β-Birnbaum-Saunders and Birnbaum-Saunders were used by Cordeiro
et al. [19]. Alshawarbeh et al. [3] used the β-Cauchy and Cauchy distributions to analyze the data.

Distribution Birnbaum-Saunders Beta B-S Beta-Exponential
Parameter Estimates â = 0.2699 (0.0267) α̂ = 0.3638 (0.0709) α̂ = 17.7786

b̂ = 1.3909 (0.0521) β̂ = 7857.566 (3602.2) β̂ = 22.7222
â = 1.0505 (0.0101) λ̂ = 0.3898
b̂ = 30.4783 (0.5085)

Log-Likelihood -22.1890 -14.7760 -24.1270
AIC 48.3780 37.5520 52.2540
K-S 0.1988 0.1590 0.1846
K-S p-value 0.0355 0.1518 0.0273
Distribution Beta Gen. Exp. 2-param. γ-normal 4-param. γ-normal
Parameter Estimates α̂= 0.4125 α̂ = 18.0840 (3.5490) α̂ = 0.5872 (0.7805)

β̂= 93.4655 β̂ = 0.1459 (0.0290) β̂ = 0.1871 (0.5139)
â= 22.6124 µ̂ = 2.0895 (0.7495)
λ̂= 0.9227 σ̂= 0.3910 (0.3872)

Log-Likelihood -15.5995 -15.0551 -13.2148
AIC 39.1990 34.1102 34.4296
K-S 0.1356 0.1627 0.1620
K-S p-value 0.1970 0.1343 0.1377
Distribution Cauchy Beta-Cauchy Transmuted-Cauchy
Parameter Estimates γ̂ = 1.5966 (0.0248) α̂= 2.4345 (1.2411) x̂0=1.6777 (0.0374)

λ̂= 0.1341 (0.0235) β̂= 4.0276 (2.3276) γ̂=0.1492 (0.0291)
θ̂= 1.7053 (0.0783) λ̂=0.9055 (0.2807)
λ̂= 0.2993 (0.1208)

Log-Likelihood -17.6365 -11.8172 -14.6063
AIC 39.2730 31.6344 35.2127
K-S 0.1029 0.0573 0.07818
K-S p-value 0.5167 0.9858 0.836

Table 3. Parameter estimates (standard errors in parentheses) for the glass fibers data

The model selection is based on the measures of Akaike information criterion (AIC) and Kolmogorov-Smirnov
(K-S) test statistics:

AIC = −2l(Θ̂) + 2q, KS = max
1≤i≤N

(
F (Zi)−

i− 1

N
,
i

N
, F (Zi)

)
where q is the number of parameters in the model, l(Θ̂) denotes the log-likelihood function evaluated at the
maximum likelihood estimates, F (.) is the CDF (5), and Z1, Z2, . . . , ZN are N ordered data points from empirical
cumulative distribution function. Here we note that the smaller the values of goodness-of-fit measures the better
the fit of the data. The transmuted Cauchy distribution is fitted to the data set. The results are compared to the beta-
exponential, the beta-generalized exponential, the Two-parameter gamma-normal and Four-parameter gamma-
normal, β-Birnbaum-Saunders and Birnbaum-Saunders, β-Cauchy and Cauchy distributions. The log-likelihood,
AIC, and K-S statistics are shown in Table 3.

Stat., Optim. Inf. Comput. Vol. 9, March 2021



132 A NEW GENERALIZED CAUCHY DISTRIBUTION

Among the distributions with two or three degrees of freedom the transmuted-Cauchy distribution has the
largest log-likelihood as well as the second smallest AIC and smallest K-S statistic. These results indicate that
the transmuted-Cauchy distribution provides a better fit than the other distributions. However, the Beta-Cauchy
distribution, which has four degrees of freedom, has a greater log-likelihood and smaller AIC and K-S statistic.

7.2. Annual Maximum One-Day Rainfalls at Florida Atlantic University

The Cauchy distribution can be applied to extreme events such as annual maximum one-day rainfalls and river
discharges. Here we analyze data from PRISM Climate Group, Oregon State University [27], which has time
series values for individual locations around the world. In particular, we look at the annual maximum one-day
rainfalls at Florida Atlantic University as shown in Table 4.

Year Maximum One-Day
Rainfall (mm) Year Maximum One-Day

Rainfall (mm)
1981 80.02 2001 92.02
1982 72.48 2002 55.01
1983 72.17 2003 57.79
1984 102.57 2004 65.39
1985 67.41 2005 126.03
1986 73.43 2006 73.64
1987 52.91 2007 128.05
1988 45.69 2008 96.73
1989 30.3 2009 117.92
1990 35.24 2010 54.07
1991 66.91 2011 80.02
1992 79.85 2012 87.68
1993 47.4 2013 133.27
1994 129.73 2014 56.29
1995 154.54 2015 64.2
1996 59.91 2016 109.44
1997 89.63 2017 216.63
1998 135.05 2018 63.9
1999 102.39 2019 201.35
2000 110.75

Table 4. Annual Maximum One-Day Rainfalls at Florida Atlantic University

The transmuted-Cauchy distribution is fitted to the data. The results are compared then to the Cauchy, Gamma-
Cauchy, Two-parameter Power Cauchy, and Beta-Cauchy distributions. The log-likelihood, AIC, and K-S statistics
are shown in Table 5.

When compared to the Cauchy distribution, the transmuted-Cauchy distribution has the greater log-likelihood as
well as the smaller AIC and K-S statistics. These results indicate that the transmuted-Cauchy distribution provides
a better fit than Cauchy distribution. When compared to the Beta-Cauchy and Gamma-Cauchy, we see both have
greater log-likelihood as well as the smaller AIC which is to be expected because they each have four degrees
of freedom rather than three. The histogram in Figure (5) shows the fit of the transmuted-Cauchy distribution.
Moreover, one can see the heavy tail characteristic of a Cauchy distribution, but the right-skew of the data shows
the need for the transmutation.
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Distribution Cauchy Transmuted-Cauchy

Parameter Estimates x̂0=74.8267 (5.1193)
γ̂ = 19.9282 (4.3623)

x̂0=61.5228 (13.9836)
γ̂ = 19.9593 (5.6711)
λ̂ = −1.0000 (1.14393)

Log-likelihood -202.1967 -197.8307
AIC 404.3934 401.6614
K-S 0.13966 0.084705
K-S p-value 0.4322 0.9423
Distribution Beta-Cauchy Gamma-Cauchy

Parameter Estimates

θ̂=-15.2263 (27.5761)
λ̂ = 16.0911 (23.5988)
α̂=137.6780 (226.4303)
β̂=8.0145 (4.8898)

x̂0=3.3334 (38.9298)
γ̂ = 26.6606 (67.5995)
α̂=30.0402 (69.8533)
β̂=0.0755 (0.0895)

Log-likelihood -194.0601 -194.0745
AIC 396.1210 396.1489
K-S 0.071452 0.067363
K-S p-value 0.9886 0.9944
Distribution Two-Parameter Power Cauchy

Parameter Estimates
x̂0=0
γ̂ = 80.1130 (5.5836)
α̂=3.3770

Log-likelihood -194.9659
AIC 395.9391
K-S 0.076543
K-S p-value 0.9763

Table 5. Parameter estimates (standard errors in parentheses) for Annual Maximum One-Day Rainfalls at Florida Atlantic
University

0.000

0.005

0.010

0.015

0 50 100 150 200
Rain mm

De
ns

ity

Distribution

Beta−Cauchy

Cauchy

Gamma−Cauchy

Transmuted−Cauchy

Annual Maximum Rainfall

Figure 5. Histogram and Fitted Distribution for Annual Maximum One-Day Rainfall at Florida Atlantic University
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8. Conclusion

In this article, we have proposed a new distribution, so-called the transmuted Cauchy distribution (TCD). We
have used the Cauchy distribution as the baseline distribution and the quadratic rank transmuted map (QRTM) to
construct the transmuted Cauchy distribution. A simulation study is used to assess the performance of the maximum
likelihood estimation of the parameters. We also analyzed two real data sets to show the importance and versatility
of the proposed model. Various statistics show that the transmuted Cauchy distribution is superior to its competitive
models. We hope that this work will serve as a reference for future research in the subject area.
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Appendix

Here we list the probability density function and cumulative distribution function of all distributions that we used
in model comparison.

Let X be a normal random variable with the PDF ϕ(x) and the CDF Φ(x).

1. Birnbaum-Saunders distribution BS(α, β)

(a) PDF: f(x;α, β) = κ(α, β)x− 3
2 (x+ β) exp{− τ(x/β)

2α2 }, x > 0

(b) CDF: F (x;α, β) = Φ(v), v = α−1ρ(x/β), ρ(z) = z
1
2 − z−

1
2

where κ(α, β) = exp(α−2/(2α
√
2αβ) and τ(z) = z + z−1.

2. β- Birnbaum-Saunders distribution β-BS(α, β, a, b)

(a) PDF: f(x;α, β, a, b) = κ(α,β)
B(a,b)x

− 3
2 (x+ β) exp{− τ(x/β)

2α2 }Φ(v)a−1(1− Φ(v))b−1, x > 0

(b) CDF: F (x;α, β, a, b) = IΦ(v)(a, b), where Iy(a, b) =
By(a,b)
B(a,b) , B(a, b) = γ(a)γ(b)

γ(a+b) , Φ(.) is the standard

cumulative function, a > 0, b > 0, v = α−1ρ( t
β ), ρ(z) = z

1
2 + z

−1
2 .

3. Beta-exponential distribution BE(a, b, λ)

(a) PDF: f(x; a, b, λ) = λ
B(a,b) exp(−bλx)(1− exp(−λx))a−1

(b) CDF : F (x; a, b, λ) = I1−exp−λx(a, b), x > 0, a > 0, b > 0, λ > 0

where Iy(a, b) =
By(a,b)
B(a,b) , By(a, b) =

∫ y

0
wa−1(1− w)b−1dw.

4. Beta generalized exponential distribution BGE(a, b, λ, α)

(a) PDF: f(x; a, b, λ, α) = αλ
B(a,b) exp(−λx)(1− exp(−λx))αa−1{1− (1− exp(−λx)α}b−1

(b) CDF: F (x; a, b, λ, α) = 1
B(a,b)

∫ (1−e−λx)α

0
wa−1(1− w)b−1dw,

where x > 0, a > 0, b > 0, λ > 0, α > 0.
5. Four-parameter gamma normal distribution

(a) PDF: G(x;α, β, µ, σ) =
γ
(
α,

− log(1−Φ(x))
β

)
Γ(α)

(b) CDF: g(x;α, β, µ, σ) = 1
γ(α)βαϕ(x)

[
− log(1− Φ(x))

]α−1[
1− Φ(x)

] 1
β−1

where −∞ < x < ∞,−∞ < µ < ∞, α, β, σ > 0.
6. Two-parameter gamma normal distribution
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The two-parameter gamma normal is also known as the gamma -standard normal. We obtain the CDF and
PDF of the two-parameter gamma normal by replacing µ = 0 and σ = 1 in the CDF and PDF of the four-
parameter gamma normal distribution.

7. Beta-Cauchy distribution:

(a) PDF: f(x;x0, a, b, λ) =
λ

πB(a,b)

[
1
2 + 1

π arctan(x−x0

λ )
]a−1[ 1

2 − 1
π arctan(x−x0

λ )
]b−1 1

λ2+(x−x0)2

(b) CDF: G(x;α, β, γ, x0) =
1

B(α,β)

[
1
π arctan

(
x−x0

γ

)
+ 1

2 ]
α−1

[
1
2 − 1

π arctan
(

x−x0

γ

) ]β−1

where −∞ < x, x0 < ∞, 0 < a, b, λ < ∞.
8. Gamma-Cauchy distribution:

(a) PDF: f(x;x0, a, b, λ) =

[
−log( 1

2−
1
π arctan(

x−x0
λ ))

]a−1[
1
2−

1
π arctan(

x−x0
λ

] 1
b
−1

πλbaΓ(a)(1+(
x−x0

λ )2)

(b) CDF: F (x;x0, a, b, λ) =
1

Γ(a)γ
(
a,−1

b log(
1
2 − 1

π arctan(x−x0

λ )
)

where γ(a, x) =
∫ x

0
ta−1e−tdt, −∞ < x, x0 < ∞, 0 < a, b, λ < ∞.

9. Power Cauchy distribution:

(a) PDF:f(x;x0, a, λ) =
2a
(

x−x0
λ

)a−1

πλ
(
1+(

x−x0
λ )2a

)
(b) CDF:F (x;x0, a, λ) =

2
π arctan

(
x−x0

λ

)a
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